Skip to main content
Log in

Spouting Technology in Energy-Carrying Electromagnetic Field Drying of Agricultural Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

As a new generation of energy-carrying electromagnetic fields (after the electromagnetic field acts on the material, it is absorbed and converted into heat, providing energy for material drying), high-efficiency drying technology, microwave drying (MD), infrared drying (IRD), and radiofrequency drying (RFD) are widely used in agricultural product processing, but uneven drying is the main technical problem for the application and promotion of this technical means. Through the jet mode of pulse generated by compressed air, the materials can be evenly mixed on a large spatial scale. At the same time, air spouting has little effect on the energy transmission and distribution of energy-carrying electromagnetic fields, which is an important means to improve the uniformity of microwave and infrared efficient drying. This paper summarizes the working principle, innovative development, and numerical simulation of spouted bed in microwave and infrared drying; focuses on the cooperative working mode, drying object, and product characteristics of spouting technology in microwave hot air drying, microwave vacuum drying (MVD), and microwave freeze drying (MFD); and expounds the application and technical advantages of spouting technology in IRD. The feasibility of applying spouting technology in RFD was proposed. The review materials provide technical reference for improving the quality of microwave, infrared energy-carrying electromagnetic field efficient drying agricultural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

No datasets were generated in this study. All data have been taken from cited articles.

References

  1. Zhou X, Pedrow PD, Tang Z, Bohnet S, Sablani SS, Tang J (2023) Heating performance of microwave ovens powered by magnetron and solid-state generators. Innov Food Sci Emerg Technol 83:103240. https://doi.org/10.1016/j.ifset.2022.103240

    Article  CAS  Google Scholar 

  2. Osepchuk JM (1984) A history of microwave-heating applications. IEEE Trans Microw Theory Tech 32(9):1200–1224. https://doi.org/10.1109/TMTT.1984.1132831

  3. Tang S-Y, Xia Z-N, Fu Y-J, Gou Q (2008) Advances and applications of microwave spectroscopy. Chin J Anal Chem 36(8):1145–1151. https://doi.org/10.1016/S1872-2040(08)60061-4

    Article  CAS  Google Scholar 

  4. Chandrasekaran S, Ramanathan S, Basak T (2013) Microwave food processing—a review. Food Res Int 52(1):243–261. https://doi.org/10.1016/j.foodres.2013.02.033

    Article  CAS  Google Scholar 

  5. Franco AP, Yamamoto LY, Tadini CC, Gut JAW (2015) Dielectric properties of green coconut water relevant to microwave processing: effect of temperature and field frequency. J Food Eng 155:69–78. https://doi.org/10.1016/j.jfoodeng.2015.01.011

    Article  CAS  Google Scholar 

  6. Delfiya DSA, Prashob K, Murali S, Alfiya PV, Samuel MP, Pandiselvam R (2022) Drying kinetics of food materials in infrared radiation drying: a review. J Food Process Eng 45(6):e13810. https://doi.org/10.1111/jfpe.13810

    Article  Google Scholar 

  7. Huang J, Zhang M, Adhikari B, Yang Z (2016) Effect of microwave air spouted drying arranged in two and three-stages on the drying uniformity and quality of dehydrated carrot cubes. J Food Eng 77:80–89. https://doi.org/10.1016/j.jfoodeng.2015.12.023

  8. Ning X, Feng Y, Gong Y, Chen Y, Qin J, Wang D (2019) Drying features of microwave and far-infrared combination drying on white ginseng slices. Food Sci Biotechnol 28(4):1065–1072. https://doi.org/10.1007/s10068-018-00541-0

  9. Sakare P, Prasad N, Thombare N, Singh R, Sharma SC (2020) Infrared drying of food materials: recent advances. Food Eng Rev 12(3):381–398. https://doi.org/10.1007/s12393-020-09237-w

  10. Pan Z, Venkitasamy C, Li X (2016) Infrared processing of foods. In Reference module in food science: Elsevier

  11. Radoiu M, Mello A (2022) Technical advances, barriers, and solutions in microwave—assisted technology for industrial processing. Chem Eng Res Des 181:331–342. https://doi.org/10.1016/j.cherd.2022.03.029

    Article  CAS  Google Scholar 

  12. Alibas I (2007) Microwave, air and combined microwave-air-drying parameters of pumpkin slices. LWT Food Sci Technol 40(8):1445–1451. https://doi.org/10.1016/j.lwt.2006.09.002

  13. Nijhuis HH, Torringa HM, Muresan S, Yuksel D, Leguijt C, Kloek W (1998) Approaches to improving the quality of dried fruit and vegetables. Trends Food Sci Technol 9(1):13–20. https://doi.org/10.1016/S0924-2244(97)00007-1

    Article  CAS  Google Scholar 

  14. Maskan M (2001) Drying, shrinkage and rehydration characteristics of kiwifruits during hot air and microwave drying. J Food Eng 48(2):177–182. https://doi.org/10.1016/S0260-8774(00)00155-2

    Article  Google Scholar 

  15. Riadh MH, Ahmad SA, Marhaban MH, Soh AC(2014) Infrared heating in food drying: an overview. Dry Technol 33(3):322–335. https://doi.org/10.1080/07373937.2014.951124

  16. Jeong JY, Lee ES, Choi JH, Lee JY, Kim JM, Min SG et al (2007) Variability in temperature distribution and cooking properties of ground pork patties containing different fat level and with/without salt cooked by microwave energy. Meat Sci 75(3):415–422. https://doi.org/10.1016/j.meatsci.2006.08.010

  17. Knoerzer K, Regier M, Schubert H (2008) A computational model for calculating temperature distributions in microwave food applications. Innov Food Sci Emerg Technol 9(3):374–384. https://doi.org/10.1016/j.ifset.2007.10.007

    Article  Google Scholar 

  18. Tang J (2015) Unlocking potentials of microwaves for food safety and quality. J Food Sci 80(8):E1776–E1793. https://doi.org/10.1111/1750-3841.12959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Krishnamurthy K, Khurana HK, Soojin J, Irudayaraj J, Demirci A (2008) Infrared heating in food processing: an overview. Compr Rev Food Sci Food Saf 7(1):2–13. https://doi.org/10.1111/j.1541-4337.2007.00024.x

    Article  Google Scholar 

  20. Zhou X, Wang S (2019) Recent developments in radio frequency drying of food and agricultural products: a review. Dry Technol 37(3):271–286. https://doi.org/10.1080/07373937.2018.1452255

  21. Wang Y, Zhang L, Johnson J, Gao M, Tang J, Powers JR, Wang S (2014) Developing hot air-assisted radio frequency drying for in-shell macadamia nuts. Food Bioprocess Technol 7(1):278–288. https://doi.org/10.1007/s11947-013-1055-2

  22. Zhang H, Gong C, Wang X, Liao M, Yue J, Jiao S (2019) Application of hot air-assisted radio frequency as second stage drying method for mango slices. J Food Process Eng 42(2):e12974. https://doi.org/10.1111/jfpe.12974

    Article  CAS  Google Scholar 

  23. Mathur KB, Gishler PE (1955) A study of the application of the spouted bed technique to wheat drying. J Appl Chem 5(11):624–636. https://doi.org/10.1002/jctb.5010051106

    Article  Google Scholar 

  24. Lu Y, Zhang M, Liu H, Mujumdar AS, Sun J, Zheng D (2014) Optimization of potato cube drying in a microwave-assisted pulsed spouted bed. Dry Technol 32(8):960–968. https://doi.org/10.1080/07373937.2013.877024

  25. Bezerra CV, Amante ER, de Oliveira DC, Rodrigues AMC, da Silva LHM (2013) Green banana (Musa cavendishii) flour obtained in spouted bed – effect of drying on physico-chemical, functional and morphological characteristics of the starch. Ind Crops Prod 41:241–249. https://doi.org/10.1016/j.indcrop.2012.04.035

    Article  CAS  Google Scholar 

  26. Fazaeli M, Emam-Djomeh Z, Yarmand MS (2016) Influence of black mulberry juice addition and spray drying conditions on some physical properties of ice cream powder. Int J Food Eng 12(3):277–285. https://doi.org/10.1515/ijfe-2015-0253

  27. Ghalavand Y, Hatamipour MS, Rahimi A (2010) Experimental and parametric study on drying of green peas in spouted bed. Int J Food Sci Technol 45(12):2546–2552. https://doi.org/10.1111/j.1365-2621.2010.02420.x

  28. Grabowski S, Mujumdar AS, Ramaswamy HS, Strumillo C (1997) Evaluation of fluidized versus spouted bed drying of baker's yeast. Dry Technol 15(2):625–634. https://doi.org/10.1080/07373939708917250

  29. Jindarat W, Sungsoontorn S, Rattanadecho P (2015) Analysis of energy consumption in a combined microwave–hot air spouted bed drying of biomaterial: coffee beans. Exp Heat Transf 28(2):107–124. https://doi.org/10.1080/08916152.2013.821544

  30. Devahastin S, Tapaneyasin R, Tansakul A (2006) Hydrodynamic behavior of a jet spouted bed of shrimp. J Food Eng 74(3):345–351. https://doi.org/10.1016/j.jfoodeng.2005.03.012

    Article  Google Scholar 

  31. Geldart D (1973) Types of gas fluidization. Powder Technol 7(5):285–292. https://doi.org/10.1016/0032-5910(73)80037-3

    Article  CAS  Google Scholar 

  32. Alizehi MH, Niakousari M, Fazaeli M, Iraji M (2020) Modeling of vacuum- and ultrasound-assisted osmodehydration of carrot cubes followed by combined infrared and spouted bed drying using artificial neural network and regression models. J Food Process Eng 43(12):e13563. https://doi.org/10.1111/jfpe.13563

    Article  CAS  Google Scholar 

  33. Liu P, Zhang M, Mujumdar AS (2014) Purple-fleshed sweet potato cubes drying in a microwave-assisted spouted bed dryer. Dry Technol 32(15):1865–1871. https://doi.org/10.1080/07373937.2014.953174

  34. Feng H, Tang J, Cavalieri RP (1999) Combined microwave and spouted bed drying of diced apples: effect of drying conditions on drying kinetics and product temperature. Dry Technol 17(10):1981–1998. https://doi.org/10.1080/07373939908917668

  35. Markowski M, Sobieski W, Konopka I, Tańska M, Białobrzewski I (2007) Drying Characteristics of barley grain dried in a spouted-bed and combined IR-convection dryers. Dry Technol 25(10):1621–1632. https://doi.org/10.1080/07373930701590715

  36. Moradi M, Azizi S, Niakousari M, Kamgar S, Khaneghah AM (2020) Drying of green bell pepper slices using an IR-assisted spouted bed dryer: an assessment of drying kinetics and energy consumption. Innov Food Sci Emerg Technol 60. https://doi.org/10.1016/j.ifset.2019.102280

  37. Stępień B, Pasławska M, Maślankowski R, Surma M, Jałoszyński K (2016) Impact of spouted-microwave drying on the selected mechanical and rheological properties of zucchini. Agri Eng 20(2):143–150. https://doi.org/10.1515/agriceng-2016-0036

  38. Nindo CI, Sun T, Wang SW, Tang J, Powers JR (2003) Evaluation of drying technologies for retention of physical quality and antioxidants in asparagus (Asparagus officinalis, L.). LWT Food Sci Technol 36(5):507–516. https://doi.org/10.1016/S0023-6438(03)00046-X

  39. Teng X, Zhang M, Devahastin S, Yu D (2020) Establishment of lower hygroscopicity and adhesion strategy for infrared-freeze-dried blueberries based on pretreatments using CO2 laser in combination with ultrasound. Food Bioprocess Technol 13(12):2043–2053. https://doi.org/10.1007/s11947-020-02543-5

  40. Goksu EI, Sumnu G, Esin A (2005) Effect of microwave on fluidized bed drying of macaroni beads. J Food Eng 66(4):463–468. https://doi.org/10.1016/j.jfoodeng.2004.04.017

    Article  Google Scholar 

  41. Kahyaoglu LN, Sahin S, Sumnu G (2010) Physical properties of parboiled wheat and bulgur produced using spouted bed and microwave assisted spouted bed drying. J Food Eng 98(2):159–169. https://doi.org/10.1016/j.jfoodeng.2009.12.022

  42. Kahyaoglu LN, Sahin S, Sumnu G (2012) Spouted bed and microwave-assisted spouted bed drying of parboiled wheat. Food Bioprod Process 90(2):301–308. https://doi.org/10.1016/j.fbp.2011.06.003

  43. Hung-Nguyen L, Driscoll RH, Srzednicki G (2001) Drying of high moisture content paddy in a pilot scale triangular spouted bed dryer. Dry Technol 19(2):375–387. https://doi.org/10.1081/DRT-100102911

  44. LAP F, JT F (1993) Heat transfer in spouted beds. Dry Technol 11(2):303–317. https://doi.org/10.1080/07373939308916821

  45. Ren B, Zhong W, Jin B, Shao Y, Yuan Z (2013) Numerical simulation on the mixing behavior of corn-shaped particles in a spouted bed. Powder Technol 234:58–66. https://doi.org/10.1016/j.powtec.2012.09.024

    Article  CAS  Google Scholar 

  46. Szentmarjay T, Szalay A, Pallai E (1994) Scale-up aspects of the mechanically spouted bed dryer with inert particles. Dry Technol 12(1–2):341–350. https://doi.org/10.1080/07373939408959960

  47. Chua KJ, Chou SK (2003) Low-cost drying methods for developing countries. Trends Food Sci Technol 14(12):519–528. https://doi.org/10.1016/j.tifs.2003.07.003

    Article  CAS  Google Scholar 

  48. Jayatunga GK, Amarasinghe BMWPK (2019) Drying kinetics, quality and moisture diffusivity of spouted bed dried Sri Lankan black pepper. J Food Eng 263:38–45. https://doi.org/10.1016/j.jfoodeng.2019.05.023

    Article  CAS  Google Scholar 

  49. Devahastin S, Mujumdar AS (2001) Some hydrodynamic and mixing characteristics of a pulsed spouted bed dryer. Powder Technol 117(3):189–197. https://doi.org/10.1016/S0032-5910(00)00380-6

    Article  CAS  Google Scholar 

  50. Saidi M, Basirat Tabrizi H, Grace JR, Lim CJ, Ahmadi G (2015) Hydrodynamic and mixing characteristics of gas-solid flow in a pulsed spouted bed. Ind Eng Chem Res 54(32):7933–7941. https://doi.org/10.1021/acs.iecr.5b01645

  51. Bon J, Kudra T (2007) Enthalpy-driven optimization of intermittent drying. Dry Technol 25(4):523–532. https://doi.org/10.1080/07373930701226880

  52. Brito RC, Zacharias MB, Forti VA, Freire JT (2021) Physical and physiological quality of intermittent soybean seeds drying in the spouted bed. Dry Technol 39(6):820–833. https://doi.org/10.1080/07373937.2020.1725544

  53. Jin G, Zhang M, Fang Z, Cui Z, Song C (2015) Numerical investigation on effect of food particle mass on spout elevation of a gas–particle spout fluidized bed in a microwave–vacuum dryer. Dry Technol 33(5):591–604. https://doi.org/10.1080/07373937.2014.965317

  54. Yan W-Q, Zhang MIN, Huang L-L, Mujumdar AS, Tang J (2013) Influence of microwave drying method on the characteristics of the sweet potato dices. J Food Process Preserv 37(5):662–669. https://doi.org/10.1111/j.1745-4549.2012.00707.x

    Article  Google Scholar 

  55. Huang Z, Zhang B, Marra F, Wang S (2016) Computational modelling of the impact of polystyrene containers on radio frequency heating uniformity improvement for dried soybeans. Innov Food Sci Emerg Technol 33:365–380. https://doi.org/10.1016/j.ifset.2015.11.022

    Article  Google Scholar 

  56. Liu Z, Zhang M, Fang Z, Bhandari B, Yang Z (2017) Dehydration of asparagus cookies by combined vacuum infrared radiation and pulse-spouted microwave vacuum drying. Dry Technol 35(11):1291–1301. https://doi.org/10.1080/07373937.2017.1330755

  57. Liu Z, Zhang M, Bhandari B, Yang Z, Wang Y (2016). Quality of restructured cookies made from old stalks of Asparagus officinalis using various drying methods. Dry Technol 34(16):1936–1947. https://doi.org/10.1080/07373937.2016.1144198

  58. Liu Z, Zhang M, Wang Y (2016) Drying of restructured chips made from the old stalks of Asparagus officinalis: impact of different drying methods. J Sci Food Agric 96(8):2815–2824. https://doi.org/10.1002/jsfa.7449

  59. Tang J (2005) 2 - Dielectric properties of foods. In: Schubert H, Regier M (eds) The Microwave Processing of Foods. Woodhead Publishing, pp 22–40

    Chapter  Google Scholar 

  60. Zhou X, Zhang S, Tang Z, Tang J, Takhar PS (2022) Microwave frying and post-frying of French fries. Food Res Int 159:111663. https://doi.org/10.1016/j.foodres.2022.111663

    Article  CAS  PubMed  Google Scholar 

  61. Feng YF, Zhang M, Jiang H, Sun JC (2012) Microwave-assisted spouted bed drying of lettuce cubes. Dry Technol 30(13):1482–1490. https://doi.org/10.1080/07373937.2012.691929

  62. Serowik M, Figiel A, Nejman M, Pudlo A, Chorazyk D, Kopec W, Krokosz D, Rychlicka J (2018) Drying characteristics and properties of microwave − assisted spouted bed dried semi−refined carrageenan. J Food Eng 221:20–28. https://doi.org/10.1016/j.jfoodeng.2017.09.023

  63. Feng H, Tang J (1998) Microwave finish drying of diced apples in a spouted bed. J Food Sci 63(4):679–683. https://doi.org/10.1111/j.1365-2621.1998.tb15811.x

    Article  CAS  Google Scholar 

  64. Feng H, Tang J, Cavalieri RP, Plumb OA (2001) Heat and mass transport in microwave drying of porous materials in a spouted bed. AIChE J 47(7):1499–1512. https://doi.org/10.1002/aic.690470704

    Article  CAS  Google Scholar 

  65. Liu P, Mujumdar AS, Zhang M, Jiang H (2015) Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Dry Technol 33(1):66–71. https://doi.org/10.1080/07373937.2014.936558

  66. Yan W-Q, Zhang M, Huang L-L, Tang J, Mujumdar AS, Sun J-C (2010) Study of the optimisation of puffing characteristics of potato cubes by spouted bed drying enhanced with microwave. J Sci Food Agric 90(8):1300–1307. https://doi.org/10.1002/jsfa.3940

    Article  CAS  PubMed  Google Scholar 

  67. Feng H, Yin Y, Tang J (2012) Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling. Food Eng Rev 4(2):89–106. https://doi.org/10.1007/s12393-012-9048-x

  68. Lu Y, Zhang M, Sun J, Cheng X, Adhikari B (2014) Drying of burdock root cubes using a microwave-assisted pulsed spouted bed dryer and quality evaluation of the dried cubes. Dry Technol 32(15):1785–1790. https://doi.org/10.1080/07373937.2014.945180

  69. Lv W, Li D, Lv H, Jin X, Han Q, Su D, Wang Y (2019) Recent development of microwave fluidization technology for drying of fresh fruits and vegetables. Trends Food Sci Technol 86:59–67. https://doi.org/10.1016/j.tifs.2019.02.047

  70. Peng J, Yi J, Bi J, Chen Q, Wu X, Zhou M, Liu J, n. (2018) Freezing as pretreatment in instant controlled pressure drop (DIC) texturing of dried carrot chips: Impact of freezing temperature. LWT 89:365–373. https://doi.org/10.1016/j.lwt.2017.11.009

    Article  CAS  Google Scholar 

  71. Mothibe KJ, Wang CY, Mujumdar AS, Zhang M (2014) Microwave-assisted pulse-spouted vacuum drying of apple cubes. Dry Technol 32(15):1762–1768. https://doi.org/10.1080/07373937.2014.934830

  72. An NN, Shang N, Lv WQ, Li D, Wang LJ, Wang Y (2022) Effects of carboxymethyl cellulose/pectin coating combined with ultrasound pretreatment before drying on quality of turmeric (Curcuma longa L.). Int J Biol Macromol 202:354–365. https://doi.org/10.1016/j.ijbiomac.2022.01.021

  73. An NN, Sun WH, Li BZ, Wang Y, Shang N, Lv WQ, Li D, Wang LJ (2022) Effect of different drying techniques on drying kinetics, nutritional components, antioxidant capacity, physical properties and microstructure of edamame. Food Chem 373(Pt B):131412. https://doi.org/10.1016/j.foodchem.2021.131412

  74. Liu YY, Sun WH, Li BZ, Wang Y, Lv WQ, Shang N, Li D, Wang LJ (2022) Dehydration characteristics and evolution of physicochemical properties of Platycodon grandiflorum (Jacq. A.DC.) roots (PGR) during pulse-spouted microwave vacuum drying (PSMVD). Ind Crops Prod 177. https://doi.org/10.1016/j.indcrop.2021.114449

  75. Liu YY, Lv WQ, Lin RH, Li D, Wang LJ (2021) Drying characteristics and bioactivity evolution of Platycodon grandiflorum as affected by different microwave combined drying methods. Int J Food Eng 17(5):395–401. https://doi.org/10.1515/ijfe-2020-0207

  76. Liu YY, Wang Y, Lv WQ, Li D, Wang LJ (2021) Freeze-thaw and ultrasound pretreatment before microwave combined drying affects drying kinetics, cell structure and quality parameters of Platycodon grandiflorum. Ind Crops Prod 164. https://doi.org/10.1016/j.indcrop.2021.113391

  77. Cao X, Zhang M, Fang Z, Mujumdar AS, Jiang H, Qian H, Ai H (2017) Drying kinetics and product quality of green soybean under different microwave drying methods. Dry Technol 35(2):240–248. https://doi.org/10.1080/07373937.2016.1170698

  78. Cao X, Zhang M, Qian H, Mujumdar AS (2017) Drying based on temperature-detection-assisted control in microwave-assisted pulse-spouted vacuum drying. J Sci Food Agric 97(8):2307–2315. https://doi.org/10.1002/jsfa.8040

  79. Quan X, Zhang M, Fang Z, Liu H, Shen Q, Gao Z (2016) Low oil French fries produced by combined pre-frying and pulsed-spouted microwave vacuum drying method. Food Bioprod Process 99:109–115. https://doi.org/10.1016/j.fbp.2016.04.008

  80. Wang T, Zhang M, Fang Z, Liu Y (2016) Effect of processing parameters on the pulsed-spouted microwave vacuum drying of puffed salted duck egg white/starch products. Dry Technol 34(2):206–214. https://doi.org/10.1080/07373937.2015.1037888

  81. Huang J, Zhang M (2016) Effect of three drying methods on the drying characteristics and quality of okra. Dry Technol 34(8):900–911. https://doi.org/10.1080/07373937.2015.1086367

    Article  Google Scholar 

  82. Chen F, Zhang M, Mujumdar AS, Jiang H, Wang L (2014) Production of crispy granules of fish: a comparative study of alternate drying techniques. Dry Technol 32(12):1512–1521. https://doi.org/10.1080/07373937.2014.903410

  83. Jiang H, Zhang M, Mujumdar AS, Lim RX (2014) Comparison of drying characteristic and uniformity of banana cubes dried by pulse-spouted microwave vacuum drying, freeze drying and microwave freeze drying. J Sci Food Agric 94(9):1827–1834. https://doi.org/10.1002/jsfa.6501

  84. Qi LL, Zhang M, Mujumdar AS, Meng XY, Chen HZ (2014) Comparison of drying characteristics and quality of shiitake mushrooms (Lentinus edodes) using different drying methods. Dry Technol 32(15):1751–1761. https://doi.org/10.1080/07373937.2014.929588

  85. Huang M, Wang QG, Zhang M, Zhu QB (2014) Prediction of color and moisture content for vegetable soybean during drying using hyperspectral imaging technology. J Food Eng 128:24–30. https://doi.org/10.1016/j.jfoodeng.2013.12.008

  86. Jin G, Zhang M, Fang Z, Cui Z, Song C (2014) Numerical study on spout elevation of a gas-particle spout fluidized bed in microwave-vacuum dryer. J Food Eng 143:8–16. https://doi.org/10.1016/j.jfoodeng.2014.06.016

    Article  CAS  Google Scholar 

  87. Wang Y, Zhang M, Mujumdar AS, Mothibe KJ, Roknul Azam SM (2013) Study of drying uniformity in pulsed spouted microwave–vacuum drying of stem lettuce slices with regard to product quality. Dry Technol 31(1):91–101. https://doi.org/10.1080/07373937.2012.721431

  88. Lv W, Zhang M, Bhandari B, Yang Z, Wang Y (2017). Analysis of drying properties and vacuum-impregnated qualities of edamame (Glycine max (L.) Merrill). Dry Techno 35(9):1075–1084. https://doi.org/10.1080/07373937.2016.1231201

  89. Cao X, Zhang M, Mujumdar AS, Zhong Q (2018) Evaluation of quality properties and water mobility in vacuum microwave-dried carrot slices using pulse-spouted bed with hot air. Dry Technol 37(9):1087–1096. https://doi.org/10.1080/07373937.2018.1484758

  90. Huang L-L, Zhang M, Mujumdar AS, Lim R-X (2011) Comparison of four drying methods for re-structured mixed potato with apple chips. J Food Eng 103(3):279–284. https://doi.org/10.1016/j.jfoodeng.2010.10.025

    Article  Google Scholar 

  91. Ren GY, Zeng FL, Duan X, Liu LL, Duan B, Wang MM, Liu YH, Zhu WX (2015) The effect of glass transition temperature on the procedure of microwave–freeze drying of mushrooms (Agaricus bisporus). Dry Technol 33(2):169–175. https://doi.org/10.1080/07373937.2014.942912

  92. Wang R, Zhang M, Mujumdar AS, Sun J-C (2009) Microwave freeze–drying characteristics and sensory quality of instant vegetable soup. Dry Technol 27(9):962–968. https://doi.org/10.1080/07373930902902040

  93. Li ZY, Wang RF, Kudra T (2011) Uniformity issue in microwave drying. Dry Technol 29(6):652–660. https://doi.org/10.1080/07373937.2010.521963

  94. Wu XF, Zhang M, Bhandari B, Li Z (2019) Effect of blanching on volatile compounds and structural aspects of Cordyceps militaris dried by microwave-assisted pulse-spouted bed freeze-drying (MPSFD). Dry Technol 37(1):13–25. https://doi.org/10.1080/07373937.2018.1433685

  95. Nastaj JF, Witkiewicz K (2009) Mathematical modeling of the primary and secondary vacuum freeze drying of random solids at microwave heating. Int J Heat Mass Transf 52(21):4796–4806. https://doi.org/10.1016/j.ijheatmasstransfer.2009.06.015

    Article  CAS  Google Scholar 

  96. Liu W, Zhang M, Bhandari B, Yu D (2021) A novel combination of LF-NMR and NIR to intelligent control in pulse-spouted microwave freeze drying of blueberry. LWT 137:110455. https://doi.org/10.1016/j.lwt.2020.110455

    Article  CAS  Google Scholar 

  97. Sun YA, Zhang M, Mujumdar AS, Yu DX (2021) Pulse-spouted microwave freeze drying of raspberry: control of moisture using ANN model aided by LF-NMR. J Food Eng 292. https://doi.org/10.1016/j.jfoodeng.2020.110354

  98. Li L, Zhang M, Zhou L (2021) A promising pulse-spouted microwave freeze drying method used for Chinese yam cubes dehydration: quality, energy consumption, and uniformity. Dry Technol 39(2):148–161. https://doi.org/10.1080/07373937.2019.1624564

  99. Li L, Zhang M, Wang W (2019) A novel low-frequency microwave assisted pulse-spouted bed freeze-drying of Chinese yam. Food Bioprod Process 118:217–226. https://doi.org/10.1016/j.fbp.2019.09.012

    Article  CAS  Google Scholar 

  100. Roknul Azam SM, Zhang M, Law CL, Mujumdar AS (2019) Effects of drying methods on quality attributes of peach (Prunus persica) leather. Dry Technol 37(3):341–351. https://doi.org/10.1080/07373937.2018.1454942

  101. Jiang H, Zhang M, Mujumdar AS, Lim RX (2013) Analysis of temperature distribution and SEM images of microwave freeze drying banana chips. Food Bioprocess Technol 6(5):1144–1152. https://doi.org/10.1007/s11947-012-0801-1

  102. Li L, Zhang M, Wang W (2020) Ultrasound-assisted osmotic dehydration pretreatment before pulsed fluidized bed microwave freeze-drying (PFBMFD) of Chinese yam. Food Biosci 35:100548. https://doi.org/10.1016/j.fbio.2020.100548

    Article  CAS  Google Scholar 

  103. Shi H, Zhang M, Yi S (2020) Effects of ultrasonic impregnation pretreatment on drying characteristics of Nostoc sphaeroides Kützing. Dry Technol 38(8):1051–1061. https://doi.org/10.1080/07373937.2019.1611596

  104. Wu X-F, Zhang M, Bhandari B, Li Z (2018) Effects of microwave-assisted pulse-spouted bed freeze-drying (MPSFD) on volatile compounds and structural aspects of Cordyceps militaris. J Sci Food Agric 98(12):4634–4643. https://doi.org/10.1002/jsfa.8993

    Article  CAS  PubMed  Google Scholar 

  105. Jiang J, Zhang M, Devahastin S, Yu D (2021) Effect of ultrasound-assisted osmotic dehydration pretreatments on drying and quality characteristics of pulsed fluidized bed microwave freeze-dried strawberries. LWT 145:111300. https://doi.org/10.1016/j.lwt.2021.111300

    Article  CAS  Google Scholar 

  106. Qiu L, Zhang M, Wang Y, Liu Y (2019) Physicochemical and nutritional properties of wasabi (Eutrema yunnanense)dried by four different drying methods. Dry Technol 37(3):363–372. https://doi.org/10.1080/07373937.2018.1458318

  107. Long Y, Zhang M, Mujumdar AS, Chen J (2022) Valorization of turmeric (Curcuma longa L.) rhizome: effect of different drying methods on antioxidant capacity and physical properties. Dry Technol 40(8):1609–1619. https://doi.org/10.1080/07373937.2022.2032135

    Article  CAS  Google Scholar 

  108. Hnin KK, Zhang M, Ju R, Wang B (2021) A novel infrared pulse-spouted freeze drying on the drying kinetics, energy consumption and quality of edible rose flowers. LWT 136:110318. https://doi.org/10.1016/j.lwt.2020.110318

    Article  CAS  Google Scholar 

  109. Hnin KK, Zhang M, Wang B (2021) Impact of different FD-related drying methods on selected quality attributes and volatile compounds of rose flavored yogurt melts. Dry Technol 39(9):1205–1218. https://doi.org/10.1080/07373937.2021.1871622

  110. Kay Khaing H, Zhang M, Wang B, Devahastin S (2019) Different drying methods effect on quality attributes of restructured rose powder-yam snack chips. Food Biosci 32. https://doi.org/10.1016/j.fbio.2019.100486

  111. Qiu L, Zhang M, Ju R, Wang Y, Chitrakar B, Wang B (2020) Effect of different drying methods on the quality of restructured rose flower (Rosa rugosa) chips. Dr Technol 38(12):1632–1643. https://doi.org/10.1080/07373937.2019.1653318

  112. Wang D, Zhang M, Wang Y, Martynenko A (2018) Effect of pulsed-spouted bed microwave freeze drying on quality of apple cuboids. Food Bioprocess Technol 11(5):941–952. https://doi.org/10.1007/s11947-018-2061-1

  113. Wang Y, Zhang M, Adhikari B, Mujumdar AS, Zhou B (2013) The application of ultrasound pretreatment and pulse-spouted bed microwave freeze drying to produce desalted duck egg white powders. Dry Technol 31(15):1826–1836. https://doi.org/10.1080/07373937.2013.829851

  114. Wang Y, Zhang M, Mujumdar AS, Mothibe KJ (2013) Microwave-assisted pulse-spouted bed freeze-drying of stem lettuce slices-effect on product quality. Food Bioprocess Technol 6(12):3530–3543. https://doi.org/10.1007/s11947-012-1017-0

  115. Huang D, Yang P, Tang X, Luo L, Sunden B (2021) Application of infrared radiation in the drying of food products. Trends Food Sci Technol 110:765–777. https://doi.org/10.1016/j.tifs.2021.02.039

    Article  CAS  Google Scholar 

  116. Pawar SB, Pratape VM (2017) Fundamentals of infrared heating and its application in drying of food materials: a review. J Food Process Eng 40(1):e12308. https://doi.org/10.1111/jfpe.12308

    Article  CAS  Google Scholar 

  117. da Silva Veloso YM, de Almeida MM, de Alsina OLS, Passos ML, Mujumdar AS, Leite MS (2020) Hybrid phenomenological/ANN-PSO modelling of a deformable material in spouted bed drying process. Powder Technol 366:185–196. https://doi.org/10.1016/j.powtec.2019.12.047

    Article  CAS  Google Scholar 

  118. Dehghan-Manshadi A, Peighambardoust SH, Azadmard-Damirchi S, Niakousari M (2020) Effect of infrared-assisted spouted bed drying of flaxseed on the quality characteristics of its oil extracted by different methods. J Sci Food Agric 100(1):74–80. https://doi.org/10.1002/jsfa.9995

    Article  CAS  PubMed  Google Scholar 

  119. Li L, Chen J, Zhou S, Ren G, Duan X (2021) Quality evaluation of probiotics enriched Chinese yam snacks produced using infrared-assisted spouted bed drying. J Food Process Preserv 45(4):e15358. https://doi.org/10.1111/jfpp.15358

    Article  CAS  Google Scholar 

  120. Zhu K, Li L, Ren G, Duan X, Cao W, Qiu C (2021) Efficient production of dried whole peanut fruits based on infrared assisted spouted bed drying. 10(10):2383. Retrieved from https://www.mdpi.com/2304-8158/10/10/2383

  121. Luan C, Zhang M, Mujumdar AS, Liu Y (2021) Influence of pulse-spouted infrared freeze drying on nutrition, flavor, and application of horseradish. Dry Technol 39(9):1165–1175. https://doi.org/10.1080/07373937.2020.1810698

  122. Zhang B, Zheng A, Zhou L, Huang Z, Wang S (2017) Developing hot air-assisted radio frequency drying for in-shell walnuts. Emir J Food Agric 28(7):459–467. https://doi.org/10.9755/ejfa.2016-03-286

  123. Hou L, Zhou X, Wang S (2020) Numerical analysis of heat and mass transfer in kiwifruit slices during combined radio frequency and vacuum drying. Int J Heat Mass Transf 154:119704. https://doi.org/10.1016/j.ijheatmasstransfer.2020.119704

    Article  Google Scholar 

  124. Zhou X, Ramaswamy H, Qu Y, Xu R, Wang S (2019) Combined radio frequency-vacuum and hot air drying of kiwifruits: effect on drying uniformity, energy efficiency and product quality. Innov Food Sci Emerg Technol 56:102182. https://doi.org/10.1016/j.ifset.2019.102182

    Article  Google Scholar 

  125. Chen J, Lau SK, Chen L, Wang S, Subbiah J (2017) Modeling radio frequency heating of food moving on a conveyor belt. Food Bioprod Process 102:307–319. https://doi.org/10.1016/j.fbp.2017.01.009

    Article  Google Scholar 

  126. Wang C, Kou X, Zhou X, Li R, Wang S (2021) Effects of layer arrangement on heating uniformity and product quality after hot air assisted radio frequency drying of carrot. Innov Food Sci Emerg Technol 69:102667. https://doi.org/10.1016/j.ifset.2021.102667

    Article  CAS  Google Scholar 

  127. Mutukuri TT, Darwish A, Strongrich AD, Peroulis D, Alexeenko A, Zhou Q (2023) Radio frequency - assisted ultrasonic spray freeze drying for pharmaceutical protein solids. J Pharm Sci 112(1):40–50. https://doi.org/10.1016/j.xphs.2022.09.024

    Article  CAS  PubMed  Google Scholar 

  128. Sobieski W (2008) Numerical analysis of sensitivity of Eulerian multiphase model for a spouted-bed grain dryer. Dry Technol 26(12):1438–1456. https://doi.org/10.1080/07373930802459182

  129. Panariello L, Macrí D, Zito V, Solimene R, Salatino P, Lettieri P, Materazzi M (2022) Experimental and numerical analysis of jet penetration and gas evolution in a single-nozzle distributor fluidized bed. Chem Eng J 437:135391. https://doi.org/10.1016/j.cej.2022.135391

    Article  CAS  Google Scholar 

  130. Rahimi MR, Azizi N, Hosseini SH, Ahmadi G (2013) CFD study of hydrodynamics behavior of a vibrating fluidized bed using kinetic-frictional stress model of granular flow. Korean J Chem Eng 30(3):761–770. https://doi.org/10.1007/s11814-012-0200-3

  131. Sobieski W (2010) Selected aspects of developing a simulation model of a spouted bed grain dryer based on the Eulerian multiphase model. Dry Technol 28(12):1331–1343. https://doi.org/10.1080/07373937.2010.482686

  132. Huilin L, Yurong H, Wentie L, Ding J, Gidaspow D, Bouillard J (2004) Computer simulations of gas-solid flow in spouted beds using kinetic–frictional stress model of granular flow. Chem Eng Sci 59(4):865–878. https://doi.org/10.1016/j.ces.2003.10.018

    Article  CAS  Google Scholar 

  133. Sutkar VS, Deen NG, Patil AV, Salikov V, Antonyuk S, Heinrich S, Kuipers JAM (2016) CFD–DEM model for coupled heat and mass transfer in a spout fluidized bed with liquid injection. Chem Eng J 288:185–197. https://doi.org/10.1016/j.cej.2015.11.044

    Article  CAS  Google Scholar 

  134. Zhu HP, Zhou ZY, Yang RY, Yu AB (2007) Discrete particle simulation of particulate systems: theoretical developments. Chem Eng Sci 62(13):3378–3396. https://doi.org/10.1016/j.ces.2006.12.089

    Article  CAS  Google Scholar 

  135. Kawaguchi T, Sakamoto M, Tanaka T, Tsuji Y (2000) Quasi-three-dimensional numerical simulation of spouted beds in cylinder. Powder Technol 109(1):3–12. https://doi.org/10.1016/S0032-5910(99)00222-3

    Article  CAS  Google Scholar 

Download references

Funding

We gratefully acknowledge the financial support provided to us by the National Natural Science Foundation Project of China (31901823), which enabled us to perform this study.

Author information

Authors and Affiliations

Authors

Contributions

GL: literature survey and drafting and editing of the manuscript; BW and WL: review and editing of the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Weiqiao Lv.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Wang, B., Li, M. et al. Spouting Technology in Energy-Carrying Electromagnetic Field Drying of Agricultural Products. Food Eng Rev (2024). https://doi.org/10.1007/s12393-023-09364-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-023-09364-0

Keywords

Navigation