Skip to main content
Log in

Visible/near-infrared Spectroscopy and Hyperspectral Imaging Facilitate the Rapid Determination of Soluble Solids Content in Fruits

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Soluble solids content (SSC) is an essential internal quality attribute of fruits that directly affects consumers’ degree of satisfaction. The traditional determination method, the refractometer, is characterized by inherent drawbacks of destructiveness, labor intensiveness, and low efficiency. Visible/near-infrared (VIS/NIR) spectroscopy and hyperspectral imaging (HSI) can be promising alternative approaches as being non-destructive, accurate, and rapid and have attracted extensive attention. This review endeavors to elucidate the advantages and limitations of applying VIS/NIR and HSI techniques in determining fruit SSC, drawing upon a comprehensive analysis of the pertinent literature. The latest progress of instrument configuration is described, and an outline for crucial steps involved in data acquisition and analysis is presented to provide empirical support for future research. Notably, the main internal and external factors that interfere with the model performance in complex application scenarios are comprehensively discussed for the first time. Additionally, the advances in strategies devised to compensate for these interference are summarized. To facilitate the transition of VIS/NIR and HSI techniques for fruit SSC into practical use, future research activities should be focused on addressing the challenges in big data acquisition, sample representativeness, feature fusion, model verification and interpretation, and model improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Guo C, Zhang J, Cai W, Shao X (2023) Enhancing transferability of near-infrared spectral models for soluble solids content prediction across different fruits. Appl Sci 13(9):5417. https://doi.org/10.3390/app13095417

    Article  CAS  Google Scholar 

  2. Gao Q, Wang ML, Guo YY, Zhao XQ, He DJ (2019) Comparative analysis of non-destructive prediction model of soluble solids content for malus micromalus makino based on near-infrared spectroscopy. IEEE Access 7:128064–128075. https://doi.org/10.1109/Access.2019.2939579

    Article  Google Scholar 

  3. An D, Zhang L, Liu Z, Liu J, Wei Y (2022) Advances in infrared spectroscopy and hyperspectral imaging combined with artificial intelligence for the detection of cereals quality. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2022.2066062

    Article  PubMed  Google Scholar 

  4. Pang T, Rao L, Chen X, Cheng J (2021) Impruved prediction of soluble solid content of apple using a combination of spectral and textural features of hyperspectral images. J Appl Spectrosc 87(6):1196–1205. https://doi.org/10.1007/s10812-021-01129-z

    Article  CAS  Google Scholar 

  5. Chandrasekaran I, Panigrahi SS, Ravikanth L, Singh CB (2019) Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: an overview. Food Anal Methods 12(11):2438–2458. https://doi.org/10.1007/s12161-019-01609-1

    Article  Google Scholar 

  6. Wang N-N, Sun D-W, Yang Y-C, Pu H, Zhu Z (2015) Recent advances in the application of hyperspectral imaging for evaluating fruit quality. Food Anal Methods 9(1):178–191. https://doi.org/10.1007/s12161-015-0153-3

    Article  CAS  Google Scholar 

  7. Li J, Sun D, Cheng J (2016) Recent advances in nondestructive analytical techniques for determining the total soluble solids in fruits: a review. Compr Rev Food Sci Food Saf 15(5):897–911. https://doi.org/10.1111/1541-4337.12217

    Article  PubMed  Google Scholar 

  8. Pu H, Lin L, Sun DW (2019) Principles of hyperspectral microscope imaging techniques and their applications in food quality and safety detection: a review. Compr Rev Food Sci Food Saf 18(4):853–866. https://doi.org/10.1111/1541-4337.12432

    Article  PubMed  Google Scholar 

  9. Cen H, He Y (2007) Theory and application of near infrared reflectance spectroscopy in determination of food quality. Trends Food Sci Technol 18(2):72–83. https://doi.org/10.1016/j.tifs.2006.09.003

    Article  CAS  Google Scholar 

  10. Pu H, Kamruzzaman M, Sun D-W (2015) Selection of feature wavelengths for developing multispectral imaging systems for quality, safety and authenticity of muscle foods-a review. Trends Food Sci Technol 45(1):86–104. https://doi.org/10.1016/j.tifs.2015.05.006

    Article  CAS  Google Scholar 

  11. Paz P, Sánchez M-T, Pérez-Marín D, Guerrero JE, Garrido-Varo A (2009) Instantaneous quantitative and qualitative assessment of pear quality using near infrared spectroscopy. Comput Electron Agric 69(1):24–32. https://doi.org/10.1016/j.compag.2009.06.008

    Article  Google Scholar 

  12. Torres I, Pérez-Marín D, De la Haba M-J, Sánchez M-T (2015) Fast and accurate quality assessment of Raf tomatoes using NIRS technology. Postharvest Biol Technol 107:9–15. https://doi.org/10.1016/j.postharvbio.2015.04.004

    Article  CAS  Google Scholar 

  13. Xiao H, Li A, Li M, Sun Y, Tu K, Wang S, Pan L (2018) Quality assessment and discrimination of intact white and red grapes from Vitis vinifera L. at five ripening stages by visible and near-infrared spectroscopy. Sci Hortic 233:99–107. https://doi.org/10.1016/j.scienta.2018.01.041

    Article  CAS  Google Scholar 

  14. Beghi R, Spinardi A, Bodria L, Mignani I, Guidetti R (2012) Apples nutraceutic properties evaluation through a visible and near-infrared portable system. Food Bioprocess Technol 6(9):2547–2554. https://doi.org/10.1007/s11947-012-0824-7

    Article  CAS  Google Scholar 

  15. Camps C, Christen D (2009) Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy. LWT Food Sci Technol 42(6):1125–1131. https://doi.org/10.1016/j.lwt.2009.01.015

    Article  CAS  Google Scholar 

  16. Sripaurya T, Sengchuai K, Booranawong A, Chetpattananondh K (2021) Gros Michel banana soluble solids content evaluation and maturity classification using a developed portable 6 channel NIR device measurement. Measurement 173:108615. https://doi.org/10.1016/j.measurement.2020.108615

    Article  Google Scholar 

  17. Torres I, Sánchez MT, de la Haba MJ, Perez-Marin D (2019) LOCAL regression applied to a citrus multispecies library to assess chemical quality parameters using near infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 217:206–214. https://doi.org/10.1016/j.saa.2019.03.090

    Article  CAS  PubMed  Google Scholar 

  18. Donis-González IR, Valero C, Momin MA, Kaur A, Slaughter DC (2020) Performance evaluation of two commercially available portable spectrometers to non-invasively determine table grape and peach quality attributes. Agronomy 10(1):148. https://doi.org/10.3390/agronomy10010148

    Article  Google Scholar 

  19. Sánchez M-T, De la Haba M-J, Pérez-Marín D (2013) Internal and external quality assessment of mandarins on-tree and at harvest using a portable NIR spectrophotometer. Comput Electron Agric 92:66–74. https://doi.org/10.1016/j.compag.2013.01.004

    Article  Google Scholar 

  20. dos Santos Neto JP, de Assis MWD, Casagrande IP, Cunha Júnior LC, de Almeida Teixeira GH (2017) Determination of ‘Palmer’ mango maturity indices using portable near infrared (VIS-NIR) spectrometer. Postharvest Biol Technol 130:75–80. https://doi.org/10.1016/j.postharvbio.2017.03.009

    Article  CAS  Google Scholar 

  21. Sánchez M-T, De la Haba M-J, Guerrero J-E, Garrido-Varo A, Pérez-Marín D (2011) Testing of a local approach for the prediction of quality parameters in intact nectarines using a portable NIRS instrument. Postharvest Biol Technol 60(2):130–135. https://doi.org/10.1016/j.postharvbio.2010.12.006

    Article  Google Scholar 

  22. Sánchez M-T, De la Haba M-J, Serrano I, Pérez-Marín D (2012) Application of NIRS for nondestructive measurement of quality parameters in intact oranges during on-tree ripening and at harvest. Food Anal Methods 6(3):826–837. https://doi.org/10.1007/s12161-012-9490-7

    Article  Google Scholar 

  23. Xu S, Lu H, Ference C, Zhang Q (2019) Visible/near infrared reflection spectrometer and electronic nose data fusion as an accuracy improvement method for portable total soluble solid content detection of orange. Appl Sci 9(18):3761. https://doi.org/10.3390/app9183761

    Article  CAS  Google Scholar 

  24. Pires R, Guerra R, Cruz SP, Antunes MD, Brázio A, Afonso AM, Daniel M, Panagopoulos T, Gonçalves I, Cavaco AM (2022) Ripening assessment of ‘Ortanique’ (Citrus reticulata Blanco x Citrus sinensis (L) Osbeck) on tree by SW-NIR reflectance spectroscopy-based calibration models. Postharvest Biol Technol 183:111750. https://doi.org/10.1016/j.postharvbio.2021.111750

    Article  Google Scholar 

  25. Minas IS, Anthony BM, Pieper JR, Sterle DG (2023) Large-scale and accurate non-destructive visual to near infrared spectroscopy-based assessment of the effect of rootstock on peach fruit internal quality. Eur J Agron 143:126706. https://doi.org/10.1016/j.eja.2022.126706

    Article  CAS  Google Scholar 

  26. Yuan L-M, You L, Yang X, Chen X, Huang G, Chen X, Shi W, Sun Y (2022) Consensual regression of soluble solids content in peach by near infrared spectrocopy. Foods 11(8):1095. https://doi.org/10.3390/foods11081095

    Article  PubMed  PubMed Central  Google Scholar 

  27. Mishra P, Marini F, Brouwer B, Roger JM, Biancolillo A, Woltering E, Echtelt EH (2021) Sequential fusion of information from two portable spectrometers for improved prediction of moisture and soluble solids content in pear fruit. Talanta 223(Pt 2):121733. https://doi.org/10.1016/j.talanta.2020.121733

    Article  CAS  PubMed  Google Scholar 

  28. Tian X, Wang Q, Li J, Peng F, Huang W (2018) Non-destructive prediction of soluble solids content of pear based on fruit surface feature classification and multivariate regression analysis. Infrared Phys Technol 92:336–344. https://doi.org/10.1016/j.infrared.2018.06.019

    Article  CAS  Google Scholar 

  29. Amuah CLY, Teye E, Lamptey FP, Nyandey K, Opoku-Ansah J, Adueming PO-W (2019) Feasibility study of the use of handheld NIR spectrometer for simultaneous authentication and quantification of quality parameters in intact pineapple fruits. J Spectrosc 2019:1–9. https://doi.org/10.1155/2019/5975461

    Article  CAS  Google Scholar 

  30. Pérez-Marín D, Paz P, Guerrero J-E, Garrido-Varo A, Sánchez M-T (2010) Miniature handheld NIR sensor for the on-site non-destructive assessment of post-harvest quality and refrigerated storage behavior in plums. J Food Eng 99(3):294–302. https://doi.org/10.1016/j.jfoodeng.2010.03.002

    Article  Google Scholar 

  31. Castrignanò A, Buttafuoco G, Malegori C, Genorini E, Iorio R, Stipic M, Girone G, Venezia A (2019) Assessing the feasibility of a miniaturized near-infrared spectrometer in determining quality attributes of san marzano tomato. Food Anal Methods 12(7):1497–1510. https://doi.org/10.1007/s12161-019-01475-x

    Article  Google Scholar 

  32. Ecarnot M, Baczyk P, Tessarotto L, Chervin C (2013) Rapid phenotyping of the tomato fruit model, Micro-Tom, with a portable VIS-NIR spectrometer. Plant Physiol Biochem 70:159–163. https://doi.org/10.1016/j.plaphy.2013.05.019

    Article  CAS  PubMed  Google Scholar 

  33. Yu Y, Yao M (2023) Is this pear sweeter than this apple? A universal SSC model for fruits with similar physicochemical properties. Biosys Eng 226:116–131. https://doi.org/10.1016/j.biosystemseng.2023.01.002

    Article  CAS  Google Scholar 

  34. Guo W, Li W, Yang B, Zhu Z, Liu D, Zhu X (2019) A novel noninvasive and cost-effective handheld detector on soluble solids content of fruits. J Food Eng 257:1–9. https://doi.org/10.1016/j.jfoodeng.2019.03.022

    Article  Google Scholar 

  35. Yu Y, Yao M (2022) A portable NIR system for nondestructive assessment of SSC and firmness of Nanguo pears. Lwt 167:113809. https://doi.org/10.1016/j.lwt.2022.113809

    Article  CAS  Google Scholar 

  36. Wang T, Chen J, Fan Y, Qiu Z, He Y (2018) SeeFruits: Design and evaluation of a cloud-based ultra-portable NIRS system for sweet cherry quality detection. Comput Electron Agric 152:302–313. https://doi.org/10.1016/j.compag.2018.07.017

    Article  Google Scholar 

  37. Yu Y, Zhang Q, Huang J, Zhu J, Liu J (2021) Nondestructive determination of SSC in Korla fragrant pear using a portable near-infrared spectroscopy system. Infrared Phys Technol 116:103785. https://doi.org/10.1016/j.infrared.2021.103785

    Article  CAS  Google Scholar 

  38. Xu X, Xu H, Xie L, Ying Y (2018) Effect of measurement position on prediction of apple soluble solids content (SSC) by an on-line near-infrared (NIR) system. J Food Meas Charact 13(1):506–512. https://doi.org/10.1007/s11694-018-9964-4

    Article  Google Scholar 

  39. Tian X, Fan S, Li J, Xia Y, Huang W, Zhao C (2019) Comparison and optimization of models for SSC on-line determination of intact apple using efficient spectrum optimization and variable selection algorithm. Infrared Phys Technol 102:102979. https://doi.org/10.1016/j.infrared.2019.102979

    Article  Google Scholar 

  40. Zhao M, Peng Y, Li L (2021) A robot system for the autodetection and classification of apple internal quality attributes. Postharvest Biol Technol 180:111615. https://doi.org/10.1016/j.postharvbio.2021.111615

    Article  CAS  Google Scholar 

  41. Jie D, Xie L, Rao X, Ying Y (2014) Using visible and near infrared diffuse transmittance technique to predict soluble solids content of watermelon in an on-line detection system. Postharvest Biol Technol 90:1–6. https://doi.org/10.1016/j.postharvbio.2013.11.009

    Article  CAS  Google Scholar 

  42. Liu Y, Zhou Y, Pan Y (2014) Online quantitative analysis of soluble solids content in navel oranges using visible-near infrared spectroscopy and variable selection methods. J Innov Opt Health Sci 07(06):1350065. https://doi.org/10.1142/s179354581350065x

    Article  Google Scholar 

  43. Wang G, Liu Y, Li X, Zhang Y, Wang J, Jiang X (2021) Differences in optical properties of fruit tissues between stone fruits and citrus fruits. Infrared Phys Technol 112:103599. https://doi.org/10.1016/j.infrared.2020.103599

    Article  CAS  Google Scholar 

  44. Xia Y, Tian X, Li J, Fan S, Huang W (2019) Prediction and comparison of models for soluble solids content determination in “Ya” pears using optical properties and diffuse reflectance in 900–1700 nm spectral region. IEEE Access 7:179199–179211

    Article  Google Scholar 

  45. Li H, Zhu J, Jiao T, Wang B, Wei W, Ali S, Ouyang Q, Zuo M, Chen Q (2020) Development of a novel wavelength selection method VCPA-PLS for robust quantification of soluble solids in tomato by on-line diffuse reflectance NIR. Spectrochim Acta A Mol Biomol Spectrosc 243:118765. https://doi.org/10.1016/j.saa.2020.118765

    Article  CAS  PubMed  Google Scholar 

  46. Fan S, Wang Q, Tian X, Yang G, Xia Y, Li J, Huang W (2020) Non-destructive evaluation of soluble solids content of apples using a developed portable Vis/NIR device. Biosys Eng 193:138–148. https://doi.org/10.1016/j.biosystemseng.2020.02.017

    Article  Google Scholar 

  47. Tran NT, Fukuzawa M (2020) A portable spectrometric system for quantitative prediction of the soluble solids content of apples with a pre-calibrated multispectral sensor chipset. Sensors (Basel) 20(20):5883. https://doi.org/10.3390/s20205883

    Article  PubMed  Google Scholar 

  48. Wang J, Guo Z, Zou C, Jiang S, El-Seedi HR, Zou X (2022) General model of multi-quality detection for apple from different origins by Vis/NIR transmittance spectroscopy. J Food Meas Charact 16(4):2582–2595. https://doi.org/10.1007/s11694-022-01375-5

    Article  Google Scholar 

  49. Zhang Y, Huang J, Zhang Q, Liu J, Meng Y, Yu Y (2022) Nondestructive determination of SSC in an apple by using a portable near-infrared spectroscopy system. Appl Opt 61(12):3419–3428. https://doi.org/10.1364/AO.455024

    Article  PubMed  Google Scholar 

  50. Yao Y, Ma K, Zhu J, Huang F, Kuang L, Wang X, Li S (2023) Non-destructive determination of soluble solids content in intact apples using a self-made portable NIR diffuse reflectance instrument. Infrared Phys Technol 132:104714. https://doi.org/10.1016/j.infrared.2023.104714

    Article  CAS  Google Scholar 

  51. Choi J-H, Chen P-A, Lee B, Yim S-H, Kim M-S, Bae Y-S, Lim D-C, Seo H-J (2017) Portable, non-destructive tester integrating VIS/NIR reflectance spectroscopy for the detection of sugar content in Asian pears. Sci Hortic 220:147–153. https://doi.org/10.1016/j.scienta.2017.03.050

    Article  CAS  Google Scholar 

  52. Wu X, Li G, He F (2021) Nondestructive analysis of internal quality in pears with a self-made near-infrared spectrum detector combined with multivariate data processing. Foods 10(6):1315. https://doi.org/10.3390/foods10061315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sheng R, Cheng W, Li H, Ali S, Akomeah Agyekum A, Chen Q (2019) Model development for soluble solids and lycopene contents of cherry tomato at different temperatures using near-infrared spectroscopy. Postharvest Biol Technol 156:110952. https://doi.org/10.1016/j.postharvbio.2019.110952

    Article  CAS  Google Scholar 

  54. Amodio ML, Ceglie F, Chaudhry MMA, Piazzolla F, Colelli G (2017) Potential of NIR spectroscopy for predicting internal quality and discriminating among strawberry fruits from different production systems. Postharvest Biol Technol 125:112–121. https://doi.org/10.1016/j.postharvbio.2016.11.013

    Article  CAS  Google Scholar 

  55. Arazuri S, Jarén C, Arana JI (2005) Selection of the temperature in the sugar content determination of kiwi fruit. Int J Infrared Millimeter Waves 26(4):607–616. https://doi.org/10.1007/s10762-005-4076-8

    Article  CAS  Google Scholar 

  56. Buyukcan MB, Kavdir I (2016) Prediction of some internal quality parameters of apricot using FT-NIR spectroscopy. J Food Meas Charact 11(2):651–659. https://doi.org/10.1007/s11694-016-9434-9

    Article  Google Scholar 

  57. Feng J, Stanley J, Othman M, Woolf A, Kosasih M, Olsson S, Clare G, Cooper N, Wang X (2013) Segregation of apricots for storage potential using non-destructive technologies. Postharvest Biol Technol 86:17–22. https://doi.org/10.1016/j.postharvbio.2013.06.015

    Article  Google Scholar 

  58. Lammertyn J, Peirs A, De Baerdemaeker J, Nicolaï B (2000) Light penetration properties of NIR radiation in fruit with respect to non-destructive quality assessment. Postharvest Biol Technol 18:121–132

    Article  Google Scholar 

  59. Xia Y, Fan S, Li J, Tian X, Huang W, Chen L (2020) Optimization and comparison of models for prediction of soluble solids content in apple by online Vis/NIR transmission coupled with diameter correction method. Chemom Intell Lab Syst 201:104017. https://doi.org/10.1016/j.chemolab.2020.104017

    Article  CAS  Google Scholar 

  60. Schaare PN, Fraser DG (2000) Comparison of reflectance, interactance and transmission modes of visible-near infrared spectroscopy for measuring internal properties of kiwifruit (Actinidia chinensis). Postharvest Biol Technol 20(2):175–184

    Article  Google Scholar 

  61. Wang A, Fu X, Xie L (2014) Application of visible/near-infrared spectroscopy combined with machine vision technique to evaluate the ripeness of Melons (Cucumis melo L.). Food Anal Methods 8(6):1403–1412. https://doi.org/10.1007/s12161-014-0026-1

    Article  Google Scholar 

  62. Wang A, Hu D, Xie L (2014) Comparison of detection modes in terms of the necessity of visible region (VIS) and influence of the peel on soluble solids content (SSC) determination of navel orange using VIS–SWNIR spectroscopy. J Food Eng 126:126–132. https://doi.org/10.1016/j.jfoodeng.2013.11.011

    Article  CAS  Google Scholar 

  63. Khodabakhshian R, Emadi B, Khojastehpour M, Golzarian MR (2019) A comparative study of reflectance and transmittance modes of Vis/NIR spectroscopy used in determining internal quality attributes in pomegranate fruits. J Food Meas Charact 13(4):3130–3139. https://doi.org/10.1007/s11694-019-00235-z

    Article  Google Scholar 

  64. Mcglone VA, Jordan RB, Martinsen PJ (2002) Vis/NIR estimation at harvest of pre- and post-storage quality indices for Royal Gala apple. Postharvest Biol Technol 25(2):135–144

    Article  CAS  Google Scholar 

  65. Omar AF, MatJafri MZ (2013) Near infrared spectral linearisation in quantifying soluble solids content of intact carambola. Sensors (Basel) 13(4):4876–4883. https://doi.org/10.3390/s130404876

    Article  PubMed  Google Scholar 

  66. Wang J, Nakano K, Ohashi S (2011) Nondestructive evaluation of jujube quality by visible and near-infrared spectroscopy. LWT Food Sci Technol 44(4):1119–1125. https://doi.org/10.1016/j.lwt.2010.11.012

    Article  CAS  Google Scholar 

  67. Maniwara P, Nakano K, Boonyakiat D, Ohashi S, Hiroi M, Tohyama T (2014) The use of visible and near infrared spectroscopy for evaluating passion fruit postharvest quality. J Food Eng 143:33–43. https://doi.org/10.1016/j.jfoodeng.2014.06.028

    Article  CAS  Google Scholar 

  68. Omar AF (2013) Spectroscopic profiling of soluble solids content and acidity of intact grape, lime, and star fruit. Sens Rev 33(3):238–245. https://doi.org/10.1108/02602281311324690

    Article  Google Scholar 

  69. Xu S, Lu H, Wang X, Ference CM, Liang X, Qiu G (2021) Nondestructive detection of internal flavor in ‘Shatian’ pomelo fruit based on visible/near infrared spectroscopy. HortScience 56(11):1325–1330. https://doi.org/10.21273/hortsci16136-21

    Article  Google Scholar 

  70. Herrera J, Guesalaga A, Agosin E (2003) Shortwave-near infrared spectroscopy for non-destructive determination of maturity of wine grapes. Meas Sci Technol 14(5):689–697

    Article  CAS  Google Scholar 

  71. Liu S, Huang W, Lin L, Fan S (2022) Effects of orientations and regions on performance of online soluble solids content prediction models based on near-infrared spectroscopy for peaches. Foods 11(10):1502. https://doi.org/10.3390/foods11101502

    Article  PubMed  PubMed Central  Google Scholar 

  72. Wang W, Huang M, Zhu Q (2017) Predicting apple firmness and soluble solids content based on hyperspectral scattering imaging using fourier series expansion. Transactions of the ASABE 60(4):1053–1062. https://doi.org/10.13031/trans.11890

    Article  CAS  Google Scholar 

  73. Anthony BM, Chaparro JM, Prenni JE, Minas IS (2020) Early metabolic priming under differing carbon sufficiency conditions influences peach fruit quality development. Plant Physiol Biochem 157:416–431. https://doi.org/10.1016/j.plaphy.2020.11.004

    Article  CAS  PubMed  Google Scholar 

  74. Cayuela JA (2008) Vis/NIR soluble solids prediction in intact oranges (Citrus sinensis L.) cv. Valencia Late by reflectance. Postharvest Biol Technol 47(1):75–80. https://doi.org/10.1016/j.postharvbio.2007.06.005

    Article  CAS  Google Scholar 

  75. Gómez AH, He Y, Pereira AG (2006) Non-destructive measurement of acidity, soluble solids and firmness of Satsuma mandarin using Vis/NIR-spectroscopy techniques. J Food Eng 77(2):313–319. https://doi.org/10.1016/j.jfoodeng.2005.06.036

    Article  CAS  Google Scholar 

  76. Guthrie JA, Walsh KB, Reid DJ, Liebenberg CJ (2005) Assessment of internal quality attributes of mandarin fruit. 1. NIR calibration model development. Aust J Agric Res 56(4):405. https://doi.org/10.1071/ar04257

    Article  Google Scholar 

  77. Jamshidi B, Minaei S, Mohajerani E, Ghassemian H (2012) Reflectance Vis/NIR spectroscopy for nondestructive taste characterization of Valencia oranges. Comput Electron Agric 85:64–69. https://doi.org/10.1016/j.compag.2012.03.008

    Article  Google Scholar 

  78. Liu Y, Chen X, Ouyang A (2008) Nondestructive determination of pear internal quality indices by visible and near-infrared spectrometry. LWT Food Sci Technol 41(9):1720–1725. https://doi.org/10.1016/j.lwt.2007.10.017

    Article  CAS  Google Scholar 

  79. Shao Y, He Y, Gómez AH, Pereir AG, Qiu Z, Zhang Y (2007) Visible/near infrared spectrometric technique for nondestructive assessment of tomato ‘Heatwave’ (Lycopersicum esculentum) quality characteristics. J Food Eng 81(4):672–678. https://doi.org/10.1016/j.jfoodeng.2006.12.026

    Article  CAS  Google Scholar 

  80. Goisser S, Fernandes M, Wittmann S, Ulrichs C, Mempel H (2020) Evaluating the practicability of commercial food-scanners for non-destructive quality assessment of tomato fruit. J Appl Bot Food Qual 93:204–214. https://doi.org/10.5073/jabfq.2020.093.025

    Article  CAS  Google Scholar 

  81. Peirs A, Lammertyn J, Ooms K, Nicola BM (2000) Prediction of the optimal picking date of different apple cultivars by means of VIS/NIR-spectroscopy. Postharvest Biol Technol 21(2):189–199

    Article  Google Scholar 

  82. Hu R, Zhang L, Yu Z, Zhai Z, Zhang R (2019) Optimization of soluble solids content prediction models in ‘Hami’ melons by means of Vis-NIR spectroscopy and chemometric tools. Infrared Phys Technol 102:102999. https://doi.org/10.1016/j.infrared.2019.102999

    Article  CAS  Google Scholar 

  83. Li M, Han D, Liu W (2019) Non-destructive measurement of soluble solids content of three melon cultivars using portable visible/near infrared spectroscopy. Biosys Eng 188:31–39. https://doi.org/10.1016/j.biosystemseng.2019.10.003

    Article  Google Scholar 

  84. Fan S, Zhang B, Li J, Huang W, Wang C (2016) Effect of spectrum measurement position variation on the robustness of NIR spectroscopy models for soluble solids content of apple. Biosys Eng 143:9–19. https://doi.org/10.1016/j.biosystemseng.2015.12.012

    Article  Google Scholar 

  85. Li Y, Jin G, Jiang X, Yi S, Tian X (2020) Non-destructive determination of soluble solids content using a multi-region combination model in hybrid citrus. Infrared Phys Technol 104:103138. https://doi.org/10.1016/j.infrared.2019.103138

    Article  CAS  Google Scholar 

  86. Xia Y, Huang W, Fan S, Li J, Chen L (2019) Effect of spectral measurement orientation on online prediction of soluble solids content of apple using Vis/NIR diffuse reflectance. Infrared Phys Technol 97:467–477. https://doi.org/10.1016/j.infrared.2019.01.012

    Article  CAS  Google Scholar 

  87. Zou X, Zhao J, Huang X, Li Y (2007) Use of FT-NIR spectrometry in non-invasive measurements of soluble solid contents (SSC) of ‘Fuji’ apple based on different PLS models. Chemom Intell Lab Syst 87(1):43–51. https://doi.org/10.1016/j.chemolab.2006.09.003

    Article  CAS  Google Scholar 

  88. Zou X, Zhao J, Li Y (2007) Selection of the efficient wavelength regions in FT-NIR spectroscopy for determination of SSC of ‘Fuji’ apple based on BiPLS and FiPLS models. Vib Spectrosc 44(2):220–227. https://doi.org/10.1016/j.vibspec.2006.11.005

    Article  CAS  Google Scholar 

  89. Schmutzler M, Huck CW (2014) Automatic sample rotation for simultaneous determination of geographical origin and quality characteristics of apples based on near infrared spectroscopy (NIRS). Vib Spectrosc 72:97–104. https://doi.org/10.1016/j.vibspec.2014.02.010

    Article  CAS  Google Scholar 

  90. Schmutzler M, Huck CW (2016) Simultaneous detection of total antioxidant capacity and total soluble solids content by Fourier transform near-infrared (FT-NIR) spectroscopy: A quick and sensitive method for on-site analyses of apples. Food Control 66:27–37. https://doi.org/10.1016/j.foodcont.2016.01.026

    Article  CAS  Google Scholar 

  91. Li B, Cobo-Medina M, Lecourt J, Harrison N, Harrison RJ, Cross JV (2018) Application of hyperspectral imaging for nondestructive measurement of plum quality attributes. Postharvest Biol Technol 141:8–15. https://doi.org/10.1016/j.postharvbio.2018.03.008

    Article  Google Scholar 

  92. Li C, He M, Cai Z, Qi H, Zhang J, Zhang C (2023) Hyperspectral imaging with machine learning approaches for assessing soluble solids content of tribute citru. Foods 12(2):247. https://doi.org/10.3390/foods12020247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ma T, Li X, Inagaki T, Yang H, Tsuchikawa S (2018) Noncontact evaluation of soluble solids content in apples by near-infrared hyperspectral imaging. J Food Eng 224:53–61. https://doi.org/10.1016/j.jfoodeng.2017.12.028

    Article  CAS  Google Scholar 

  94. Rajkumar P, Wang N, Eimasry G, Raghavan GSV, Gariepy Y (2012) Studies on banana fruit quality and maturity stages using hyperspectral imaging. J Food Eng 108(1):194–200. https://doi.org/10.1016/j.jfoodeng.2011.05.002

    Article  Google Scholar 

  95. Mo C, Kim MS, Kim G, Lim J, Delwiche SR, Chao K, Lee H, Cho B-K (2017) Spatial assessment of soluble solid contents on apple slices using hyperspectral imaging. Biosys Eng 159:10–21. https://doi.org/10.1016/j.biosystemseng.2017.03.015

    Article  Google Scholar 

  96. Chia KS, Abdul Rahim H, Abdul Rahim R (2012) Neural network and principal component regression in non-destructive soluble solids content assessment: a comparison. J Zhejiang Univ Sci B 13(2):145–151. https://doi.org/10.1631/jzus.B11c0150

    Article  PubMed  PubMed Central  Google Scholar 

  97. Saechua W, Sharma S, Nakawajana N, Leepaitoon K, Chunsri R, Posom J, Roeksukrungrueang C, Siritechavong T, Phanomsophon T, Sirisomboon P, Lapcharoensuk R, Pornchaloempong P (2021) Integrating Vis-SWNIR spectrometer in a conveyor system for in-line measurement of dry matter content and soluble solids content of durian pulp. Postharvest Biol Technol 181:111640. https://doi.org/10.1016/j.postharvbio.2021.111640

    Article  CAS  Google Scholar 

  98. Chia KS, Hong FW (2020) Investigation of parameters that affect the acquired near infrared diffuse reflected signals in non-destructive soluble solids content prediction. Eng J 24(6):79–90. https://doi.org/10.4186/ej.2020.24.6.79

    Article  Google Scholar 

  99. Møller SM, Travers S, Bertram HC, Bertelsen MG (2013) Prediction of postharvest dry matter, soluble solids content, firmness and acidity in apples (cv. Elshof) using NMR and NIR spectroscopy: a comparative study. Eur Food Res Technol 237(6):1021–1024. https://doi.org/10.1007/s00217-013-2087-6

    Article  CAS  Google Scholar 

  100. Minas IS, Blanco-Cipollone F, Sterle D (2021) Accurate non-destructive prediction of peach fruit internal quality and physiological maturity with a single scan using near infrared spectroscopy. Food Chem 335:127626. https://doi.org/10.1016/j.foodchem.2020.127626

    Article  CAS  PubMed  Google Scholar 

  101. Nordey T, Joas J, Davrieux F, Chillet M, Léchaudel M (2017) Robust NIRS models for non-destructive prediction of mango internal quality. Sci Hortic 216:51–57. https://doi.org/10.1016/j.scienta.2016.12.023

    Article  Google Scholar 

  102. Du X-l, Li X-y, Liu Y, Zhou W-h, Li J-l (2019) Genetic algorithm optimized non-destructive prediction on property of mechanically injured peaches during postharvest storage by portable visible/shortwave near-infrared spectroscopy. Sci Hortic 249:240–249. https://doi.org/10.1016/j.scienta.2019.01.057

    Article  Google Scholar 

  103. Fernandez-Novales J, Garde-Cerdan T, Tardaguila J, Gutierrez-Gamboa G, Perez-Alvarez EP, Diago MP (2019) Assessment of amino acids and total soluble solids in intact grape berries using contactless Vis and NIR spectroscopy during ripening. Talanta 199:244–253. https://doi.org/10.1016/j.talanta.2019.02.037

    Article  CAS  PubMed  Google Scholar 

  104. Mendoza F, Lu R, Ariana D, Cen H, Bailey B (2011) Integrated spectral and image analysis of hyperspectral scattering data for prediction of apple fruit firmness and soluble solids content. Postharvest Biol Technol 62:149–160. https://doi.org/10.1016/j.postharvbio.2011.05.009

    Article  Google Scholar 

  105. Egei M, Takacs S, Palotas G, Palotas G, Szuvandzsiev P, Daood HG, Helyes L, Pek Z (2022) Prediction of soluble solids and lycopene content of processing tomato cultivars by Vis-NIR spectroscopy. Front Nutr 9:845317. https://doi.org/10.3389/fnut.2022.845317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Kim S-Y, Hong S-J, Kim E, Lee C-H, Kim G (2021) Neural network based prediction of soluble solids concentrationin oriental melon using VIS/NIR spectroscopy. Appl Eng Agric 37(4):653–663. https://doi.org/10.13031/aea.14332

    Article  Google Scholar 

  107. Lee A, Shim J, Kim B, Lee H, Lim J (2022) Non-destructive prediction of soluble solid contents in Fuji apples using visible near-infrared spectroscopy and various statistical methods. J Food Eng 321:110945. https://doi.org/10.1016/j.jfoodeng.2022.110945

    Article  CAS  Google Scholar 

  108. Li P, Li S, Du G, Jiang L, Liu X, Ding S, Shan Y (2020) A simple and nondestructive approach for the analysis of soluble solid content in citrus by using portable visible to near-infrared spectroscopy. Food Sci Nutr 8(5):2543–2552. https://doi.org/10.1002/fsn3.1550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Zeb A, Qureshi WS, Ghafoor A, Malik A, Imran M, Iqbal J, Alanazi E (2021) Is this melon sweet? a quantitative classification for near-infrared spectroscopy. Infrared Phys Technol 114:103645. https://doi.org/10.1016/j.infrared.2021.103645

    Article  CAS  Google Scholar 

  110. Nascimento PAM, Carvalho LCd, Júnior LCC, Pereira FMV, Teixeira GHdA (2016) Robust PLS models for soluble solids content and firmness determination in low chilling peach using near-infrared spectroscopy (NIR). Postharvest Biol Technol 111:345–351. https://doi.org/10.1016/j.postharvbio.2015.08.006

    Article  CAS  Google Scholar 

  111. Basile T, Marsico AD, Cardone MF, Antonacci D, Perniola R (2020) FT-NIR analysis of intact table grape berries to understand consumer preference driving factors. Foods 9(1):98. https://doi.org/10.3390/foods9010098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fernandez-Novales J, Tardaguila J, Gutierrez S, Paz Diago M (2019) On-The-Go VIS + SW - NIR spectroscopy as a reliable monitoring tool for grape composition within the vineyard. Molecules 24(15):2795. https://doi.org/10.3390/molecules24152795

    Article  PubMed  PubMed Central  Google Scholar 

  113. Moghimi A, Aghkhani MH, Sazgarnia A, Sarmad M (2010) Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (pH) of kiwifruit. Biosys Eng 106(3):295–302. https://doi.org/10.1016/j.biosystemseng.2010.04.002

    Article  Google Scholar 

  114. Parpinello GP, Nunziatini G, Rombolà AD, Gottardi F, Versari A (2013) Relationship between sensory and NIR spectroscopy in consumer preference of table grape (cv Italia). Postharvest Biol Technol 83:47–53. https://doi.org/10.1016/j.postharvbio.2013.03.013

    Article  Google Scholar 

  115. Fu XP, Li JP, Zhou Y, Ying YB, Xie LJ, Niu XY, Yan ZK, Yu HY (2009) Determination of soluble solid content and acidity of loquats based on FT-NIR spectroscopy. J Zhejiang Univ Sci B 10(2):120–125. https://doi.org/10.1631/jzus.B0820097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Wang A, Xie L (2014) Technology using near infrared spectroscopic and multivariate analysis to determine the soluble solids content of citrus fruit. J Food Eng 143:17–24. https://doi.org/10.1016/j.jfoodeng.2014.06.023

    Article  CAS  Google Scholar 

  117. Li J, Huang W, Chen L, Fan S, Zhang B, Guo Z, Zhao C (2014) Variable selection in visible and near-infrared spectral analysis for noninvasive determination of soluble solids content of ‘Ya’ pear. Food Anal Methods 7(9):1891–1902. https://doi.org/10.1007/s12161-014-9832-8

    Article  Google Scholar 

  118. Xiao H, Feng L, Song D, Tu K, Peng J, Pan L (2019) Grading and sorting of grape berries using visible-near infrared spectroscopy on the basis of multiple inner quality parameters. Sensors (Basel) 19(11):2600. https://doi.org/10.3390/s19112600

    Article  CAS  PubMed  Google Scholar 

  119. Zheng W, Bai Y, Luo H, Li Y, Yang X, Zhang B (2020) Self-adaptive models for predicting soluble solid content of blueberries with biological variability by using near-infrared spectroscopy and chemometrics. Postharvest Biol Technol 169:111286. https://doi.org/10.1016/j.postharvbio.2020.111286

    Article  CAS  Google Scholar 

  120. Liu Y, Ying Y (2007) Noninvasive method for internal quality evaluation of pear fruit using fiber-optic FT-NIR spectrometry. Int J Food Prop 10(4):877–886. https://doi.org/10.1080/10942910601172042

    Article  CAS  Google Scholar 

  121. Ncama K, Opara UL, Tesfay SZ, Fawole OA, Magwaza LS (2017) Application of Vis/NIR spectroscopy for predicting sweetness and flavour parameters of ‘Valencia’ orange (Citrus sinensis) and ‘Star Ruby’ grapefruit (Citrus x paradisi Macfad). J Food Eng 193:86–94. https://doi.org/10.1016/j.jfoodeng.2016.08.015

    Article  CAS  Google Scholar 

  122. Sharma S, Sirisomboon P, Pornchaloempong P (2020) Application of a Vis-NIR spectroscopic technique to measure the total soluble solids content of intact mangoes in motion on a belt conveyor. Hort J 89(5):545–552. https://doi.org/10.2503/hortj.UTD-168

    Article  CAS  Google Scholar 

  123. Travers S, Bertelsen MG, Petersen KK, Kucheryavskiy SV (2014) Predicting pear (cv. Clara Frijs) dry matter and soluble solids content with near infrared spectroscopy. LWT - Food Sci Technol 59(2):1107–1113. https://doi.org/10.1016/j.lwt.2014.04.048

    Article  CAS  Google Scholar 

  124. Li J, Huang W, Zhao C, Zhang B (2013) A comparative study for the quantitative determination of soluble solids content, pH and firmness of pears by Vis/NIR spectroscopy. J Food Eng 116(2):324–332. https://doi.org/10.1016/j.jfoodeng.2012.11.007

    Article  CAS  Google Scholar 

  125. Tian S, Liu W, Xu H (2023) Improving the prediction performance of soluble solids content (SSC) in kiwifruit by means of near-infrared spectroscopy using slope/bias correction and calibration updating. Food Res Int 170:112988. https://doi.org/10.1016/j.foodres.2023.112988

    Article  CAS  PubMed  Google Scholar 

  126. Rahman A, Kandpal L, Lohumi S, Kim M, Lee H, Mo C, Cho B-K (2017) Nondestructive estimation of moisture content, pH and soluble solid contents in intact tomatoes using hyperspectral imaging. Appl Sci 7(1):109. https://doi.org/10.3390/app7010109

    Article  Google Scholar 

  127. Theanjumpol P, Wongzeewasakun K, Muenmanee N, Wongsaipun S, Krongchai C, Changrue V, Boonyakiat D, Kittiwachana S (2019) Non-destructive identification and estimation of granulation in ‘Sai Num Pung’ tangerine fruit using near infrared spectroscopy and chemometrics. Postharvest Biol Technol 153:13–20. https://doi.org/10.1016/j.postharvbio.2019.03.009

    Article  CAS  Google Scholar 

  128. Li J, Wang Q, Xu L, Tian X, Xia Y, Fan S (2018) Comparison and optimization of models for determination of sugar content in pear by portable Vis-NIR spectroscopy coupled with wavelength selection algorithm. Food Anal Methods 12(1):12–22. https://doi.org/10.1007/s12161-018-1326-7

    Article  Google Scholar 

  129. Ma T, Xia Y, Inagaki T, Tsuchikawa S (2021) Rapid and nondestructive evaluation of soluble solids content (SSC) and firmness in apple using Vis–NIR spatially resolved spectroscopy. Postharvest Biol Technol 173:111417. https://doi.org/10.1016/j.postharvbio.2020.111417

    Article  CAS  Google Scholar 

  130. Xia Y, Fan S, Tian X, Huang W, Li J (2020) Multi-factor fusion models for soluble solid content detection in pear (Pyrus bretschneideri ‘Ya’) using Vis/NIR online half-transmittance technique. Infrared Phys Technol 110:103443. https://doi.org/10.1016/j.infrared.2020.103443

    Article  CAS  Google Scholar 

  131. Yang Y, Huang W, Zhao C, Tian X, Fan S, Wang Q, Li J (2022) Online soluble solids content (SSC) assessment of multi-variety tomatoes using Vis/NIRS diffuse transmission. Infrared Phys Technol 125:104312. https://doi.org/10.1016/j.infrared.2022.104312

    Article  CAS  Google Scholar 

  132. Zhang D, Yang Y, Chen G, Tian X, Wang Z, Fan S, Xin Z (2021) Nondestructive evaluation of soluble solids content in tomato with different stage by using Vis/NIR technology and multivariate algorithms. Spectrochim Acta Part A Mol Biomol Spectrosc 248:119139. https://doi.org/10.1016/j.saa.2020.119139

    Article  CAS  Google Scholar 

  133. Shi B, Ji B, Zhu D, Tu Z, Qing Z (2008) Study on genetic algorithms-based NIR wavelength selection for determination of soluble solids content in Fuji apples. J Food Qual 31(2):232–249

    Article  Google Scholar 

  134. González-Caballero V, Sánchez M-T, López M-I, Pérez-Marín D (2010) First steps towards the development of a non-destructive technique for the quality control of wine grapes during on-vine ripening and on arrival at the winery. J Food Eng 101(2):158–165. https://doi.org/10.1016/j.jfoodeng.2010.06.016

    Article  CAS  Google Scholar 

  135. Guo Y, Ni Y, Kokot S (2016) Evaluation of chemical components and properties of the jujube fruit using near infrared spectroscopy and chemometrics. Spectrochim Acta A Mol Biomol Spectrosc 153:79–86. https://doi.org/10.1016/j.saa.2015.08.006

    Article  CAS  PubMed  Google Scholar 

  136. Huang L, Wu D, Jin H, Zhang J, He Y, Lou C (2011) Internal quality determination of fruit with bumpy surface using visible and near infrared spectroscopy and chemometrics: A case study with mulberry fruit. Biosys Eng 109(4):377–384. https://doi.org/10.1016/j.biosystemseng.2011.05.003

    Article  Google Scholar 

  137. Cavaco AM, Pires R, Antunes MD, Panagopoulos T, Brázio A, Afonso AM, Silva L, Lucas MR, Cadeiras B, Cruz SP, Guerra R (2018) Validation of short wave near infrared calibration models for the quality and ripening of ‘Newhall’ orange on tree across years and orchards. Postharvest Biol Technol 141:86–97. https://doi.org/10.1016/j.postharvbio.2018.03.013

    Article  Google Scholar 

  138. Maniwara P, Nakano K, Ohashi S, Boonyakiat D, Seehanam P, Theanjumpol P, Poonlarp P (2019) Evaluation of NIRS as non-destructive test to evaluate quality traits of purple passion fruit. Sci Hortic 257:108712. https://doi.org/10.1016/j.scienta.2019.108712

    Article  CAS  Google Scholar 

  139. Hao Y, Li X, Zhang C, Lei Z (2022) Research on construction method and validity mechanism of robust analysis model in snow peach quality detection based on visible-near infrared spectroscopy. Front Nutr 9:1042868. https://doi.org/10.3389/fnut.2022.1042868

    Article  PubMed  PubMed Central  Google Scholar 

  140. Liu Y, Wang T, Su R, Hu C, Chen F, Cheng J (2021) Quantitative evaluation of color, firmness, and soluble solid content of korla fragrant pears via IRIV and LS-SVM. Agriculture 11(8):731. https://doi.org/10.3390/agriculture11080731

    Article  CAS  Google Scholar 

  141. Yang X, Zhu L, Huang X, Zhang Q, Li S, Chen Q, Wang Z, Li J (2022) Determination of the soluble solids content in korla fragrant pears based on visible and near-infrared spectroscopy combined with model analysis and variable selection. Front Plant Sci 13:938162. https://doi.org/10.3389/fpls.2022.938162

    Article  PubMed  PubMed Central  Google Scholar 

  142. Basile T, Marsico AD, Perniola R (2021) NIR analysis of intact grape berries: chemical and physical properties prediction using multivariate analysis. Foods 10(1):113. https://doi.org/10.3390/foods10010113

    Article  PubMed  PubMed Central  Google Scholar 

  143. Liu Y, Sun X, Zhang H, Aiguo O (2010) Nondestructive measurement of internal quality of Nanfeng mandarin fruit by charge coupled device near infrared spectroscopy. Comput Electron Agric 71:S10–S14. https://doi.org/10.1016/j.compag.2009.09.005

    Article  Google Scholar 

  144. Guo Z, Huang W, Peng Y, Chen Q, Ouyang Q, Zhao J (2016) Color compensation and comparison of shortwave near infrared and long wave near infrared spectroscopy for determination of soluble solids content of ‘Fuji’ apple. Postharvest Biol Technol 115:81–90. https://doi.org/10.1016/j.postharvbio.2015.12.027

    Article  CAS  Google Scholar 

  145. Guo Z, Wang M, Shujat A, Wu J, El-Seedi HR, Shi J, Ouyang Q, Chen Q, Zou X (2020) Nondestructive monitoring storage quality of apples at different temperatures by near-infrared transmittance spectroscopy. Food Sci Nutr 8(7):3793–3805. https://doi.org/10.1002/fsn3.1669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Huang C, Cai J, Zhou Y, El-Seedi HR, Guo Z (2022) Fusion models for detection of soluble solids content in mandarin by Vis/NIR transmission spectroscopy combined external factors. Infrared Phys Technol 124:104233. https://doi.org/10.1016/j.infrared.2022.104233

    Article  CAS  Google Scholar 

  147. Jiang H, Jiang X, Ru Y, Chen Q, Xu L, Zhou H (2020) Sweetness detection and grading of peaches and nectarines by combining short- and long-wave fourier-transform near-infrared spectroscopy. Anal Lett 54(7):1125–1144. https://doi.org/10.1080/00032719.2020.1795186

    Article  CAS  Google Scholar 

  148. Shen F, Zhang B, Cao C, Jiang X (2018) On-line discrimination of storage shelf-life and prediction of post-harvest quality for strawberry fruit by visible and near infrared spectroscopy. J Food Process Eng 41(7):e12866. https://doi.org/10.1111/jfpe.12866

    Article  CAS  Google Scholar 

  149. Yan H, Xu YC, Siesler HW, Han BX, Zhang GZ (2019) Hand-held near-infrared spectroscopy for authentication of fengdous and quantitative analysis of mulberry fruits. Front Plant Sci 10:1548. https://doi.org/10.3389/fpls.2019.01548

    Article  PubMed  PubMed Central  Google Scholar 

  150. Jie D, Xie L, Fu X, Rao X, Ying Y (2013) Variable selection for partial least squares analysis of soluble solids content in watermelon using near-infrared diffuse transmission technique. J Food Eng 118(4):387–392. https://doi.org/10.1016/j.jfoodeng.2013.04.027

    Article  Google Scholar 

  151. Li J, Zhao C, Huang W, Zhang C, Peng Y (2014) A combination algorithm for variable selection to determine soluble solid content and firmness of pears. Anal Methods 6(7):2170–2180. https://doi.org/10.1039/c3ay42165a

    Article  CAS  Google Scholar 

  152. Li L, Hu D-Y, Tang T-Y, Tang Y-L (2022) Non-destructive detection of the quality attributes of fruits by visible-near infrared spectroscopy. J Food Meas Charact 17(2):1526–1534. https://doi.org/10.1007/s11694-022-01724-4

    Article  Google Scholar 

  153. Wang Y, Han M, Xu Y, Wang X, Cheng M, Cui Y, Xiao Z, Qu J (2023) Effect of potato peel on the determination of soluble solid content by visible near-infrared spectroscopy and model optimization. Anal Methods 15(31):3854–3862. https://doi.org/10.1039/d3ay00774j

    Article  CAS  PubMed  Google Scholar 

  154. Zhang B, Zhang M, Shen M, Li H, Zhang Z, Zhang H, Zhou Z, Ren X, Ding Y, Xing L, Zhao J (2021) Quality monitoring method for apples of different maturity under long-term cold storage. Infrared Phys Technol 112:103580. https://doi.org/10.1016/j.infrared.2020.103580

    Article  CAS  Google Scholar 

  155. Zhang D, Xu L, Wang Q, Tian X, Li J (2018) The optimal local model selection for robust and fast evaluation of soluble solid content in melon with thick peel and large size by Vis-NIR spectroscopy. Food Anal Methods 12(1):136–147. https://doi.org/10.1007/s12161-018-1346-3

    Article  Google Scholar 

  156. Xu H, Qi B, Sun T, Fu X, Ying Y (2012) Variable selection in visible and near-infrared spectra: application to on-line determination of sugar content in pears. J Food Eng 109(1):142–147. https://doi.org/10.1016/j.jfoodeng.2011.09.022

    Article  CAS  Google Scholar 

  157. Song J, Li G, Yang X, Liu X, Xie L (2020) Rapid analysis of soluble solid content in navel orange based on visible-near infrared spectroscopy combined with a swarm intelligence optimization method. Spectrochim Acta A Mol Biomol Spectrosc 228:117815. https://doi.org/10.1016/j.saa.2019.117815

    Article  CAS  PubMed  Google Scholar 

  158. Wang T, Li G, Dai C (2022) Soluble Solids Content prediction for Korla fragrant pears using hyperspectral imaging and GsMIA. Infrared Phys Technol 123:104119. https://doi.org/10.1016/j.infrared.2022.104119

    Article  CAS  Google Scholar 

  159. Yu X, Lu H, Wu D (2018) Development of deep learning method for predicting firmness and soluble solid content of postharvest Korla fragrant pear using Vis/NIR hyperspectral reflectance imaging. Postharvest Biol Technol 141:39–49. https://doi.org/10.1016/j.postharvbio.2018.02.013

    Article  Google Scholar 

  160. Liu S, Fan S, Lin L, Huang W (2022) An improved method for predicting soluble solids content in apples by heterogeneous transfer learning and near-infrared spectroscopy. Comput Electron Agric 203:107455. https://doi.org/10.1016/j.compag.2022.107455

    Article  Google Scholar 

  161. Shen L, Wang H, Liu Y, Liu Y, Zhang X, Fei Y (2020) Prediction of soluble solids content in green plum by using a sparse autoencoder. Appl Sci 10(11):3769. https://doi.org/10.3390/app10113769

    Article  CAS  Google Scholar 

  162. Tian Y, Sun J, Zhou X, Yao K, Tang N (2022) Detection of soluble solid content in apples based on hyperspectral technology combined with deep learning algorithm. J Food Process Preserv 46(4):e16414. https://doi.org/10.1111/jfpp.16414

    Article  CAS  Google Scholar 

  163. Xu S, Lu H, Ference C, Zhang Q (2021) An accuracy improvement method based on multi-source information fusion and deep learning for tssc and water content nondestructive detection in “Luogang” orange. Electronics 10(1):80. https://doi.org/10.3390/electronics10010080

    Article  CAS  Google Scholar 

  164. Yang B, Gao Y, Yan Q, Qi L, Zhu Y, Wang B (2020) Estimation method of soluble solid content in peach based on deep features of hyperspectral imagery. Sensors (Basel) 20(18):5021. https://doi.org/10.3390/s20185021

    Article  PubMed  Google Scholar 

  165. Gao S, Xu J-h (2022) Hyperspectral image information fusion-based detection of soluble solids content in red globe grapes. Comput Electron Agric 196:106822. https://doi.org/10.1016/j.compag.2022.106822

    Article  Google Scholar 

  166. Fan S, Zhang B, Li J, Liu C, Huang W, Tian X (2016) Prediction of soluble solids content of apple using the combination of spectra and textural features of hyperspectral reflectance imaging data. Postharvest Biol Technol 121:51–61. https://doi.org/10.1016/j.postharvbio.2016.07.007

    Article  Google Scholar 

  167. Peng Y, Lu R (2008) Analysis of spatially resolved hyperspectral scattering images for assessing apple fruit firmness and soluble solids content. Postharvest Biol Technol 48(1):52–62. https://doi.org/10.1016/j.postharvbio.2007.09.019

    Article  Google Scholar 

  168. Zhu Q, Huang M, Zhao X, Wang S (2012) Wavelength selection of hyperspectral scattering image using new semi-supervised affinity propagation for prediction of firmness and soluble solid content in apples. Food Anal Methods 6(1):334–342. https://doi.org/10.1007/s12161-012-9442-2

    Article  Google Scholar 

  169. Dong J, Guo W (2015) Nondestructive determination of apple internal qualities using near-infrared hyperspectral reflectance imaging. Food Anal Methods 8(10):2635–2646. https://doi.org/10.1007/s12161-015-0169-8

    Article  Google Scholar 

  170. Dong J, Guo W, Wang Z, Liu D, Zhao F (2015) Nondestructive determination of soluble solids content of ‘Fuji’ apples produced in different areas and bagged with different materials during ripening. Food Anal Methods 9(5):1087–1095. https://doi.org/10.1007/s12161-015-0278-4

    Article  Google Scholar 

  171. Tian X, Li J, Wang Q, Fan S, Huang W (2018) A bi-layer model for nondestructive prediction of soluble solids content in apple based on reflectance spectra and peel pigments. Food Chem 239:1055–1063. https://doi.org/10.1016/j.foodchem.2017.07.045

    Article  CAS  PubMed  Google Scholar 

  172. Tian X, Li J, Wang Q, Fan S, Huang W, Zhao C (2019) A multi-region combined model for non-destructive prediction of soluble solids content in apple, based on brightness grade segmentation of hyperspectral imaging. Biosys Eng 183:110–120. https://doi.org/10.1016/j.biosystemseng.2019.04.012

    Article  Google Scholar 

  173. Zhang D, Xu Y, Huang W, Tian X, Xia Y, Xu L, Fan S (2019) Nondestructive measurement of soluble solids content in apple using near infrared hyperspectral imaging coupled with wavelength selection algorithm. Infrared Phys Technol 98:297–304. https://doi.org/10.1016/j.infrared.2019.03.026

    Article  CAS  Google Scholar 

  174. Çetin N, Karaman K, Kavuncuoğlu E, Yıldırım B, Jahanbakhshi A (2022) Using hyperspectral imaging technology and machine learning algorithms for assessing internal quality parameters of apple fruits. Chemom Intell Lab Syst 230:104650. https://doi.org/10.1016/j.chemolab.2022.104650

    Article  CAS  Google Scholar 

  175. Wang F, Zhao C, Yang H, Jiang H, Li L, Yang G (2022) Non-destructive and in-site estimation of apple quality and maturity by hyperspectral imaging. Comput Electron Agric 195:106843. https://doi.org/10.1016/j.compag.2022.106843

    Article  Google Scholar 

  176. Benelli A, Cevoli C, Fabbri A, Ragni L (2022a) Hyperspectral imaging to measure apricot attributes during storage. J Agric Eng. https://doi.org/10.4081/jae.2022.1311

    Article  Google Scholar 

  177. Pu Y-Y, Sun D-W, Riccioli C, Buccheri M, Grassi M, Cattaneo TMP, Gowen A (2017) Calibration transfer from micro NIR spectrometer to hyperspectral imaging: a case study on predicting soluble solids content of bananito fruit (Musa acuminata). Food Anal Methods 11(4):1021–1033. https://doi.org/10.1007/s12161-017-1055-3

    Article  Google Scholar 

  178. Chu X, Miao P, Zhang K, Wei H, Fu H, Liu H, Jiang H, Ma Z (2022) Green banana maturity classification and quality evaluation using hyperspectral imaging. Agriculture 12(4):530. https://doi.org/10.3390/agriculture12040530

    Article  CAS  Google Scholar 

  179. Leiva-Valenzuela GA, Lu R, Aguilera JM (2013) Prediction of firmness and soluble solids content of blueberries using hyperspectral reflectance imaging. J Food Eng 115(1):91–98. https://doi.org/10.1016/j.jfoodeng.2012.10.001

    Article  Google Scholar 

  180. Leiva-Valenzuela GA, Lu R, Aguilera JM (2014) Assessment of internal quality of blueberries using hyperspectral transmittance and reflectance images with whole spectra or selected wavelengths. Innov Food Sci Emerg Technol 24:2–13. https://doi.org/10.1016/j.ifset.2014.02.006

    Article  Google Scholar 

  181. Li X, Wei Y, Xu J, Feng X, Wu F, Zhou R, Jin J, Xu K, Yu X, He Y (2018) SSC and pH for sweet assessment and maturity classification of harvested cherry fruit based on NIR hyperspectral imaging technology. Postharvest Biol Technol 143:112–118. https://doi.org/10.1016/j.postharvbio.2018.05.003

    Article  CAS  Google Scholar 

  182. Baiano A, Terracone C, Peri G, Romaniello R (2012) Application of hyperspectral imaging for prediction of physico-chemical and sensory characteristics of table grapes. Comput Electron Agric 87:142–151. https://doi.org/10.1016/j.compag.2012.06.002

    Article  Google Scholar 

  183. Gabrielli M, Lançon-Verdier V, Picouet P, Maury C (2021) Hyperspectral imaging to characterize table grapes. Chemosensors 9(4):71. https://doi.org/10.3390/chemosensors9040071

    Article  CAS  Google Scholar 

  184. Gomes V, Reis MS, Rovira-Más F, Mendes-Ferreira A, Melo-Pinto P (2021) Prediction of sugar content in port wine vintage grapes using machine learning and hyperspectral imaging. Processes 9(7):1241. https://doi.org/10.3390/pr9071241

    Article  CAS  Google Scholar 

  185. Sun H, Zhang S, Chen C, Li C, Xing S, Liu J, Xue J (2019) Detection of the soluble solid contents from fresh jujubes during different maturation periods using NIR hyperspectral imaging and an artificial bee colony. J Anal Methods Chem 2019:1–8. https://doi.org/10.1155/2019/5032950

    Article  CAS  Google Scholar 

  186. Zhao Y, Zhang C, Zhu S, Li Y, He Y, Liu F (2020) Shape induced reflectance correction for non-destructive determination and visualization of soluble solids content in winter jujubes using hyperspectral imaging in two different spectral ranges. Postharvest Biol Technol 161:111080. https://doi.org/10.1016/j.postharvbio.2019.111080

    Article  CAS  Google Scholar 

  187. Guo W, Zhao F, Dong J (2015) Nondestructive measurement of soluble solids content of kiwifruits using near-infrared hyperspectral imaging. Food Anal Methods 9(1):38–47. https://doi.org/10.1007/s12161-015-0165-z

    Article  Google Scholar 

  188. Zhu H, Chu B, Fan Y, Tao X, Yin W, He Y (2017) Hyperspectral imaging for predicting the internal quality of kiwifruits based on variable selection algorithms and chemometric models. Sci Rep 7(1):7845. https://doi.org/10.1038/s41598-017-08509-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Ma T, Xia Y, Inagaki T, Tsuchikawa S (2021) Non-destructive and fast method of mapping the distribution of the soluble solids content and pH in kiwifruit using object rotation near-infrared hyperspectral imaging approach. Postharvest Biol Technol 174:111440. https://doi.org/10.1016/j.postharvbio.2020.111440

    Article  CAS  Google Scholar 

  190. Benelli A, Cevoli C, Fabbri A, Ragni L (2022) Ripeness evaluation of kiwifruit by hyperspectral imaging. Biosys Eng 223:42–52. https://doi.org/10.1016/j.biosystemseng.2021.08.009

    Article  CAS  Google Scholar 

  191. Xu L, Chen Y, Wang X, Chen H, Tang Z, Shi X, Chen X, Wang Y, Kang Z, Zou Z, Huang P, He Y, Yang N, Zhao Y (2022) Non-destructive detection of kiwifruit soluble solid content based on hyperspectral and fluorescence spectral imaging. Front Plant Sci 13:1075929. https://doi.org/10.3389/fpls.2022.1075929

    Article  PubMed  Google Scholar 

  192. Zhu N, Nie Y, Wu D, He Y, Chen K (2016) Feasibility study on quantitative pixel-level visualization of internal quality at different cross sections inside postharvest loquat fruit. Food Anal Methods 10(2):287–297. https://doi.org/10.1007/s12161-016-0581-8

    Article  Google Scholar 

  193. Li S, Song Q, Liu Y, Zeng T, Liu S, Jie D, Wei X (2023) Hyperspectral imaging-based detection of soluble solids content of loquat from a small sample. Postharvest Biol Technol 204:112454. https://doi.org/10.1016/j.postharvbio.2023.112454

    Article  CAS  Google Scholar 

  194. Pu H, Liu D, Wang L, Sun D-W (2015) Soluble solids content and pH prediction and maturity discrimination of lychee fruits using visible and near infrared hyperspectral imaging. Food Anal Methods 9(1):235–244. https://doi.org/10.1007/s12161-015-0186-7

    Article  Google Scholar 

  195. Rungpichayapichet P, Nagle M, Yuwanbun P, Khuwijitjaru P, Mahayothee B, Müller J (2017) Prediction mapping of physicochemical properties in mango by hyperspectral imaging. Biosys Eng 159:109–120. https://doi.org/10.1016/j.biosystemseng.2017.04.006

    Article  Google Scholar 

  196. Cho B-H, Lee K-B, Hong Y, Kim K-C (2022) Determination of internal quality indices in oriental melon using snapshot-type hyperspectral image and machine learning model. Agronomy 12(9):2236. https://doi.org/10.3390/agronomy12092236

    Article  Google Scholar 

  197. Zhao YR, Yu KQ, He Y (2015) Hyperspectral imaging coupled with random frog and calibration models for assessment of total soluble solids in mulberries. J Anal Methods Chem 2015:343782. https://doi.org/10.1155/2015/343782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Huang F-H, Liu Y-H, Sun X, Yang H (2021) Quality inspection of nectarine based on hyperspectral imaging technology. Syst Sci Control Eng 9(1):350–357. https://doi.org/10.1080/21642583.2021.1907260

    Article  Google Scholar 

  199. Zhang H, Zhan B, Pan F, Luo W (2020) Determination of soluble solids content in oranges using visible and near infrared full transmittance hyperspectral imaging with comparative analysis of models. Postharvest Biol Technol 163:111148. https://doi.org/10.1016/j.postharvbio.2020.111148

    Article  CAS  Google Scholar 

  200. Li J, Chen L (2017) Comparative analysis of models for robust and accurate evaluation of soluble solids content in ‘Pinggu’ peaches by hyperspectral imaging. Comput Electron Agric 142:524–535. https://doi.org/10.1016/j.compag.2017.11.019

    Article  Google Scholar 

  201. Jang KE, Kim G, Shin MH, Cho JG, Jeong JH, Lee SK, Kang D, Kim JG (2022) Field application of a Vis/NIR hyperspectral imaging system for nondestructive evaluation of physicochemical properties in “Madoka” peaches. Plants (Basel) 11(17):2327. https://doi.org/10.3390/plants11172327

    Article  PubMed  PubMed Central  Google Scholar 

  202. Xuan G, Gao C, Shao Y (2022) Spectral and image analysis of hyperspectral data for internal and external quality assessment of peach fruit. Spectrochim Acta A Mol Biomol Spectrosc 272:121016. https://doi.org/10.1016/j.saa.2022.121016

    Article  CAS  PubMed  Google Scholar 

  203. Fan S, Huang W, Guo Z, Zhang B, Zhao C (2015) Prediction of soluble solids content and firmness of pears using hyperspectral reflectance imaging. Food Anal Methods 8(8):1936–1946. https://doi.org/10.1007/s12161-014-0079-1

    Article  Google Scholar 

  204. Li B, Hou B, Zhang D, Zhou Y, Zhao M, Hong R, Huang Y (2016) Pears characteristics (soluble solids content and firmness prediction, varieties) testing methods based on visible-near infrared hyperspectral imaging. Optik 127(5):2624–2630. https://doi.org/10.1016/j.ijleo.2015.11.193

    Article  CAS  Google Scholar 

  205. Li J, Tian X, Huang W, Zhang B, Fan S (2016) Application of long-wave near infrared hyperspectral imaging for measurement of soluble solid content (SSC) in pear. Food Anal Methods 9(11):3087–3098. https://doi.org/10.1007/s12161-016-0498-2

    Article  Google Scholar 

  206. Zhang D, Xu L, Liang D, Xu C, Jin X, Weng S (2018) Fast prediction of sugar content in dangshan pear (Pyrus spp.) using hyperspectral imagery data. Food Anal Methods 11(8):2336–2345. https://doi.org/10.1007/s12161-018-1212-3

    Article  Google Scholar 

  207. Wei X, He J, Zheng S, Ye D (2020) Modeling for SSC and firmness detection of persimmon based on NIR hyperspectral imaging by sample partitioning and variables selection. Infrared Phys Technol 105:103099. https://doi.org/10.1016/j.infrared.2019.103099

    Article  CAS  Google Scholar 

  208. Zhang L, Zhang B, Zhou J, Gu B, Tian G (2017) Uninformative biological variability elimination in apple soluble solids content inspection by using fourier transform near-infrared spectroscopy combined with multivariate analysis and wavelength selection algorithm. J Anal Methods Chem 2017:2525147. https://doi.org/10.1155/2017/2525147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kanchanomai C, Ohashi S, Naphrom D, Nemoto W, Maniwara P, Nakano K (2020) Non-destructive analysis of Japanese table grape qualities using near-infrared spectroscopy. Hortic Environ Biotechnol 61(4):725–733. https://doi.org/10.1007/s13580-020-00256-4

    Article  CAS  Google Scholar 

  210. Cao F, Wu D, He Y (2010) Soluble solids content and pH prediction and varieties discrimination of grapes based on visible–near infrared spectroscopy. Comput Electron Agric 71:S15–S18. https://doi.org/10.1016/j.compag.2009.05.011

    Article  Google Scholar 

  211. Khodabakhshian R, Emadi B, Khojastehpour M, Golzarian MR, Sazgarnia A (2016) Development of a multispectral imaging system for online quality assessment of pomegranate fruit. Int J Food Prop 20(1):107–118. https://doi.org/10.1080/10942912.2016.1144200

    Article  CAS  Google Scholar 

  212. Singh H, Sridhar A, Saini SS (2020) Ultra-low-cost self-referencing multispectral detector for non-destructive measurement of fruit quality. Food Anal Methods 13(10):1879–1893. https://doi.org/10.1007/s12161-020-01810-7

    Article  Google Scholar 

  213. Guthrie JA, Liebenberg CJ, Walsh KB (2006) NIR model development and robustness in prediction of melon fruit total soluble solids. Aust J Agric Res 57(4):411. https://doi.org/10.1071/ar05123

    Article  Google Scholar 

  214. Paz P, Sánchez MT, Pérez-Marín D, Guerrero JE, Garrido-Varo A (2008) Nondestructive determination of total soluble solid content and firmness in plums using near-infrared reflectance spectroscopy. J Agric Food Chem 56(8):2565–2570

    Article  CAS  PubMed  Google Scholar 

  215. Rittiron R, Narongwongwattana S, Boonprakob U, Seehalak W (2014) Rapid and nondestructive detection of watercore and sugar content in Asian pear by near infrared spectroscopy for commercial trade. J Innov Opt Health Sci 07(06):1350073. https://doi.org/10.1142/s1793545813500739

    Article  Google Scholar 

  216. Xu X, Mo J, Xie L, Ying Y (2019) Influences of detection position and double detection regions on determining soluble solids content (SSC) for apples using on-line visible/near-infrared (Vis/NIR) spectroscopy. Food Anal Methods 12(9):2078–2085. https://doi.org/10.1007/s12161-019-01530-7

    Article  Google Scholar 

  217. Zhang L, Xu H, Gu M (2014) Use of signal to noise ratio and area change rate of spectra to evaluate the Visible/NIR spectral system for fruit internal quality detection. J Food Eng 139:19–23. https://doi.org/10.1016/j.jfoodeng.2014.04.009

    Article  Google Scholar 

  218. Alhamdan AM, Atia A (2018) Non-destructive method to predict Barhi dates quality at different stages of maturity utilising near-infrared (NIR) spectroscopy. Int J Food Prop 20(sup3):S2950–S2959. https://doi.org/10.1080/10942912.2017.1387794

    Article  CAS  Google Scholar 

  219. Chia KS, Abdul Rahim H, Abdul Rahim R (2013) Evaluation of common pre-processing approaches for visible (VIS) and shortwave near infrared (SWNIR) spectroscopy in soluble solids content (SSC) assessment. Biosys Eng 115(1):82–88. https://doi.org/10.1016/j.biosystemseng.2013.02.008

    Article  Google Scholar 

  220. Golic M, Walsh KB (2006) Robustness of calibration models based on near infrared spectroscopy for the in-line grading of stonefruit for total soluble solids content. Anal Chim Acta 555(2):286–291. https://doi.org/10.1016/j.aca.2005.09.014

    Article  CAS  Google Scholar 

  221. Pedro AMK, Ferreira MMC (2005) Nondestructive determination of solids and carotenoids in tomato products by near-infrared spectroscopy and multivariate calibration. Anal Chem 77(8):2505–2511

    Article  CAS  PubMed  Google Scholar 

  222. Peirs A, Scheerlinck N, Touchant K, Nicolaı̈ BM (2002) Comparison of Fourier transform and dispersive near-infrared reflectance spectroscopy for apple quality measurements. Biosys Eng 81(3):305–311. https://doi.org/10.1006/bioe.2001.0040

    Article  Google Scholar 

  223. Qing Z, Ji B, Zude M (2007) Wavelength selection for predicting physicochemical properties of apple fruit based on near-infrared spectroscopy. J Food Qual 30(4):511–526

    Article  CAS  Google Scholar 

  224. Bai W, Yoshimura N, Takayanagi M, Che J, Horiuchi N, Ogiwara I (2016) Construction of models for nondestructive prediction of ingredient contents in blueberries by near-infrared spectroscopy based on HPLC measurements. J Visualized Exp. https://doi.org/10.3791/53981

    Article  Google Scholar 

  225. Biegert K, Stockeler D, McCormick RJ, Braun P (2021) Modelling soluble solids content accumulation in “Braeburn” apples. Plants (Basel) 10(2):302. https://doi.org/10.3390/plants10020302

    Article  CAS  PubMed  Google Scholar 

  226. Goke A, Serra S, Musacchi S (2018) Postharvest dry matter and soluble solids content prediction in d’anjou and bartlett pear using near-infrared spectroscopy. HortScience 53(5):669–680. https://doi.org/10.21273/hortsci12843-17

    Article  CAS  Google Scholar 

  227. Lan W, Jaillais B, Leca A, Renard C, Bureau S (2020) A new application of NIR spectroscopy to describe and predict purees quality from the non-destructive apple measurements. Food Chem 310:125944. https://doi.org/10.1016/j.foodchem.2019.125944

    Article  CAS  PubMed  Google Scholar 

  228. Nguyen Do Trong N, Erkinbaev C, Tsuta M, De Baerdemaeker J, Nicolaï B, Saeys W (2014) Spatially resolved diffuse reflectance in the visible and near-infrared wavelength range for non-destructive quality assessment of ‘Braeburn’ apples. Postharvest Biol Technol 91:39–48. https://doi.org/10.1016/j.postharvbio.2013.12.004

    Article  Google Scholar 

  229. Posom J, Klaprachan J, Rattanasopa K, Sirisomboon P, Saengprachatanarug K, Wongpichet S (2020) Predicting marian plum fruit quality without environmental condition impact by handheld visible-near-infrared spectroscopy. ACS Omega 5(43):27909–27921. https://doi.org/10.1021/acsomega.0c03203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Sinelli N, Spinardi A, Di Egidio V, Mignani I, Casiraghi E (2008) Evaluation of quality and nutraceutical content of blueberries (Vaccinium corymbosum L.) by near and mid-infrared spectroscopy. Postharvest Biol Technol 50(1):31–36. https://doi.org/10.1016/j.postharvbio.2008.03.013

    Article  CAS  Google Scholar 

  231. Hemrattrakun P, Nakano K, Boonyakiat D, Ohashi S, Maniwara P, Theanjumpol P, Seehanam P (2020) Comparison of reflectance and interactance modes of visible and near-infrared spectroscopy for predicting persimmon fruit quality. Food Anal Methods 14(1):117–126. https://doi.org/10.1007/s12161-020-01853-w

    Article  Google Scholar 

  232. Bai Y, Fang Y, Zhang B, Fan S (2022) Model robustness in estimation of blueberry SSC using NIRS. Comput Electron Agric. https://doi.org/10.1016/j.compag.2022.107073

    Article  Google Scholar 

  233. Chia KS, Abdul Rahim H, Abdul Rahim R (2012) Prediction of soluble solids content of pineapple via non-invasive low cost visible and shortwave near infrared spectroscopy and artificial neural network. Biosys Eng 113(2):158–165. https://doi.org/10.1016/j.biosystemseng.2012.07.003

    Article  Google Scholar 

  234. Feng L, Zhang M, Adhikari B, Guo Z (2019) Nondestructive detection of postharvest quality of cherry tomatoes using a portable NIR spectrometer and chemometric algorithms. Food Anal Methods 12(4):914–925. https://doi.org/10.1007/s12161-018-01429-9

    Article  Google Scholar 

  235. Jiang H, Zhu W (2012) Determination of pear internal quality attributes by fourier transform near infrared (FT-NIR) Spectroscopy and multivariate analysis. Food Anal Methods 6(2):569–577. https://doi.org/10.1007/s12161-012-9480-9

    Article  Google Scholar 

  236. Sarkar S, Basak JK, Moon BE, Kim HT (2020) A comparative study of PLSR and SVM-R with various preprocessing techniques for the quantitative determination of soluble solids content of hardy kiwi fruit by a portable Vis/NIR spectrometer. Foods 9(8):1078. https://doi.org/10.3390/foods9081078

    Article  PubMed  PubMed Central  Google Scholar 

  237. Sun H, Zhang S, Ren R, Xue J, Zhao H (2022) Detection of soluble solids content in different cultivated fresh jujubes based on variable optimization and model update. Foods 11(16):2522. https://doi.org/10.3390/foods11162522

    Article  PubMed  PubMed Central  Google Scholar 

  238. Xiao H, Sun K, Sun Y, Wei K, Tu K, Pan L (2017) Comparison of benchtop fourier-transform (FT) and portable grating scanning spectrometers for determination of total soluble solid contents in single grape berry (Vitis vinifera L.) and calibration transfer. Sensors (Basel) 17(11):2693. https://doi.org/10.3390/s17112693

    Article  CAS  PubMed  Google Scholar 

  239. Cruz S, Guerra R, Brazio A, Cavaco AM, Antunes D, Passos D (2021) Nondestructive simultaneous prediction of internal browning disorder and quality attributes in ‘Rocha’ pear (Pyrus communis L.) using VIS-NIR spectroscopy. Postharvest Biol Technol 179:111562. https://doi.org/10.1016/j.postharvbio.2021.111562

    Article  CAS  Google Scholar 

  240. Li M, Pullanagari RR, Pranamornkith T, Yule IJ, East AR (2017) Quantitative prediction of post storage ‘Hayward’ kiwifruit attributes using at harvest Vis-NIR spectroscopy. J Food Eng 202:46–55. https://doi.org/10.1016/j.jfoodeng.2017.01.002

    Article  CAS  Google Scholar 

  241. Liu C, Yang SX, Deng L (2015) Determination of internal qualities of Newhall navel oranges based on NIR spectroscopy using machine learning. J Food Eng 161:16–23. https://doi.org/10.1016/j.jfoodeng.2015.03.022

    Article  CAS  Google Scholar 

  242. Liu Y, Sun X, Ouyang A (2010) Nondestructive measurement of soluble solid content of navel orange fruit by visible–NIR spectrometric technique with PLSR and PCA-BPNN. LWT Food Sci Technol 43(4):602–607. https://doi.org/10.1016/j.lwt.2009.10.008

    Article  CAS  Google Scholar 

  243. Zhao X, Zhu Q, Huang M, Cen H (2013) An IGA-PLSP method for FT-NIR wavelength selection for measuring soluble solid content of citrus fruits. Anal Methods 5(18):4811. https://doi.org/10.1039/c3ay40916c

    Article  CAS  Google Scholar 

  244. Liu C, Yang SX, Li X, Xu L, Deng L (2020) Noise level penalizing robust Gaussian process regression for NIR spectroscopy quantitative analysis. Chemom Intell Lab Syst 201:104014. https://doi.org/10.1016/j.chemolab.2020.104014

    Article  CAS  Google Scholar 

  245. Pourdarbani R, Sabzi S, Jarolmasjed S, Panagopoulos T (2020) Determination of the most effective wavelengths for prediction of fuji apple starch and total soluble solids properties. Appl Sci 10(22):8145. https://doi.org/10.3390/app10228145

    Article  CAS  Google Scholar 

  246. Wu Y, Li L, Liu L, Liu Y (2017) Nondestructive measurement of internal quality attributes of apple fruit by using NIR spectroscopy. Multimed Tools App 78(4):4179–4195. https://doi.org/10.1007/s11042-017-5388-0

    Article  Google Scholar 

  247. Yuan L-M, Mao F, Chen X, Li L, Huang G (2020) Non-invasive measurements of ‘Yunhe’ pears by vis-NIRS technology coupled with deviation fusion modeling approach. Postharvest Biol Technol 160:111067. https://doi.org/10.1016/j.postharvbio.2019.111067

    Article  CAS  Google Scholar 

  248. Yuan L-m, Mao F, Huang G, Chen X, Wu D, Li S, Zhou X, Jiang Q, Lin D, He R (2020) Models fused with successive CARS-PLS for measurement of the soluble solids content of Chinese bayberry by vis-NIRS technology. Postharvest Biol Technol 169:111308. https://doi.org/10.1016/j.postharvbio.2020.111308

    Article  CAS  Google Scholar 

  249. Wang G, Jiang X, Li X, Liu Y, Rao Y, Zhang Y, Xin M (2023) Determination of watermelon soluble solids content based on visible/near infrared spectroscopy with convolutional neural network. Infrared Phys Technol 133:104825. https://doi.org/10.1016/j.infrared.2023.104825

    Article  CAS  Google Scholar 

  250. Martins JA, Guerra R, Pires R, Antunes MD, Panagopoulos T, Brázio A, Afonso AM, Silva L, Lucas MR, Cavaco AM (2022) SpectraNet–53: A deep residual learning architecture for predicting soluble solids content with VIS–NIR spectroscopy. Comput Electron Agric 197:106945. https://doi.org/10.1016/j.compag.2022.106945

    Article  Google Scholar 

  251. Martins JA, Rodrigues D, Cavaco AM, Antunes MD, Guerra R (2023) Estimation of soluble solids content and fruit temperature in “Rocha” pear using Vis-NIR spectroscopy and the SpectraNet–32 deep learning architecture. Postharvest Biol Technol 199:112281. https://doi.org/10.1016/j.postharvbio.2023.112281

    Article  CAS  Google Scholar 

  252. Hao Y, Lu Y, Li X (2022) Study on robust model construction method of multi-batch fruit online sorting by near-infrared spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 280:121478. https://doi.org/10.1016/j.saa.2022.121478

    Article  CAS  PubMed  Google Scholar 

  253. Mishra P, Woltering E, Brouwer B, Hogeveen-van Echtelt E (2021) Improving moisture and soluble solids content prediction in pear fruit using near-infrared spectroscopy with variable selection and model updating approach. Postharvest Biol Technol 171:111348. https://doi.org/10.1016/j.postharvbio.2020.111348

    Article  CAS  Google Scholar 

  254. Najjar K, Abu-Khalaf N (2021) Non-destructive quality measurement for three varieties of tomato using VIS/NIR spectroscopy. Sustainability 13(19):10747. https://doi.org/10.3390/su131910747

    Article  Google Scholar 

  255. Travers S, Bertelsen MG, Kucheryavskiy SV (2014) Predicting apple (cv. Elshof) postharvest dry matter and soluble solids content with near infrared spectroscopy. J Sci Food Agric 94(5):955–962. https://doi.org/10.1002/jsfa.6343

    Article  CAS  PubMed  Google Scholar 

  256. Giovanelli G, Sinelli N, Beghi R, Guidetti R, Casiraghi E (2014) NIR spectroscopy for the optimization of postharvest apple management. Postharvest Biol Technol 87:13–20. https://doi.org/10.1016/j.postharvbio.2013.07.041

    Article  CAS  Google Scholar 

  257. Luo X, Ye Z, Xu H, Zhang D, Bai S, Ying Y (2018) Robustness improvement of NIR-based determination of soluble solids in apple fruit by local calibration. Postharvest Biol Technol 139:82–90. https://doi.org/10.1016/j.postharvbio.2018.01.019

    Article  CAS  Google Scholar 

  258. Abasi S, Minaei S, Jamshidi B, Fathi D, Khoshtaghaza MH (2019) Rapid measurement of apple quality parameters using wavelet de-noising transform with Vis/NIR analysis. Sci Hortic 252:7–13. https://doi.org/10.1016/j.scienta.2019.02.085

    Article  Google Scholar 

  259. Louw ED, Theron KI (2010) Robust prediction models for quality parameters in Japanese plums (Prunus salicina L.) using NIR spectroscopy. Postharvest Biol Technol 58(3):176–184. https://doi.org/10.1016/j.postharvbio.2010.07.001

    Article  Google Scholar 

  260. Zhang Y, Nock JF, Al Shoffe Y, Watkins CB (2019) Non-destructive prediction of soluble solids and dry matter contents in eight apple cultivars using near-infrared spectroscopy. Postharvest Biol Technol 151:111–118. https://doi.org/10.1016/j.postharvbio.2019.01.009

    Article  CAS  Google Scholar 

  261. Ciccoritti R, Paliotta M, Amoriello T, Carbone K (2019) FT-NIR spectroscopy and multivariate classification strategies for the postharvest quality of green-fleshed kiwifruit varieties. Sci Hortic 257:108622. https://doi.org/10.1016/j.scienta.2019.108622

    Article  CAS  Google Scholar 

  262. Costa RC, Lima KMGd (2013) Prediction of parameters (Soluble Solid and pH) in intact plum using NIR spectroscopy and wavelength selection. J Braz Chem Soc 24(8):1351–1356. https://doi.org/10.5935/0103-5053.20130172

    Article  CAS  Google Scholar 

  263. Gonzalez-Caballero V, Perez-Marin D, Lopez MI, Sanchez MT (2011) Optimization of NIR spectral data management for quality control of grape bunches during on-vine ripening. Sensors (Basel) 11(6):6109–6124. https://doi.org/10.3390/s110606109

    Article  CAS  PubMed  Google Scholar 

  264. Liu Y, Sun X, Zhou J, Zhang H, Yang C (2010) Linear and nonlinear multivariate regressions for determination sugar content of intact Gannan navel orange by Vis–NIR diffuse reflectance spectroscopy. Math Comput Model 51(11–12):1438–1443. https://doi.org/10.1016/j.mcm.2009.10.003

    Article  Google Scholar 

  265. Mancini M, Mazzoni L, Gagliardi F, Balducci F, Duca D, Toscano G, Mezzetti B, Capocasa F (2020) Application of the non-destructive NIR technique for the evaluation of strawberry fruits quality parameters. Foods 9(4):441. https://doi.org/10.3390/foods9040441

    Article  PubMed  PubMed Central  Google Scholar 

  266. Cheng T, Guo S, Pan Z, Fan S, Ju S, Xin Z, Zhou X-G, Jiang F, Zhang D (2022) Near-infrared model and its robustness as affected by fruit origin for ‘dangshan’ pear soluble solids content and pH measurement. Agriculture 12(10):1618. https://doi.org/10.3390/agriculture12101618

    Article  Google Scholar 

  267. Ignat T, Lurie S, Nyasordzi J, Ostrovsky V, Egozi H, Hoffman A, Friedman H, Weksler A, Ze S (2014) Forecast of apple internal quality indices at harvest and during storage by VIS-NIR spectroscopy. Food Bioprocess Technol 7(10):2951–2961. https://doi.org/10.1007/s11947-014-1297-7

    Article  Google Scholar 

  268. Bai Y, Xiong Y, Huang J, Zhou J, Zhang B (2019) Accurate prediction of soluble solid content of apples from multiple geographical regions by combining deep learning with spectral fingerprint features. Postharvest Biol Technol 156:110943. https://doi.org/10.1016/j.postharvbio.2019.110943

    Article  Google Scholar 

  269. Li X, Huang J, Xiong Y, Zhou J, Tan X, Zhang B (2018) Determination of soluble solid content in multi-origin ‘Fuji’ apples by using FT-NIR spectroscopy and an origin discriminant strategy. Comput Electron Agric 155:23–31. https://doi.org/10.1016/j.compag.2018.10.003

    Article  Google Scholar 

  270. Rungpichayapichet P, Mahayothee B, Nagle M, Khuwijitjaru P, Müller J (2016) Robust NIRS models for non-destructive prediction of postharvest fruit ripeness and quality in mango. Postharvest Biol Technol 111:31–40. https://doi.org/10.1016/j.postharvbio.2015.07.006

    Article  Google Scholar 

  271. Fan S, Li J, Xia Y, Tian X, Guo Z, Huang W (2019) Long-term evaluation of soluble solids content of apples with biological variability by using near-infrared spectroscopy and calibration transfer method. Postharvest Biol Technol 151:79–87. https://doi.org/10.1016/j.postharvbio.2019.02.001

    Article  Google Scholar 

  272. Zhang M, Shen M, Li H, Zhang B, Zhang Z, Quan P, Ren X, Xing L, Zhao J (2022) Modification of the effect of maturity variation on nondestructive detection of apple quality based on the compensation model. Spectrochim Acta A Mol Biomol Spectrosc 267(Pt 2):120598. https://doi.org/10.1016/j.saa.2021.120598

    Article  CAS  PubMed  Google Scholar 

  273. Pérez-Marín D, Sánchez M-T, Paz P, Soriano M-A, Guerrero J-E, Garrido-Varo A (2009) Non-destructive determination of quality parameters in nectarines during on-tree ripening and postharvest storage. Postharvest Biol Technol 52(2):180–188. https://doi.org/10.1016/j.postharvbio.2008.10.005

    Article  Google Scholar 

  274. Afonso AM, Antunes MD, Cruz S, Cavaco AM, Guerra R (2022) Non-destructive follow-up of ‘Jintao’ kiwifruit ripening through VIS-NIR spectroscopy – individual vs. average calibration model’s predictions. Postharvest Biol Technol 188:111895. https://doi.org/10.1016/j.postharvbio.2022.111895

    Article  CAS  Google Scholar 

  275. Bureau S, Ruiz D, Reich M, Gouble B, Bertrand D, Audergon J-M, Renard CMGC (2009) Rapid and non-destructive analysis of apricot fruit quality using FT-near-infrared spectroscopy. Food Chem 113(4):1323–1328. https://doi.org/10.1016/j.foodchem.2008.08.066

    Article  CAS  Google Scholar 

  276. Liu D, Wang E, Wang G, Ma G (2022) Nondestructive determination of soluble solids content, firmness, and moisture content of “Longxiang” pears during maturation using near-infrared spectroscopy. J Food Process Preserv 46(3):e16332. https://doi.org/10.1111/jfpp.16332

    Article  CAS  Google Scholar 

  277. Nordey T, Davrieux F, Léchaudel M (2019) Predictions of fruit shelf life and quality after ripening: Are quality traits measured at harvest reliable indicators? Postharvest Biol Technol 153:52–60. https://doi.org/10.1016/j.postharvbio.2019.03.011

    Article  Google Scholar 

  278. Qi S, Song S, Jiang S, Chen Y, Li W, Han D (2014) Establishment of a comprehensive indicator to nondestructively analyze watermelon quality at different ripening stages. J Innov Opt Health Sci 07(04):1350034. https://doi.org/10.1142/s179354581350034x

    Article  Google Scholar 

  279. Vega-Castellote M, Sánchez M-T, Torres I, de la Haba M-J, Pérez-Marín D (2022) Assessment of watermelon maturity using portable new generation NIR spectrophotometers. Sci Hortic 304:111328. https://doi.org/10.1016/j.scienta.2022.111328

    Article  CAS  Google Scholar 

  280. Van Beers R, Aernouts B, Watté R, Schenk A, Nicolaï B, Saeys W (2017) Effect of maturation on the bulk optical properties of apple skin and cortex in the 500–1850 nm wavelength range. J Food Eng 214:79–89. https://doi.org/10.1016/j.jfoodeng.2017.06.013

    Article  Google Scholar 

  281. de Oliveira GA, Bureau S, Renard CM, Pereira-Netto AB, de Castilhos F (2014) Comparison of NIRS approach for prediction of internal quality traits in three fruit species. Food Chem 143:223–230. https://doi.org/10.1016/j.foodchem.2013.07.122

    Article  CAS  PubMed  Google Scholar 

  282. Tian H, Xu H, Ying Y (2022) Can light penetrate through pomelos and carry information for the non-destructive prediction of soluble solid content using Vis-NIRS? Biosys Eng 214:152–164. https://doi.org/10.1016/j.biosystemseng.2021.12.011

    Article  CAS  Google Scholar 

  283. Sun X, Liu Y, Li Y, Wu M, Zhu D (2016) Simultaneous measurement of brown core and soluble solids content in pear by on-line visible and near infrared spectroscopy. Postharvest Biol Technol 116:80–87. https://doi.org/10.1016/j.postharvbio.2016.01.009

    Article  CAS  Google Scholar 

  284. Sun X, Zhu K, Jiang X, Liu Y (2018) Non-destructive detection of blackheart and soluble solids content of intact pear by online NIR spectroscopy. J Supercomput 76(5):3173–3187. https://doi.org/10.1007/s11227-018-2537-9

    Article  Google Scholar 

  285. Jaiswal P, Jha SN, Bharadwaj R (2012) Non-destructive prediction of quality of intact banana using spectroscopy. Sci Hortic 135:14–22. https://doi.org/10.1016/j.scienta.2011.11.021

    Article  Google Scholar 

  286. Fan S, Guo Z, Zhang B, Huang W, Zhao C (2015) Using Vis/NIR diffuse transmittance spectroscopy and multivariate analysis to predicate soluble solids content of apple. Food Anal Methods 9(5):1333–1343. https://doi.org/10.1007/s12161-015-0313-5

    Article  Google Scholar 

  287. Guo Z, Wang M, Agyekum AA, Wu J, Chen Q, Zuo M, El-Seedi HR, Tao F, Shi J, Ouyang Q, Zou X (2020) Quantitative detection of apple watercore and soluble solids content by near infrared transmittance spectroscopy. J Food Eng 279:109955. https://doi.org/10.1016/j.jfoodeng.2020.109955

    Article  CAS  Google Scholar 

  288. Zhu D, Ji B, Meng C, Shi B, Tu Z, Qing Z (2007) The performance of ν-support vector regression on determination of soluble solids content of apple by acousto-optic tunable filter near-infrared spectroscopy. Anal Chim Acta 598(2):227–234. https://doi.org/10.1016/j.aca.2007.07.047

    Article  CAS  PubMed  Google Scholar 

  289. Zhu D, Ji B, Meng C, Shi B, Tu Z, Qing Z (2007) Study of wavelet denoising in apple’s charge-coupled device near-infrared spectroscopy. J Agric Food Chem 55(14):5423–5428

    Article  CAS  PubMed  Google Scholar 

  290. Fan G, Zha J, Du R, Gao L (2009) Determination of soluble solids and firmness of apples by Vis/NIR transmittance. J Food Eng 93(4):416–420. https://doi.org/10.1016/j.jfoodeng.2009.02.006

    Article  Google Scholar 

  291. Jiang X, Zhu M, Yao J, Zhang Y, Liu Y, Camara JS (2022) Study on the effect of apple size difference on soluble solids content model based on near-Infrared (NIR) spectroscopy. J Spectrosc 2022:1–10. https://doi.org/10.1155/2022/3740527

    Article  CAS  Google Scholar 

  292. Jiang X, Zhu M, Yao J, Zhang Y, Liu Y (2022) Calibration of near infrared spectroscopy of apples with different fruit sizes to improve soluble solids content model performance. Foods 11(13):1923. https://doi.org/10.3390/foods11131923

    Article  PubMed  PubMed Central  Google Scholar 

  293. Zhang B, Huang W, Gong L, Li J, Zhao C, Liu C, Huang D (2015) Computer vision detection of defective apples using automatic lightness correction and weighted RVM classifier. J Food Eng 146:143–151. https://doi.org/10.1016/j.jfoodeng.2014.08.024

    Article  Google Scholar 

  294. Huang Y, Lu R, Chen K (2018) Assessment of tomato soluble solids content and pH by spatially-resolved and conventional Vis/NIR spectroscopy. J Food Eng 236:19–28. https://doi.org/10.1016/j.jfoodeng.2018.05.008

    Article  CAS  Google Scholar 

  295. Oliveira-Folador G, Bicudo MdO, de Andrade EF, Renard CM-GC, Bureau S, de Castilhos F (2018) Quality traits prediction of the passion fruit pulp using NIR and MIR spectroscopy. Lwt 95:172–178. https://doi.org/10.1016/j.lwt.2018.04.078

    Article  CAS  Google Scholar 

  296. Sirisomboon P, Tanaka M, Kojima T, Williams P (2012) Nondestructive estimation of maturity and textural properties on tomato ‘Momotaro’ by near infrared spectroscopy. J Food Eng 112(3):218–226. https://doi.org/10.1016/j.jfoodeng.2012.04.007

    Article  Google Scholar 

  297. Pissard A, Marques EJN, Dardenne P, Lateur M, Pasquini C, Pimentel MF, Fernández Pierna JA, Baeten V (2021) Evaluation of a handheld ultra-compact NIR spectrometer for rapid and non-destructive determination of apple fruit quality. Postharvest Biol Technol 172:111375. https://doi.org/10.1016/j.postharvbio.2020.111375

    Article  CAS  Google Scholar 

  298. Alamar MC, Bobelyn E, Lammertyn J, Nicolaï BM, Moltó E (2007) Calibration transfer between NIR diode array and FT-NIR spectrophotometers for measuring the soluble solids contents of apple. Postharvest Biol Technol 45(1):38–45. https://doi.org/10.1016/j.postharvbio.2007.01.008

    Article  CAS  Google Scholar 

  299. Li L, Huang W, Wang Z, Liu S, He X, Fan S (2022) Calibration transfer between developed portable Vis/NIR devices for detection of soluble solids contents in apple. Postharvest Biol Technol 183:111720. https://doi.org/10.1016/j.postharvbio.2021.111720

    Article  CAS  Google Scholar 

  300. Yao Y, Chen H, Xie L, Rao X (2013) Assessing the temperature influence on the soluble solids content of watermelon juice as measured by visible and near-infrared spectroscopy and chemometrics. J Food Eng 119(1):22–27. https://doi.org/10.1016/j.jfoodeng.2013.04.033

    Article  CAS  Google Scholar 

  301. Blanco M, Valdés D (2004) Influence of temperature on the predictive ability of near infrared spectroscopy models. J Near Infrared Spectrosc 12(1):121–126

    Article  CAS  Google Scholar 

  302. Wülfert F, Kok WT, Smilde AK (1998) Influence of temperature on vibrational spectra and consequences for the predictive ability of multivariate models. Anal Chem 70(9):1761–1767

    Article  PubMed  Google Scholar 

  303. Lee H, Cho S, Lim J, Lee A, Kim G, Song DJ, Chun SW, Kim MJ, Mo C (2023) Performance comparison of tungsten-halogen light and phosphor-converted NIR LED in soluble solid content estimation of apple. Sensors (Basel) 23(4):1961. https://doi.org/10.3390/s23041961

    Article  CAS  PubMed  Google Scholar 

  304. Wu D, Sun D-W (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: A review — Part I: Fundamentals. Innov Food Sci Emerg Technol 19:1–14. https://doi.org/10.1016/j.ifset.2013.04.014

    Article  CAS  Google Scholar 

  305. Fu X, Wang X, Rao X (2017) An LED-based spectrally tuneable light source for visible and near-infrared spectroscopy analysis: A case study for sugar content estimation of citrus. Biosys Eng 163:87–93. https://doi.org/10.1016/j.biosystemseng.2017.08.022

    Article  Google Scholar 

  306. Delwiche SR, Mekwatanakarn W, Wang CY (2008) Soluble solids and simple sugars measurement in intact mango using near infrared spectroscopy. HortTechnology 18(3):410–416

    Article  Google Scholar 

  307. Liu Y, Zhang Y, Jiang X, Liu H (2020) Detection of the quality of juicy peach during storage by visible/near infrared spectroscopy. Vib Spectrosc 111:103152. https://doi.org/10.1016/j.vibspec.2020.103152

    Article  CAS  Google Scholar 

  308. Sohrabi MM, Ahmadi E, Monavar HM (2017) Nondestructive analysis of packaged grape tomatoes quality using PCA and PLS regression by means of fiber optic spectroscopy during storage. J Food Meas Charact 12(2):949–966. https://doi.org/10.1007/s11694-017-9710-3

    Article  Google Scholar 

  309. Li M, Lv W, Zhao R, Guo H, Liu J, Han D (2017) Non-destructive assessment of quality parameters in ‘Friar’ plums during low temperature storage using visible/near infrared spectroscopy. Food Control 73:1334–1341. https://doi.org/10.1016/j.foodcont.2016.10.054

    Article  CAS  Google Scholar 

  310. Escribano S, Biasi WV, Lerud R, Slaughter DC, Mitcham EJ (2017) Non-destructive prediction of soluble solids and dry matter content using NIR spectroscopy and its relationship with sensory quality in sweet cherries. Postharvest Biol Technol 128:112–120. https://doi.org/10.1016/j.postharvbio.2017.01.016

    Article  CAS  Google Scholar 

  311. Peirs A, Scheerlinck N, Nicolaı̈ BM (2003) Temperature compensation for near infrared reflectance measurement of apple fruit soluble solids contents. Postharvest Biol Technol 30(3):233–248. https://doi.org/10.1016/s0925-5214(03)00118-2

    Article  Google Scholar 

  312. Roger J-M, Chauchard F, Bellon-Maurel V (2003) EPO–PLS external parameter orthogonalisation of PLS application to temperature-independent measurement of sugar content of intact fruits. Chemom Intell Lab Syst 66(2):191–204. https://doi.org/10.1016/s0169-7439(03)00051-0

    Article  CAS  Google Scholar 

  313. Jiang X, Yao J, Zhu M, Li B, Liu Y, Ou Yang A (2023) Achieving robustness to temperature change of a NIR model for apple soluble solids content. Food Qual Saf 7:1–7. https://doi.org/10.1093/fqsafe/fyad002

    Article  Google Scholar 

  314. Bobelyn E, Serban A-S, Nicu M, Lammertyn J, Nicolai BM, Saeys W (2010) Postharvest quality of apple predicted by NIR-spectroscopy: Study of the effect of biological variability on spectra and model performance. Postharvest Biol Technol 55(3):133–143. https://doi.org/10.1016/j.postharvbio.2009.09.006

    Article  CAS  Google Scholar 

  315. Brito AAd, Campos F, Nascimento AdR, Corrêa GdC, Silva FAd, Teixeira GHdA, Cunha Júnior LC (2021) Determination of soluble solid content in market tomatoes using near-infrared spectroscopy. Food Control 126:108068. https://doi.org/10.1016/j.foodcont.2021.108068

    Article  CAS  Google Scholar 

  316. Peirs A, Tirry J, Verlinden B, Darius P, Nicolaı̈ BM (2003) Effect of biological variability on the robustness of NIR models for soluble solids content of apples. Postharvest Biol Technol 28(2):269–280. https://doi.org/10.1016/s0925-5214(02)00196-5

    Article  CAS  Google Scholar 

  317. Sun X, Deng D, Liu J, Feng S (2022) Model development and update of portable NIRS instrument for assessment of internal quality attributes of two navel orange varieties. Front Nutr 9:976178. https://doi.org/10.3389/fnut.2022.976178

    Article  PubMed  PubMed Central  Google Scholar 

  318. Wang J, Wang J, Chen Z, Han D (2017) Development of multi-cultivar models for predicting the soluble solid content and firmness of European pear ( Pyrus communis L.) using portable vis–NIR spectroscopy. Postharvest Biol Technol 129:143–151. https://doi.org/10.1016/j.postharvbio.2017.03.012

    Article  Google Scholar 

  319. Yang Y, Zhao C, Huang W, Tian X, Fan S, Wang Q, Li J (2022) Optimization and compensation of models on tomato soluble solids content assessment with online Vis/NIRS diffuse transmission system. Infrared Phys Technol 121:104050. https://doi.org/10.1016/j.infrared.2022.104050

    Article  CAS  Google Scholar 

  320. Mishra P, Passos D (2021) Deep calibration transfer: Transferring deep learning models between infrared spectroscopy instruments. Infrared Phys Technol 117:103863. https://doi.org/10.1016/j.infrared.2021.103863

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. Zun Man for giving valuable advice on revising the manuscript.

Funding

This work was supported by the Natural Science Foundation of Zhejiang Province (Grant number [LQ23F050001]) and the Key Laboratory of Smart Management & Application of Modern Agricultural Resources of Zhejiang Province (Grant number [2020E10017]).

Author information

Authors and Affiliations

Authors

Contributions

Y-Y.Z. and C.Z. performed the literature search and wrote the first draft of the manuscript. Y-Y.Z., L.Z. and C.Z. prepared all the figures and tables. W.W., X-B.Z., Q.G., Y-H.Z. and R-Q.C. offered help in the process of revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Chu Zhang.

Ethics declarations

Competing Interests

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Zhou, L., Wang, W. et al. Visible/near-infrared Spectroscopy and Hyperspectral Imaging Facilitate the Rapid Determination of Soluble Solids Content in Fruits. Food Eng Rev (2024). https://doi.org/10.1007/s12393-024-09374-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-024-09374-6

Keywords

Navigation