Skip to main content
Log in

Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk

Food Engineering Reviews Aims and scope Submit manuscript

Cite this article

Abstract

Coffee is still one of the most consumed beverages in the world. Yet, the large quantities of by-products generated during coffee production are wasted, which is a burden in the sustainability of coffee production. Coffee cherry by-products are rich in several compounds of interest that can be used in several applications, minimize the wastes, and the environmental damage from coffee production. This review article aims to discuss the relevance of coffee processing by-products, namely, the coffee cherry husk and pulp to create value-added food products. Their chemical composition, properties, and extraction methods of valuable compounds are discussed, and possible food applications showcased, thereby aiming at increasing and supporting a more environmentally friendly coffee utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Data Availability

No datasets were generated in this study. All data has been taken from cited articles.

References

  1. Torres-Valenzuela LS, Ballesteros-Gómez A, Rubio S (2020) Supramolecular solvent extraction of bioactives from coffee cherry pulp. J Food Eng 278:. https://doi.org/10.1016/j.jfoodeng.2020.109933

  2. Campos RC, Pinto VRA, Melo LF et al (2021) New sustainable perspectives for “coffee wastewater” and other by-products: a critical review. Futur Foods 4:100058. https://doi.org/10.1016/j.fufo.2021.100058

  3. Millard E (2017) Still brewing: fostering sustainable coffee production. World Dev Perspect 7–8:32–42. https://doi.org/10.1016/j.wdp.2017.11.004

    Article  Google Scholar 

  4. Heeger A, Kosińska-Cagnazzo A, Cantergiani E, Andlauer W (2017) Bioactives of coffee cherry pulp and its utilisation for production of cascara beverage. Food Chem 221:969–975. https://doi.org/10.1016/j.foodchem.2016.11.067

    Article  CAS  PubMed  Google Scholar 

  5. dos Santos ÉM, de Macedo LM, Tundisi LL et al (2021) Coffee by-products in topical formulations: a review. Trends Food Sci Technol 111:280–291

    Article  CAS  Google Scholar 

  6. Usva K, Sinkko T, Silvenius F et al (2020) Carbon and water footprint of coffee consumed in Finland—life cycle assessment. Int J Life Cycle Assess 25:1976–1990. https://doi.org/10.1007/S11367-020-01799-5/FIGURES/10

    Article  CAS  Google Scholar 

  7. Gebreeyessus GD (2022) Towards the sustainable and circular bioeconomy: insights on spent coffee grounds valorization. Sci Total Environ 833:155113. https://doi.org/10.1016/j.scitotenv.2022.155113

  8. Mirón-Mérida VA, Barragán-Huerta BE, Gutiérrez-Macías P (2021) Coffee waste: a source of valuable technologies for sustainable development. Valorization of Agri-Food Wastes and By-Products 173–198. https://doi.org/10.1016/B978-0-12-824044-1.00009-X

  9. Gemechu FG (2020) Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation. Trends Food Sci Technol 104:235–261. https://doi.org/10.1016/j.tifs.2020.08.005

    Article  CAS  Google Scholar 

  10. Janissen B, Huynh T (2018) Chemical composition and value-adding applications of coffee industry by-products: a review. Resour Conserv Recycl 128:110–117. https://doi.org/10.1016/J.RESCONREC.2017.10.001

    Article  Google Scholar 

  11. Castaldo L, Graziani G, Gaspari A et al (2018) Study of the chemical components, bioactivity and antifungal properties of the coffee husk. J Food Res 7:p43. https://doi.org/10.5539/JFR.V7N4P43

  12. Mirón-Mérida VA, Yáñez-Fernández J, Montañez-Barragán B, Barragán Huerta BE (2019) Valorization of coffee parchment waste (Coffea arabica) as a source of caffeine and phenolic compounds in antifungal gellan gum films. LWT 101:167–174. https://doi.org/10.1016/J.LWT.2018.11.013

    Article  Google Scholar 

  13. Duangjai A, Suphrom N, Wungrath J et al (2016) Comparison of antioxidant, antimicrobial activities and chemical profiles of three coffee (Coffea arabica L.) pulp aqueous extracts. Integr Med Res 5:324–331. https://doi.org/10.1016/J.IMR.2016.09.001

    Article  PubMed  PubMed Central  Google Scholar 

  14. Yashin A, Yashin Y, Wang JY, Nemzer B (2013) Antioxidant and antiradical activity of coffee. Antioxidants 2013, Vol 2, Pages 230–245 2:230–245. https://doi.org/10.3390/ANTIOX2040230

  15. 1043886 airtrade F 2023. R charity number (2023) Coffee farmers. https://www.fairtrade.org.uk/farmers-and-workers/coffee/. Accessed 22 Jun 2022

  16. Esquivel P, Jiménez VM (2012) Functional properties of coffee and coffee by-products. Food Res Int 46:488–495. https://doi.org/10.1016/J.FOODRES.2011.05.028

    Article  CAS  Google Scholar 

  17. Oliveira G, Passos CP, Ferreira P et al (2021) Coffee by-products and their suitability for developing active food packaging materials. Foods 10:683. https://doi.org/10.3390/foods10030683

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Manasa V, Padmanabhan A, Anu Appaiah KA (2021) Utilization of coffee pulp waste for rapid recovery of pectin and polyphenols for sustainable material recycle. Waste Manag 120:762–771. https://doi.org/10.1016/j.wasman.2020.10.045

    Article  CAS  PubMed  Google Scholar 

  19. Jayachandra T, Venugopal C, Anu Appaiah KA (2011) Utilization of phytotoxic agro waste— coffee cherry husk through pretreatment by the ascomycetes fungi Mycotypha for biomethanation. Energy Sustain Dev 15:104–108. https://doi.org/10.1016/J.ESD.2011.01.001

    Article  CAS  Google Scholar 

  20. Fernandes AS, Mello FVC, Thode Filho S et al (2017) Impacts of discarded coffee waste on human and environmental health. Ecotoxicol Environ Saf 141:30–36. https://doi.org/10.1016/J.ECOENV.2017.03.011

    Article  CAS  PubMed  Google Scholar 

  21. Ameca GM, Cerrilla MEO, Córdoba PZ et al (2018) Chemical composition and antioxidant capacity of coffee pulp. Ciência e Agrotecnologia 42:307–313. https://doi.org/10.1590/1413-70542018423000818

    Article  CAS  Google Scholar 

  22. Farah A (2012) Coffee constituents. Coffee Emerg Heal Eff Dis Prev 21–58. https://doi.org/10.1002/9781119949893.CH2

  23. Cheng B, Furtado A, Smyth HE, Henry RJ (2016) Influence of genotype and environment on coffee quality. Trends Food Sci Technol 57:20–30. https://doi.org/10.1016/J.TIFS.2016.09.003

    Article  CAS  Google Scholar 

  24. Bonilla-Hermosa VA, Duarte WF, Schwan RF (2014) Utilization of coffee by-products obtained from semi-washed process for production of value-added compounds. Bioresour Technol 166:142–150. https://doi.org/10.1016/J.BIORTECH.2014.05.031

    Article  CAS  PubMed  Google Scholar 

  25. Londoño-Hernandez L, Ruiz HA, Cristina Ramírez T et al (2020) Fungal detoxification of coffee pulp by solid-state fermentation. Biocatal Agric Biotechnol 23:101467. https://doi.org/10.1016/J.BCAB.2019.101467

  26. Hoseini M, Cocco S, Casucci C et al (2021) Coffee by-products derived resources. A review. Biomass and Bioenergy 148

  27. Brand D, Pandey A, Roussos S, Soccol CR (2000) Biological detoxification of coffee husk by filamentous fungi using a solid state fermentation system. Enzyme Microb Technol 27:127–133. https://doi.org/10.1016/S0141-0229(00)00186-1

    Article  CAS  PubMed  Google Scholar 

  28. Woiciechowski AL, Pandey A, Machado CMM, et al (2000) Hydrolysis of coffee husk: process optimization to recover its fermentable sugar. Coffee Biotechnol Qual 409–417. https://doi.org/10.1007/978-94-017-1068-8_38

  29. Murthy PS, Naidu MM (2010) Recovery of phenolic antioxidants and functional compounds from coffee industry by-products. Food Bioprocess Technol 897–903. https://doi.org/10.1007/s11947-010-0363-z

  30. Pleissner D, Neu AK, Mehlmann K et al (2016) Fermentative lactic acid production from coffee pulp hydrolysate using Bacillus coagulans at laboratory and pilot scales. Bioresour Technol 218:167–173. https://doi.org/10.1016/J.BIORTECH.2016.06.078

    Article  CAS  PubMed  Google Scholar 

  31. Da Silva MCS, Naozuka J, Da Luz JMR et al (2012) Enrichment of Pleurotus ostreatus mushrooms with selenium in coffee husks. Food Chem 131:558–563. https://doi.org/10.1016/J.FOODCHEM.2011.09.023

    Article  Google Scholar 

  32. Setyobudi RH, Zalizar L, Wahono SK et al (2019) Prospect of Fe non-heme on coffee flour made from solid coffee waste: mini review. IOP Conf Ser Earth Environ Sci 293:012035. https://doi.org/10.1088/1755-1315/293/1/012035

  33. Tavares KM, Lima AR, Nunes CA et al (2016) Free tocopherols as chemical markers for Arabica coffee adulteration with maize and coffee by-products. Food Control 70:318–324. https://doi.org/10.1016/J.FOODCONT.2016.06.011

    Article  CAS  Google Scholar 

  34. Delgado SR, Arbelaez AFA, Rojano B (2019) Antioxidant capacity, bioactive compounds in coffee pulp and implementation in the production of infusions. Acta Sci Pol Technol Aliment 18:235–248. https://doi.org/10.17306/J.AFS.0663

  35. Das Neves JVG, Borges MV, de Silva DM et al (2019) Total phenolic content and primary antioxidant capacity of aqueous extracts of coffee husk: chemical evaluation and beverage development. Food Sci Technol 39:348–353. https://doi.org/10.1590/FST.36018

    Article  Google Scholar 

  36. Ulloa Rojas JB, Verreth JAJ, Van Weerd JH, Huisman EA (2002) Effect of different chemical treatments on nutritional and antinutritional properties of coffee pulp. Anim Feed Sci Technol 99:195–204. https://doi.org/10.1016/S0377-8401(02)00050-0

    Article  CAS  Google Scholar 

  37. Clifford MN, Ramirez-Martinez JR (1991) Phenols and caffeine in wet-processed coffee beans and coffee pulp. Food Chem 40:35–42. https://doi.org/10.1016/0308-8146(91)90017-I

    Article  CAS  Google Scholar 

  38. Iriondo-DeHond A, Aparicio García N, Fernandez-Gomez B et al (2019) Validation of coffee by-products as novel food ingredients. Innov Food Sci Emerg Technol 51:194–204. https://doi.org/10.1016/j.ifset.2018.06.010

    Article  CAS  Google Scholar 

  39. Arya M, Rao LJM (2010) An impression of coffee carbohydrates. 47:51–67. https://doi.org/10.1080/10408390600550315

  40. Pua A, Choo WXD, Goh RMV, et al (2021) A systematic study of key odourants, non-volatile compounds, and antioxidant capacity of cascara (dried Coffea arabica pulp). LWT 138:. https://doi.org/10.1016/j.lwt.2020.110630

  41. Woldesenbet AG, Woldeyes B (2016) Chandravanshi BS (2016) Bio-ethanol production from wet coffee processing waste in Ethiopia. Springerplus 51(5):1–7. https://doi.org/10.1186/S40064-016-3600-8

    Article  Google Scholar 

  42. Rambo MKD, Schmidt FL, Ferreira MMC (2015) Analysis of the lignocellulosic components of biomass residues for biorefinery opportunities. Talanta 144:696–703. https://doi.org/10.1016/J.TALANTA.2015.06.045

    Article  CAS  PubMed  Google Scholar 

  43. Lojkova L, Vranová V, Formánek P et al (2020) Enantiomers of carbohydrates and their role in ecosystem interactions: a review. Symmetry (Basel) 12:. https://doi.org/10.3390/SYM12030470

  44. Mudgil D (2017) The interaction between insoluble and soluble fiber. Diet Fiber Prev Cardiovasc Dis Fiber’s Interact between Gut Micoflora, Sugar Metab Weight Control Cardiovasc Heal 35–59. https://doi.org/10.1016/B978-0-12-805130-6.00003-3

  45. Pimentel-Moral S, Cádiz-Gurrea M de la L, Rodríguez-Pérez C, Segura-Carretero A (2020) Recent advances in extraction technologies of phytochemicals applied for the revaluation of agri-food by-products. Funct Preserv Prop Phytochem 209–239. https://doi.org/10.1016/B978-0-12-818593-3.00007-5

  46. Haller D (2018) The gut microbiome in health and disease. Gut Microbiome Heal Dis 1–356. https://doi.org/10.1007/978-3-319-90545-7

  47. Coultate T (2016) Chapter 5: proteins. In: Food - the Chemistry of Its Components (6th Edition), 6th ed. The Royal Society of Chemistry, pp 179–236

  48. Hall RD, Trevisan F, de Vos RCH (2022) Coffee berry and green bean chemistry – opportunities for improving cup quality and crop circularity. Food Res Int 151:110825. https://doi.org/10.1016/J.FOODRES.2021.110825

  49. Lopes GR, Passos CP, Petronilho S et al (2021) Carbohydrates as targeting compounds to produce infusions resembling espresso coffee brews using quality by design approach. Food Chem 344:128613. https://doi.org/10.1016/J.FOODCHEM.2020.128613

  50. Nyman M, Haskå L (2013) Vegetable, fruit and potato fibres. Fibre-Rich Wholegrain Foods Improv Qual 193–207. https://doi.org/10.1533/9780857095787.2.193

  51. Dong W, Wang D, Hu R et al (2020) Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods. Food Res Int 136:109497. https://doi.org/10.1016/j.foodres.2020.109497

  52. Batista dos Santos Espinelli Junior J, von Brixen Montzel Duarte da Silva G, Branco Bastos R et al (2020) Evaluation of the influence of cultivation on the total magnesium concentration and infusion extractability in commercial arabica coffee. Food Chem 327:127012. https://doi.org/10.1016/J.FOODCHEM.2020.127012

  53. Farah A, Donangelo CM (2006) Phenolic compounds in coffee. Brazilian J Plant Physiol 18:23–36. https://doi.org/10.1590/S1677-04202006000100003

    Article  CAS  Google Scholar 

  54. Martínez JRR, Clifford MN (2000) Coffee pulp polyphenols: an overview. Coffee Biotechnol Qual 507–515. https://doi.org/10.1007/978-94-017-1068-8_47

  55. Mullen W, Nemzer B, Stalmach A et al (2013) Polyphenolic and hydroxycinnamate contents of whole coffee fruits from China, India, and Mexico. J Agric Food Chem 61:5298–5309. https://doi.org/10.1021/JF4003126

    Article  CAS  PubMed  Google Scholar 

  56. Sato Y, Itagaki S, Kurokawa T et al (2011) In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int J Pharm 403:136–138. https://doi.org/10.1016/J.IJPHARM.2010.09.035

    Article  CAS  PubMed  Google Scholar 

  57. Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity †. https://doi.org/10.1039/c7np00030h

  58. Clifford MN, Jaganath IB, Ludwig IA, Crozier A (2017) Chlorogenic acids and the acyl-quinic acids: discovery, biosynthesis, bioavailability and bioactivity. Nat Prod Rep 34:1391–1421. https://doi.org/10.1039/C7NP00030H

    Article  CAS  PubMed  Google Scholar 

  59. Ramirez-Martinez JR (1988) Phenolic compounds in coffee pulp: quantitative determination by HPLC. J Sci Food Agric 43:135–144. https://doi.org/10.1002/JSFA.2740430204

    Article  CAS  Google Scholar 

  60. Smeriglio A, Barreca D, Bellocco E, Trombetta D (2017) Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 174:1244. https://doi.org/10.1111/BPH.13630

    Article  CAS  PubMed  Google Scholar 

  61. Wei SD, Lin YM, Liao MM et al (2012) Characterization and antioxidative properties of condensed tannins from the mangrove plant Aegiceras corniculatum. J Appl Polym Sci 124:2463–2472. https://doi.org/10.1002/APP.35258

    Article  CAS  Google Scholar 

  62. Prata ERBA, Oliveira LS (2007) Fresh coffee husks as potential sources of anthocyanins. LWT - Food Sci Technol 40:1555–1560. https://doi.org/10.1016/j.lwt.2006.10.003

    Article  CAS  Google Scholar 

  63. Viñas M, Gruschwitz M, Schweiggert RM et al (2012) Identification of phenolic and carotenoid compounds in coffee (Coffea arabica) pulp, peels and mucilage by HPLC electrospray ionization mass spectrometry. San José, Costa Rica

  64. Gutiérrez-Sánchez G, Roussos S, Augur C (2012) Effect of caffeine concentration on biomass production, caffeine degradation, and morphology of Aspergillus tamarii. Folia Microbiol 583(58):195–200. https://doi.org/10.1007/S12223-012-0197-3

    Article  Google Scholar 

  65. Lee C (2000) Antioxidant ability of caffeine and its metabolites based on the study of oxygen radical absorbing capacity and inhibition of LDL peroxidation. Clin Chim Acta 295:141–154. https://doi.org/10.1016/S0009-8981(00)00201-1

    Article  CAS  PubMed  Google Scholar 

  66. Al-Yousef HM, Amina M (2018) Essential oil of Coffee arabica L. husks: a brilliant source of antimicrobial and antioxidant agents. Biomed Res 29:174–180. https://doi.org/10.4066/BIOMEDICALRESEARCH.29-17-867

    Article  CAS  Google Scholar 

  67. Joana Gil-Chávez G, Villa JA, Fernando Ayala-Zavala J et al (2013) Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Compr Rev Food Sci Food Saf 12:5–23. https://doi.org/10.1111/1541-4337.12005

    Article  CAS  Google Scholar 

  68. Andrade KS, Gonalvez RT, Maraschin M et al (2012) Supercritical fluid extraction from spent coffee grounds and coffee husks: antioxidant activity and effect of operational variables on extract composition. Talanta 88:544–552. https://doi.org/10.1016/J.TALANTA.2011.11.031

    Article  CAS  PubMed  Google Scholar 

  69. Corrêa CLO, Penha EM, Freitas-Silva O et al (2021) Enzymatic technology application on coffee co-products: a review. Waste and Biomass Valorization 12:3521–3540. https://doi.org/10.1007/S12649-020-01208-W/TABLES/3

    Article  Google Scholar 

  70. Souza Almeida F, Furlan Goncalves Dias F, Kawazoe Sato AC, Nobrega L, de Moura Bell JM (2021) From solvent extraction to the concurrent extraction of lipids and proteins from green coffee: an eco-friendly approach to improve process feasibility. Food Bioprod Process 129:144–156. https://doi.org/10.1016/J.FBP.2021.08.004

    Article  CAS  Google Scholar 

  71. Silva M de O, Honfoga JNB, Medeiros LL de et al (2020) Obtaining bioactive compounds from the coffee husk (Coffea arabica L.) using different extraction methods. Molecules 26:. https://doi.org/10.3390/molecules26010046

  72. Sabogal-Otálora AM, Palomo-Hernández LF, Piñeros-Castro Y (2022) Sugar production from husk coffee using combined pretreatments. Chem Eng Process - Process Intensif 176:108966. https://doi.org/10.1016/J.CEP.2022.108966

  73. Collazo-Bigliardi S, Ortega-Toro R, Chiralt Boix A (2018) Isolation and characterisation of microcrystalline cellulose and cellulose nanocrystals from coffee husk and comparative study with rice husk. Carbohydr Polym 191:205–215. https://doi.org/10.1016/J.CARBPOL.2018.03.022

    Article  CAS  PubMed  Google Scholar 

  74. Parra-Campos A, Ordóñez-Santos LE (2019) Natural pigment extraction optimization from coffee exocarp and its use as a natural dye in French meringue. Food Chem 285:59–66. https://doi.org/10.1016/J.FOODCHEM.2019.01.158

    Article  CAS  PubMed  Google Scholar 

  75. Nieter A, Kelle S, Linke D, Berger RG (2017) A p-coumaroyl esterase from Rhizoctonia solani with a pronounced chlorogenic acid esterase activity. N Biotechnol 37:153–161. https://doi.org/10.1016/J.NBT.2017.01.002

    Article  CAS  PubMed  Google Scholar 

  76. Nieter A, Kelle S, Linke D, Berger RG (2016) Feruloyl esterases from Schizophyllum commune to treat food industry side-streams. Bioresour Technol 220:38–46. https://doi.org/10.1016/J.BIORTECH.2016.08.045

    Article  CAS  PubMed  Google Scholar 

  77. Turck D, Bohn T, Castenmiller J et al (2022) Safety of dried coffee husk (cascara) from Coffea arabica L. as a novel food pursuant to regulation (EU) 2015/2283. EFSA J 20:. https://doi.org/10.2903/j.efsa.2022.7085

  78. Belmiro RH, Oliveira L de C, Tribst AAL, Cristianini M (2022) Techno-functional properties of coffee by-products are modified by dynamic high pressure: a case study of clean label ingredient in cookies. LWT 154:112601. https://doi.org/10.1016/J.LWT.2021.112601

  79. Rios MB, Iriondo-dehond A, Iriondo-dehond M, et al (2020) Physicochemical, nutritional and sensory properties. Molecules 1–16

  80. Moreno J, Cozzano S, Pérez AM et al (2019) Coffee pulp waste as a functional ingredient: effect on salty cookies quality. J Food Nutr Res Vol 7, 2019, Pages 632–638 7:632–638. https://doi.org/10.12691/JFNR-7-9-2

  81. MB Rios A Iriondo-DeHond M Iriondo-DeHond (2020) Effect of coffee cascara dietary fiber on the physicochemical, nutritional and sensory properties of a gluten-free bread formulation. Mol, et al 2020 Vol 25 Page 1358 25 1358 https://doi.org/10.3390/MOLECULES25061358

  82. Damat D, Anggriani R, Setyobudi RH, Soni P (2019) Dietary fiber and antioxidant activity of gluten-free cookies with coffee cherry flour addition. Coffee Sci - ISSN 1984–3909(14):493–500

    Article  Google Scholar 

  83. Reichembach LH, de Oliveira Petkowicz CL (2020) Extraction and characterization of a pectin from coffee (Coffea arabica L.) pulp with gelling properties. Carbohydr Polym 245:116473. https://doi.org/10.1016/J.CARBPOL.2020.116473

  84. Murthy PS, Naidu MM (2012) Production and application of xylanase from Penicillium sp. utilizing coffee by-products. Food Bioprocess Technol 5:657–664. https://doi.org/10.1007/S11947-010-0331-7

    Article  CAS  Google Scholar 

  85. Kandasamy S, Muthusamy G, Balakrishnan S et al (2016) Optimization of protease production from surface-modified coffee pulp waste and corncobs using Bacillus sp. by SSF. 3 Biotech 6:. https://doi.org/10.1007/S13205-016-0481-Z

  86. Battestin V, Macedo GA (2007) Effects of temperature, pH and additives on the activity of tannase produced by Paecilomyces variotii. Electron J Biotechnol 10:191–199. https://doi.org/10.2225/VOL10-ISSUE2-FULLTEXT-9

    Article  CAS  Google Scholar 

  87. Cerda A, Gea T, Vargas-García MC, Sánchez A (2017) Towards a competitive solid state fermentation: cellulases production from coffee husk by sequential batch operation and role of microbial diversity. Sci Total Environ 589:56–65. https://doi.org/10.1016/J.SCITOTENV.2017.02.184

    Article  CAS  PubMed  Google Scholar 

  88. Machado CMM, Oliveira BH, Pandey A, Soccol CR (2000) Coffee husk as substrate for the production of gibberellic acid by fermentation. Coffee Biotechnol Qual 401–408. https://doi.org/10.1007/978-94-017-1068-8_37

  89. Marín M, Artola A, Sánchez A (2019) Optimization of down-stream for cellulases produced under solid-state fermentation of coffee husk. Waste and Biomass Valorization 10:2761–2772. https://doi.org/10.1007/S12649-018-0327-5

    Article  Google Scholar 

  90. Murthy PS, Naidu MM (2010) Protease production by Aspergillus oryzae in solid-state fermentation utilizing coffee by-products. World Appl Sci J 8:199–205

    CAS  Google Scholar 

  91. Murthy PS, Naidu MM, Srinivas P (2009) Production of α-amylase under solid-state fermentation utilizing coffee waste. J Chem Technol Biotechnol 84:1246–1249. https://doi.org/10.1002/JCTB.2142

    Article  CAS  Google Scholar 

  92. Murthy PS, Madhava Naidu M (2011) Improvement of robusta coffee fermentation with microbial enzymes. Eur J Appl Sci 3:130–139

    Google Scholar 

  93. Shankaranand VS, Lonsane BK (1994) Coffee husk: an inexpensive substrate for production of citric acid by Aspergillus niger in a solid-state fermentation system. World J Microbiol Biotechnol 102(10):165–168. https://doi.org/10.1007/BF00360879

    Article  Google Scholar 

  94. Bhoite RN, Murthy PS (2015) Biodegradation of coffee pulp tannin by Penicillium verrucosum for production of tannase, statistical optimization and its application. Food Bioprod Process 94:727–735. https://doi.org/10.1016/J.FBP.2014.10.007

    Article  CAS  Google Scholar 

  95. Horn AF, Nielsen NS, Jacobsen C (2009) Additions of caffeic acid, ascorbyl palmitate or γ-tocopherol to fish oil-enriched energy bars affect lipid oxidation differently. Food Chem 112:412–420. https://doi.org/10.1016/j.foodchem.2008.05.094

    Article  CAS  Google Scholar 

  96. Bondam AF, Diolinda da Silveira D, Pozzada dos Santos J, Hoffmann JF (2022) Phenolic compounds from coffee by-products: extraction and application in the food and pharmaceutical industries. Trends Food Sci Technol 123:172–186. https://doi.org/10.1016/J.TIFS.2022.03.013

    Article  CAS  Google Scholar 

  97. Silva Faria WC, Oliveira MG de, Cardoso da Conceição E et al (2020) Antioxidant efficacy and in silico toxicity prediction of free and spray-dried extracts of green Arabica and Robusta coffee fruits and their application in edible oil. Food Hydrocoll 108:106004. https://doi.org/10.1016/J.FOODHYD.2020.106004

  98. M Iriondo-DeHond A Iriondo-DeHond T Herrera (2020) Sensory acceptance, appetite control and gastrointestinal tolerance of yogurts containing coffee-cascara extract and inulin. Nutr, et al 2020 Vol 12 Page 627 12 627 https://doi.org/10.3390/NU12030627

  99. Guglielmetti A, Fernandez-Gomez B, Zeppa G, Del Castillo MD (2019) Nutritional quality, potential health promoting properties and sensory perception of an improved gluten-free bread formulation containing inulin, rice protein and bioactive compounds extracted from coffee byproducts. Polish J Food Nutr Sci 69:157–166. https://doi.org/10.31883/pjfns-2019-0012

  100. Soares M, Christen P, Pandey A, Soccol CR (2000) Fruity flavour production by Ceratocystis fimbriata grown on coffee husk in solid-state fermentation. Process Biochem 35:857–861. https://doi.org/10.1016/S0032-9592(99)00144-2

    Article  CAS  Google Scholar 

  101. Mindarti S, Zalizar L, Damat et al (2020) Characterization of fiber fraction, physical and chemical properties of coffee flour (Coffea sp.) as functional foodstuff for diabetes mellitus patient. IOP Conf Ser Earth Environ Sci 462:012017. https://doi.org/10.1088/1755-1315/462/1/012017

  102. Murthy PS, Manjunatha MR, Sulochannama G, Madhava Naidu M (2012) Extraction, characterization and bioactivity of coffee anthocyanins. Eur J Biol Sci 4:13–19. https://doi.org/10.5829/idosi.ejbs.2012.4.1.6149

    Article  Google Scholar 

  103. Van Der Goot AJ, Pelgrom PJM, Berghout JAM et al (2016) Concepts for further sustainable production of foods. J Food Eng 168:42–51. https://doi.org/10.1016/j.jfoodeng.2015.07.010

    Article  Google Scholar 

  104. Klingel T, Kremer JI, Gottstein V, De RTR (2020) A review of coffee by-products including leaf. Foods 9:1–20

    Google Scholar 

  105. Home - The Coffee Cherry Company - All Rights Reserved Pectcof How the Starbucks Cascara Latte brings coffee full circle Discarded Vermouth 6 Ways the Coffee Industry Is Turning Waste Into a Resource (2019) Kaffe Buenno. https://www.kaffebueno.com/

  106. Iriondo-Dehond A, Iriondo-Dehond M, Del Castillo MD (2020) Applications of compounds from coffee processing by-products. Biomolecules 10:1–20. https://doi.org/10.3390/biom10091219

    Article  CAS  Google Scholar 

  107. Hejna A (2021) Potential applications of by-products from the coffee industry in polymer technology – current state and perspectives. Waste Manag 121:296–330. https://doi.org/10.1016/j.wasman.2020.12.018

    Article  CAS  PubMed  Google Scholar 

  108. Huang L, Mu B, Yi X et al (2016) (2016) Sustainable use of coffee husks for reinforcing polyethylene composites. J Polym Environ 261(26):48–58. https://doi.org/10.1007/S10924-016-0917-X

    Article  Google Scholar 

  109. Sethuraman S (2021) This home in Colombia is made from coffee and could revolutionize housing as we know it. https://scoop.upworthy.com/this-house-in-colombia-is-made-from-coffee

  110. Sugebo B (2022) A review on enhanced biofuel production from coffee by-products using different enhancement techniques. Mater Renew Sustain Energy 11:91–103. https://doi.org/10.1007/s40243-022-00209-0

    Article  Google Scholar 

  111. Murthy PS, Madhava Naidu M (2012) Sustainable management of coffee industry by-products and value addition - a review. Resour Conserv Recycl 66:45–58. https://doi.org/10.1016/j.resconrec.2012.06.005

    Article  Google Scholar 

  112. Cornelio-Santiago HP, Gonçalves CB, de Oliveira NA, de Oliveira AL (2017) Supercritical CO2 extraction of oil from green coffee beans: solubility, triacylglycerol composition, thermophysical properties and thermodynamic modelling. J Supercrit Fluids 128:386–394. https://doi.org/10.1016/J.SUPFLU.2017.05.030

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Ana C. Mendes thanks PROBIO project from Innovation Fund Denmark (project number 7076-00053B). Jakob L. Rukovs work on Cascara is supported by Innovation Fund Denmark (project number 0172-01373B).

Funding

ACM thanks Innovation Fund Denmark (project number 7076-00053B), and JLR thanks Innovation Fund Denmark (project number 0172-01373B).

Author information

Authors and Affiliations

Authors

Contributions

EK and ACM wrote the manuscript. EK, JLR, and ACM revised the manuscript.

Corresponding author

Correspondence to Ana C. Mendes.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Král, E., Rukov, J.L. & Mendes, A.C. Coffee Cherry on the Top: Disserting Valorization of Coffee Pulp and Husk. Food Eng Rev (2023). https://doi.org/10.1007/s12393-023-09352-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12393-023-09352-4

Keywords

Navigation