Skip to main content
Log in

Optimal Designs of Air Source Heat Pump Dryers in Agro-food Processing Industry

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Air source heat pump drying systems in the agricultural production sector were reviewed in this study in terms of optimal designs, leading to the optimization of the heat pump drying process. Several intricate designs have been used to optimize the heat pump drying process. Multiple evaporators with multiple condensers, multiple drying chambers, cascade heat pump drying systems, hybrid heat pump drying systems, different configurations of the heat pump components, and refrigerants with lower environmental impacts have been used to accomplish optimal heat pump dryer designs and thereby optimum drying conditions for agricultural products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Data available upon request.

References

  1. Ho JC, Chou SK, Mujumdar AS, Hawlader MNA, Chua KJ (2001) An optimisation framework for drying of heat-sensitive products. Appl Therm Eng 21(17):1779–1798

    Article  CAS  Google Scholar 

  2. Kudra T (2004) Energy aspects in drying. Drying Technol 22(5):917–932. https://doi.org/10.1081/DRT-120038572

    Article  Google Scholar 

  3. Strumiłło C, Jones PL, ŻZyłła R (2014) Energy aspects in drying. In: Handbook of industrial drying, 4th ed, CRC Press 

  4. Adapa PK, Schoenau GJ (2005) Re-circulating heat pump assisted continuous bed drying and energy analysis. Int J Energy Res 29(11):961–972

    Article  Google Scholar 

  5. Chua KJ, Chou SK, Yang WM (2010) Advances in heat pump systems: A review. Appl Energy 87(12):3611–3624

    Article  CAS  Google Scholar 

  6. Daghigh R, Ruslan MH, Sulaiman MY, Sopian K (2010) Review of solar assisted heat pump drying systems for agricultural and marine products. Renew Sustain Energy Rev 14(9):2564–2579

    Article  CAS  Google Scholar 

  7. Goh LJ, Othman MY, Mat S, Ruslan H, Sopian K (2011) Review of heat pump systems for drying application. Renew Sustain Energy Rev 15(9):4788–4796

    Article  CAS  Google Scholar 

  8. Patel KK, Kar A (2012) Heat pump assisted drying of agricultural produce-an overview. J Food Sci Technol 49(2):142–160. https://doi.org/10.1007/s13197-011-0334-z

    Article  PubMed  Google Scholar 

  9. Minea V (2013) Heat-pump-assisted drying: Recent technological advances and R&D needs. Drying Technol 31(10):1177–1189

    Article  Google Scholar 

  10. Minea V (2013) Drying heat pumps-Part I: System integration. Int J Refrig 36(3):643–658

    Article  Google Scholar 

  11. Minea V (2015) Overview of heat-pump - assisted drying systems, Part I: Integration, control complexity, and applicability of new innovative concepts. Drying Technol 33(5):515–526. https://doi.org/10.1080/07373937.2014.952377

    Article  Google Scholar 

  12. Minea V (2015) Overview of heat-pump - assisted drying systems, Part II: Data provided vs results reported. Drying Technol 33(5):527–540

    Article  Google Scholar 

  13. Fayose F, Huan Z (2016) Heat pump drying of fruits and vegetables: Principles and potentials for Sub-Saharan Africa. Drying Technol 2016(8):1–8. https://doi.org/10.1155/2016/9673029

    Article  CAS  Google Scholar 

  14. Budžaki S, Leko J, Jovanović K, Viszmeg J, Koški I (2019) Air source heat pump assisted drying for food applications: A mini review. Croat J Food Sci Technol 11(1):122–130

    Article  Google Scholar 

  15. Uthpala TGG, Navaratne SB, Thibbotuwawa A (2020) Review on low-temperature heat pump drying applications in food industry: Cooling with dehumidification drying method. J Food Process Eng 43(10)

    Article  Google Scholar 

  16. Colak N, Hepbasli A (2009) A review of heat-pump drying (HPD): Part 2-applications and performance assessments. Energy Convers Manage 50(9):2187–2199

    Article  Google Scholar 

  17. Colak N, Hepbasli A (2009) A review of heat pump drying: Part 1-systems, models and studies. Energy Convers Manage 50(9):2180–2186

    Article  Google Scholar 

  18. Mbaye M, Aidoun Z, Valkov V, Legault A (1998) Analysis of chemical heat pumps (CHPs): Basic concepts and numerical model description. Appl Therm Eng 18(3):131–146. https://doi.org/10.1016/S1359-4311(97)00027-6

    Article  CAS  Google Scholar 

  19. Kudra T (2012) Energy performance of convective dryers. Drying Technol 30(11):1190–1198

    Article  CAS  Google Scholar 

  20. Baker CGJ, McKenzie KA (2005) Energy consumption of industrial spray dryers. Drying Technol 23(1–2):365–386

    Article  CAS  Google Scholar 

  21. Baker CGJ (1999) Predicting the energy consumption of continuous well-mixed fluidized bed dryers from drying kinetic data. Drying Technol 17(7–8):1533–1555. https://doi.org/10.1080/07373939908917634

    Article  CAS  Google Scholar 

  22. Clements S, Jia X, Jolly P (1993) Experimental verification of a heat pump assisted continuous dryer simulation model. Int J Energy Res 17(1):19–28. https://doi.org/10.1016/s0924-2244(97)01013-3

    Article  CAS  Google Scholar 

  23. Jia X, Jolly P, Clements S (1990) Heat pump assisted continuous drying part 2: Simulation results. Int J Energy Res 14(7):771–782

    Article  CAS  Google Scholar 

  24. Mujumdar AS (2007) Handbook of industrial drying. CRC Press, New York, USA

    Google Scholar 

  25. Prasertsan S, Saen-Saby P, Ngamsritrakul P, Prateepchaikul G (1997) Heat pump dryer Part 2: Results of the simulation. Int J Energy Res 21(1):1–20

    Article  Google Scholar 

  26. Prasertsan S, Saen-Saby P, Ngamsritrakul P, Prateepchaikul G (1996) Heat pump dryer Part 1: Simulation of the models. Int J Energy Res 20(12):1067–1079

    Article  CAS  Google Scholar 

  27. Chua KJ, Chou SK, Ho JC, Hawlader MNA (2002) Heat pump drying: recent developments and future trends. Drying Technol 20(8):1579–1610. https://doi.org/10.1081/drt-120014053

    Article  Google Scholar 

  28. Schmidt EL, Klöcker K, Flacke N, Steimle F (1998) Applying the transcritical CO2 process to a drying heat pump. Int J Refrig 21(3):202–211

    Article  CAS  Google Scholar 

  29. Brundrett GW (2013) Handbook of dehumidification technology. Butterworth-Heinemann

    Google Scholar 

  30. Strumillo C, Żyłła R (1985) Optimization of heat pump dehumidifier. In: Drying’85, Springer, Berlin, Heidelberg, pp 523–524

  31. Braun JE, Bansal PK, Groll EA (2002) Energy efficiency analysis of air cycle heat pump dryers. Int J Refrig 25(7):954–965

    Article  Google Scholar 

  32. Singh A, Sarkar J, Sahoo RR (2019) Energetic and exergetic performance simulation of open-type heat pump dryer with next-generation refrigerants. Drying Technol 38(8):1011–1023

    Article  Google Scholar 

  33. Barbosa-Cánovas GV, Vega-Mercado H (1996) Dehydration of foods. Springer Science & Business Media

  34. Strømmen I, Eikevik TM, Alves-Filho O, Syverud K, Jonassen O (2002) Low temperature drying with heat pumps new generations of high quality dried products. In: Proceeding in 13th International Drying Symposium, pp 27–30

  35. Chua KJ, Mujumdar AS, Hawlader MNA, Chou SK, Ho JC (2001) Batch drying of banana pieces - effect of stepwise change in drying air temperature on drying kinetics and product colour. Food Res Int 34(8):721–731. https://doi.org/10.1016/S0963-9969(01)00094-1

    Article  Google Scholar 

  36. Dufour P (2006) Control engineering in drying technology: Review and trends. Drying Technol 24(7):889–904

    Article  Google Scholar 

  37. Ogura H, Yamamoto T, Otsubo Y, Ishida H, Kage H, Mujumdar AS (2005) A control strategy for a chemical heat pump dryer. Drying Technol 23(6):1189–1203

    Article  CAS  Google Scholar 

  38. Perera CO, Rahman MS (1997) Heat pump dehumidifier drying of food. Trends Food Sci Technol 8:75–79. https://doi.org/10.1016/s0924-2244(97)01013-3

    Article  CAS  Google Scholar 

  39. Dincer I (2017) Refrigeration systems and applications. John Wiley & Sons

    Book  Google Scholar 

  40. Alves-Filho O (2015) Heat pump dryers: Theory, design and industrial applications. CRC Press

    Book  Google Scholar 

  41. Granryd E, Ekroth P, Lundqvist I, Melinder A, Palm B, Rohlin P (2009) Refrigerating engineering. KTH Energy Technology, Stockholm

    Google Scholar 

  42. Zubair SM, Yaqub M, Khan SH (1996) Second-law-based thermodynamic analysis of two-stage and mechanical-subcooling refrigeration cycles. Int J Refrig 19(8):506–516

    Article  CAS  Google Scholar 

  43. Aikins KA, Lee SH, Choi JM (2013) Technology review of two-stage vapor compression heat pump system. Int J Air Condition Refrig 21(03):1330002

    Article  Google Scholar 

  44. Yari M (2009) Second law optimization of two-stage transcritical CO2 refrigeration cycles in the cooling mode operation. Proc Inst Mech Eng Part A: J Power Energy 223(5):551–561

    Article  Google Scholar 

  45. Cao XQ, Yang WW, Zhou F, He YL (2014) Performance analysis of different high-temperature heat pump systems for low-grade waste heat recovery. Appl Therm Eng 71(1):291–300

    Article  Google Scholar 

  46. Hu B, Xu S, Wang R, Liu H, Han L, Zhang Z, Li H (2019) Investigation on advanced heat pump systems with improved energy efficiency. Energy Convers Manage 192:161–170

    Article  Google Scholar 

  47. Invernizzi C, Angelino G (1990) General method for the evaluation of complex heat pump cycles. Int J Refrig 13(1):31–40

    Article  CAS  Google Scholar 

  48. Li W, Sheng W, Zhang Z, Yang L, Zhang C, Wei J, Li B (2018) Experiment on performance of corn drying system with combination of heat pipe and multi-stage series heat pump equipment. Trans Chin Soc Agric Eng 34(4):278–284

    Google Scholar 

  49. Chua K, Chou S (2005) A modular approach to study the performance of a two-stage heat pump system for drying. Appl Therm Eng 25(8–9):1363–1379

    Article  CAS  Google Scholar 

  50. Jung D, Radermacher R (1991) Performance simulation of a two-evaporator refrigerator-freezer charged with pure and mixed refrigerants. Int J Refrig 14(5):254–263

    Article  CAS  Google Scholar 

  51. Jeong JW, Lee YL (2015) Feasibility study of R134a/R404a cascade heat pump cycle in heat pump dryers with electrical heaters at low temperatures. J Therm Sci 24(5):463–467

    Article  CAS  Google Scholar 

  52. Chen XD, Mujumdar AS (2009) Drying technologies in food processing. John Wiley & Sons

    Google Scholar 

  53. Arpagaus C, Bless F, Schiffmann J, Bertsch SS (2016) Multi-temperature heat pumps: A literature review. Int J Refrig 69:437–465

    Article  CAS  Google Scholar 

  54. Jang SW, Lee YL (2018) Experimental study on cascade heat pump dryer with a solar collector under low temperature outdoor air environment. Therm Sci 22(2):993–1001

    Article  Google Scholar 

  55. Boahen S, Choi J (2017) Research trend of cascade heat pumps. Sci China Technol Sci 60(11):1597–1615

    Article  Google Scholar 

  56. Achariyaviriya S, Soponronnarit S, Terdyothin A (2000) Mathematical model development and simulation of heat pump fruit dryer. Drying Technol 18(1–2):479–491

    Article  Google Scholar 

  57. Fernando AJ, Amaratunga KSP, Madhushanka HTN, Jayaweera HRYS (2021) Drying performance of coffee in a batch-type heat pump dryer. Trans ASABE 64:1237–1245

    Article  Google Scholar 

  58. Liu H, Yousaf K, Chen K, Fan R, Liu J, Soomro S (2018) Design and thermal analysis of an air source heat pump dryer for food drying. Sustainability 10(9):3216

    Article  Google Scholar 

  59. Prasertsan S, Saen-Saby P (1998) Heat pump dryers: Research and development needs and opportunities. Drying Technol 16(1–2):251–270

    Article  Google Scholar 

  60. Fayose F, Zhongjie H (2016) Heat pump drying of fruits and vegetables: Principles and potential for Sub-Sahara Africa. Ann Faculty Eng Hunedoara - Int J Eng 14(1)

  61. Lee KH, Kim OJ (2009) Investigation on drying performance and energy savings of the batch-type heat pump dryer. Drying Technol 27(4):565–573

    Article  Google Scholar 

  62. Saensabai P, Prasertsan S (2003) Effects of component arrangement and ambient and drying conditions on the performance of heat pump dryers. Drying Technol 21(1):103–127

    Article  Google Scholar 

  63. Zlatanović I, Komatina M, Antonijević D (2017) Experimental investigation of the efficiency of heat pump drying system with full air recirculation. J Food Process Eng 40(2)

    Article  Google Scholar 

  64. Tunckal C, Doymaz İ (2020) Performance analysis and mathematical modelling of banana slices in a heat pump drying system. Renew Energ 150:918–923

    Article  Google Scholar 

  65. Aktaş M, Şevik S, Özdemir MB, Gönen E (2015) Performance analysis and modeling of a closed-loop heat pump dryer for bay leaves using artificial neural network. Appl Therm Eng 87:714–723

    Article  Google Scholar 

  66. Ma M, Rosentrater KA (2019) Techno-economic analysis (TEA) and life cycle assessment (LCA) of a low temperature closed-cycle grain drying system. J Agric Sci 11(6):52–62

    Google Scholar 

  67. Trirattanapikul W, Phoungchandang S (2016) Influence of different drying methods on drying characteristics, carotenoids, chemical and physical properties of Gac fruit pulp (Momordica cochinchinensis L.). Int J Food Eng 12(4):395–409

  68. Chapchaimoh K, Poomsa-ad N, Wiset L, Morris J (2016) Thermal characteristics of heat pump dryer for ginger drying. Appl Therm Eng 95:491–498

    Article  CAS  Google Scholar 

  69. Aktaş M, Taşeri L, Şevik S, Gülcü M, Seçkin GU, Dolgun EC (2019) Heat pump drying of grape pomace: Performance and product quality analysis. Drying Technol 37(14):1766–1779. https://doi.org/10.1080/07373937.2018.1536983

    Article  CAS  Google Scholar 

  70. Aktaş M, Khanlari A, Aktekeli B, Amini A (2017) Analysis of a new drying chamber for heat pump mint leaves dryer. Int J Hydrog Energy 42(28):18034–18044

    Article  Google Scholar 

  71. Yousaf K, Liu H, Gao X, Liu C, Abbas A, Nyalala I, Ahmad M, Ameen M, Chen K (2019) Influence of environmental conditions on drying efficiency and heat pump performance in closed and open loop drying of paddy. Drying Technol 33(5):1–14

    Google Scholar 

  72. Tunçkal C, Coşkun S, Doymaz İ, Ergun E (2018) Determination of sliced pineapple drying characteristics in a closed loop heat pump assisted drying system. Int J Renew Energy Dev 7(1):35

    Article  Google Scholar 

  73. Coşkun S, Doymaz İ, Tunçkal C, Erdoğan S (2016) Investigation of drying kinetics of tomato slices dried by using a closed loop heat pump dryer. Heat Mass Transf 53(6):1863–1871

    Article  Google Scholar 

  74. Prasertsan S, Saen-Saby P (1998) Heat pump drying of agricultural materials. Drying Technol 16(1–2):235–250. https://doi.org/10.1080/07373939808917401

    Article  Google Scholar 

  75. Tunçkal C (2020) Investigation of performance and drying kinetics of the closed, partially open, and open heat pump drying systems. J Food Process Eng e13566

  76. Yamankaradeniz N, Sokmen FK, Coskun S, Kaynakli O, Pastakkaya B (2016) Performance analysis of a re-circulating heat pump dryer. Therm Sci 20(1):267–277

    Article  Google Scholar 

  77. Shengchun L, Xueqiang L, Mengjie S, Hailong L, Zhili S (2018) Experimental investigation on drying performance of an existed enclosed fixed frequency air source heat pump drying system. Appl Therm Eng 130:735–744

    Article  Google Scholar 

  78. Jeyaprakash S, Frank DC, Driscoll RH (2016) Influence of heat pump drying on tomato flavor. Drying Technol 34(14):1709–1718

    Article  CAS  Google Scholar 

  79. Liu Y, Zeng Y, Guo L, Sun X (2019) Drying process and quality characteristics of contact ultrasound reinforced heat pump drying on kiwifruit slices. J Food Process Preserv 43(10)

    Article  CAS  Google Scholar 

  80. Gürel AE, Ceylan I (2014) Thermodynamic analysis of PID temperature controlled heat pump system. Case Stud Therm Eng 2:42–49

    Article  Google Scholar 

  81. Shamsuddeen MM, Cha DA, Kim SC, Kim JH (2020) Effects of decompression condition and temperature on drying rate in a hybrid heat pump decompression type dryer used for seafood drying. Drying Technol 1–15

  82. Aktaş M, Khanlari A, Amini A, Şevik S (2017) Performance analysis of heat pump and infrared-heat pump drying of grated carrot using energy-exergy methodology. Energy Convers Manage 132:327–338

    Article  Google Scholar 

  83. Yahya M, Fudholi A, Hafizh H, Sopian K (2016) Comparison of solar dryer and solar-assisted heat pump dryer for cassava. Sol Energy 136:606–613

    Article  Google Scholar 

  84. Qiu Y, Li M, Hassanien RHE, Wang Y, Luo X, Yu Q (2016) Performance and operation mode analysis of a heat recovery and thermal storage solar-assisted heat pump drying system. Sol Energy 137:225–235

    Article  Google Scholar 

  85. Gan SH, Ng MX, Tham TC, Chua LS, Aziz R, Baba MR, Chuah Abdullah L, Ong SP, Law CL (2017) Drying characteristics of Orthosiphon stamineus Benth by solar-assisted heat pump drying. Drying Technol 35(14):1755–1764

    Article  CAS  Google Scholar 

  86. Naemsai T, Jareanjit J, Thongkaew K (2019) Experimental investigation of solar-assisted heat pump dryer with heat recovery for the drying of chili peppers. J Food Process Eng 42(6)

    Article  Google Scholar 

  87. Ceylan İ, Gürel AE (2016) Solar-assisted fluidized bed dryer integrated with a heat pump for mint leaves. Appl Therm Eng 106:899–905

    Article  Google Scholar 

  88. Yahya M, Fahmi H, Fudholi A, Sopian K (2018) Performance and economic analyses on solar-assisted heat pump fluidised bed dryer integrated with biomass furnace for rice drying. Sol Energy 174:1058–1067

    Article  Google Scholar 

  89. Tham TC, Ng MX, Gan SH, Chua LS, Aziz R, Chuah LA, Hii CL, Ong SP, Chin NL, Law CL (2017) Effect of ambient conditions on drying of herbs in solar greenhouse dryer with integrated heat pump. Drying Technol 35(14):1721–1732

    Article  CAS  Google Scholar 

  90. Aguirre-Alonso RO, Huesca-Osorio CA, Salgado-Cervantes MA, Tejero-Andrade JM, Rodríguez-Jimenes GC, García-Alvarado MA (2019) State-space thermodynamic modeling of vanilla ethanolic extract spray drying with heat pump and N2. J Food Eng 243:70–81

    Article  CAS  Google Scholar 

  91. Yang Z, Yang Z, Yu F, Tao Z (2020) Ultrasound-assisted heat pump intermittent drying of adzuki bean seeds: Drying characteristics and parameter optimization. J Food Process Eng 43(10)

    Article  CAS  Google Scholar 

  92. Yang Z, Li X, Tao Z, Luo N, Yu F (2018) Ultrasound-assisted heat pump drying of pea seed. Drying Technol 36(16):1958–1969

    Article  CAS  Google Scholar 

  93. Singh A, Sarkar J, Sahoo RR (2020) Experimental performance analysis of novel indirect-expansion solar-infrared assisted heat pump dryer for agricultural products. Sol Energy 206:907–917

    Article  Google Scholar 

  94. Dai B, Liu X, Liu S, Zhang Y, Zhong D, Feng Y, Nian V, Hao Y (2020) Dual-pressure condensation high temperature heat pump system for waste heat recovery: Energetic and exergetic assessment. Energy Convers Manage 218

    Article  CAS  Google Scholar 

  95. Bantle M, Kvalsvik K, Tolstorebrov I (2016) Performance simulation of a heat pump drying system using R744 as refrigerant. In: 12th IIR Gustav Lorentzen Conference on Natural Refrigerants GL2016

  96. Singh A, Sarkar J, Sahoo RR (2019) Comparative analyses on a batch-type heat pump dryer using low GWP refrigerants. Food Bioprod Process 117:1–13. https://doi.org/10.1016/j.fbp.2019.06.009

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Fernando.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernando, A.J., Rosentrater, K.A. Optimal Designs of Air Source Heat Pump Dryers in Agro-food Processing Industry. Food Eng Rev 15, 261–275 (2023). https://doi.org/10.1007/s12393-023-09337-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09337-3

Keywords

Navigation