Skip to main content

Advertisement

Log in

Meat Alternatives: Evolution, Structuring Techniques, Trends, and Challenges

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The global meat substitute industry is estimated to be worth $8.1 billion by 2026. Prevailing health consciousness among consumers and their concern for the future environment has lifted the concept of meat alternatives from niche to the mainstream. Numerous research findings have emphasized the importance of meat alternatives or substitutes formulated from plant protein, animal cells, and insect-based sources, which emulate the nutritional composition and sensorial properties of animal meat. The current review discusses the necessity of meat substitutes, and their evolution, and bestows an outline of the ongoing research in this field. Novel protein sources such as vegetal proteins (cereal, pulses, oil seeds) and non-vegetal proteins (fungal, air protein, insect, myofibril) are reported to offer a viable alternative to animal meat. However, the functionalities of these proteins and the structuring technique influence the textural properties of the end products. Thus, the selection of a suitable technique is an important aspect in the formulation of the meat alternative. A thorough discussion of various structuring techniques for synthesizing matrixes and fibers with similar textural attributes to that of animal meat has been presented. Furthermore, limitations that confine consumers’ acceptance, the feasibility of scale-up, and the prerequisite for the regulatory framework for meat alternatives have also been pointed out. Overall, the ingredients and techniques of formulation of meat alternatives discussed in detail in this review can provide insight to the researchers and industries in formulating novel meat alternatives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

No datasets were generated in this study. All data has been taken from cited articles.

References

  1. Yada RY (2017) Proteins in food processing. Woodhead Publishing, UK

    Google Scholar 

  2. Yitbarek M (2019) Livestock and livestock product trends by 2050. IntJ Anim Res 1–20

  3. FAO (2014) FAO statistical yearbook 2014. Asia and the Pacific, Food and Agriculture

  4. van der Weele C, Feindt P, Jan van der Goot A et al (2019) Meat alternatives: an integrative comparison. Trends Food Sci Technol 88:505–512. https://doi.org/10.1016/j.tifs.2019.04.018

    Article  CAS  Google Scholar 

  5. Kahleova H, Levin S, Barnard ND (2018) Vegetarian dietary patterns and cardiovascular disease. Prog Cardiovasc Dis 61:54–61. https://doi.org/10.1016/j.pcad.2018.05.002

    Article  PubMed  Google Scholar 

  6. Bryant CJ, Szejda K, Deshpande V et al (2019) A survey of consumer perceptions of plant-based and clean meat in the USA, India, and China. Front Sustain Food Syst 3:11

    Article  Google Scholar 

  7. FAO (2011) World livestock 2011-livestock in food security. Food and Agriculture Organization of the United Nations (FAO), Rome

  8. Sadler MJ (2004) Meat alternatives — market developments and health benefits. Trends Food Sci Technol 15:250–260. https://doi.org/10.1016/j.tifs.2003.09.003

    Article  CAS  Google Scholar 

  9. Vatansever S, Tulbek MC, Riaz MN (2020) Low- and high-moisture extrusion of pulse proteins as plant-based meat ingredients: a review. Cereal Foods World 65(4). https://doi.org/10.1094/CFW-65-4-0038

  10. Mancini MC, Antonioli F (2019) Exploring consumers’ attitude towards cultured meat in Italy. Meat Sci 150:101–110

    Article  PubMed  Google Scholar 

  11. Barr SI, Rideout CA (2004) Nutritional considerations for vegetarian athletes. Nutrition 20:696–703. https://doi.org/10.1016/j.nut.2004.04.015

    Article  CAS  PubMed  Google Scholar 

  12. Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222. https://doi.org/10.1146/annurev-environ-020411-130608

    Article  Google Scholar 

  13. Cordts A, Nitzko S, Spiller A (2014) Consumer response to negative information on meat consumption in Germany. Int Food Agribus Manag Rev 17:83–106

    Google Scholar 

  14. McGuire S (2016) World cancer report 2014. Geneva, Switzerland: World Health Organization, international agency for research on cancer. WHO Press, 2015. Adv Nutr 7:418–419

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ben Y, Fu C, Hu M et al (2019) Human health risk assessment of antibiotic resistance associated with antibiotic residues in the environment: a review. Environ Res 169:483–493

    Article  CAS  PubMed  Google Scholar 

  16. Shurtleff W, Huang HT, Aoyagi A (2014) History of soybeans and soyfoods in China and Taiwan, and in Chinese cookbooks, restaurants, and Chinese work with soyfoods outside China (1024 BCE to 2014): extensively annotated bibliography and sourcebook, including Manchuria, Hong Kong and Tibet. Soyinfo Center

  17. Shurtleff W, Aoyagi A (2000) Tofu and soymilk production: a craft and technical manual. Soyinfo Center

  18. Riaz MN (2011) Texturized vegetable proteins. In: Handbook of food proteins. pp 395–418

  19. Kyriakopoulou K, Dekkers B, van der Goot AJ (2019) Plant-based meat analogues. In: Galanakis CM (ed) Sustainable meat production and processing. Elsevier, pp 103–126

    Chapter  Google Scholar 

  20. Riaz MN (2004) Texturized soy protein as an ingredient. In: Proteins in food processing. pp 517–558

  21. Riaz MN (2011) 15 - Texturized vegetable proteins. In: Phillips GO, Williams PA (eds) Handbook of food proteins. Woodhead Publishing, UK, pp 395–418

    Chapter  Google Scholar 

  22. Egbert R, Borders C (2006) Achieving success with meat analogs. Food Technol 28–34 https://faunalytics.org/wp-content/uploads/2015/05/Citation852.pdf

  23. Haque MA, Timilsena Y, Adhikari B (2016) Food protein, structure and function. Reference Module in Food Science. https://doi.org/10.1016/B978-0-08-100596-5.03057-2

    Article  Google Scholar 

  24. Sikorski Z (2018) Fennema’s food chemistry (Fifth Edition) – Edited by Srinivasan Damodaran and Kirk L. Parkin. J Food Biochem 42. https://doi.org/10.1111/jfbc.12483

  25. Joye I (2019) Protein digestibility of cereal products. Foods 8:199. https://doi.org/10.3390/foods8060199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Chiang JH, Loveday SM, Hardacre AK, Parker ME (2019) Effects of soy protein to wheat gluten ratio on the physicochemical properties of extruded meat analogues. Food Struct 19:100102. https://doi.org/10.1016/j.foostr.2018.11.002

    Article  Google Scholar 

  27. Krintiras GA, Göbel J, Bouwman WG et al (2014) On characterization of anisotropic plant protein structures. Food Funct 5:3233–3240. https://doi.org/10.1039/C4FO00537F

    Article  CAS  PubMed  Google Scholar 

  28. Chiang JH, Tay W, Ong DSM et al (2021) Physicochemical, textural and structural characteristics of wheat gluten-soy protein composited meat analogues prepared with the mechanical elongation method. Food Struct 28:100183. https://doi.org/10.1016/j.foostr.2021.100183

  29. Sun J, Chen M, Hou X et al (2021) Effect of phosphate salts on the gluten network structure and quality of wheat noodles. Food Chem 358:129895. https://doi.org/10.1016/j.foodchem.2021.129895

  30. Taylor J, Taylor J (2018) Making kafirin, the sorghum prolamin, into a viable alternative protein source. J Am Oil Chem Soc 95. https://doi.org/10.1002/aocs.12016

  31. Mattice KD, Marangoni AG (2020) Evaluating the use of zein in structuring plant-based products. Curr Res Food Sci 3:59–66. https://doi.org/10.1016/j.crfs.2020.03.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ladjal-Ettoumi Y, Boudries H, Chibane M, Romero A (2016) Pea, chickpea and lentil protein isolates: physicochemical characterization and emulsifying properties. Food Biophys 11:43–51. https://doi.org/10.1007/s11483-015-9411-6

    Article  Google Scholar 

  33. Li SS, Mejia SB, Lytvyn L et al (2017) Effect of plant protein on blood lipids: a systematic review and meta–2010;analysis of randomized controlled trials. J Am Heart Assoc 6:e006659. https://doi.org/10.1161/JAHA.117.006659

  34. Urade R (2019) Chapter 28 - Fortification of bread with soy protein to normalize serum cholesterol and triacylglycerol levels. In: Preedy VR, Watson RR (eds) Flour and breads and their fortification in health and disease prevention, 2nd edn. Academic Press, Second Edi, pp 365–373

    Chapter  Google Scholar 

  35. Zhang T, Dou W, Zhang X et al (2021) The development history and recent updates on soy protein-based meat alternatives. Trends Food Sci Technol 109:702–710

    Article  CAS  Google Scholar 

  36. Huang S, Wang LM, Sivendiran T, Bohrer BM (2018) Review: amino acid concentration of high protein food products and an overview of the current methods used to determine protein quality. Crit Rev Food Sci Nutr 58:2673–2678. https://doi.org/10.1080/10408398.2017.1396202

    Article  CAS  PubMed  Google Scholar 

  37. Schreuders FKG, Dekkers BL, Bodnár I et al (2019) Comparing structuring potential of pea and soy protein with gluten for meat analogue preparation. J Food Eng 261:32–39. https://doi.org/10.1016/j.jfoodeng.2019.04.022

    Article  CAS  Google Scholar 

  38. Nicolai T, Chassenieux C (2019) Heat-induced gelation of plant globulins. Curr Opin Food Sci 27:18–22

    Article  Google Scholar 

  39. Shevkani K, Singh N, Chen Y et al (2019) Pulse proteins: secondary structure, functionality and applications. J Food Sci Technol 56:2787–2798. https://doi.org/10.1007/s13197-019-03723-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lam ACY, Karaca AC, Tyler RT, Nickerson MT (2018) Pea protein isolates: structure, extraction, and functionality. Food Rev Intl 34:126–147. https://doi.org/10.1080/87559129.2016.1242135

    Article  CAS  Google Scholar 

  41. Beck SM, Knoerzer K, Arcot J (2017) Effect of low moisture extrusion on a pea protein isolate’s expansion, solubility, molecular weight distribution and secondary structure as determined by Fourier Transform Infrared Spectroscopy (FTIR). J Food Eng 214:166–174. https://doi.org/10.1016/j.jfoodeng.2017.06.037

    Article  CAS  Google Scholar 

  42. Sun XD, Arntfield SD (2012) Molecular forces involved in heat-induced pea protein gelation: effects of various reagents on the rheological properties of salt-extracted pea protein gels. Food Hydrocoll 28:325–332. https://doi.org/10.1016/j.foodhyd.2011.12.014

    Article  CAS  Google Scholar 

  43. Zhu H-G, Tang H-Q, Cheng Y-Q et al (2021) Potential of preparing meat analogue by functional dry and wet pea (Pisum sativum) protein isolate. LWT- Food Sci Technol 148:111702. https://doi.org/10.1016/j.lwt.2021.111702

  44. Saldanha do Carmo C, Knutsen SH, Malizia G et al (2021) Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. Future Foods 3:100014. https://doi.org/10.1016/j.fufo.2021.100014

  45. Kyriakopoulou K, Keppler JK, van der Goot AJ (2021) Functionality of ingredients and additives in plant-based meat analogues. Foods 10:600. https://doi.org/10.3390/foods10030600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Omohimi C, Philip S, Sarafadeen KO, Sanni L (2014) Effect of thermo-extrusion process parameters on selected quality attributes of meat analogue from mucuna bean seed flour. Niger Food J 32:21–30. https://doi.org/10.1016/S0189-7241(15)30092-8

    Article  Google Scholar 

  47. Wanasundara P, McIntosh T, Perera S et al (2016) Canola/rapeseed protein-functionality and nutrition. OCL 23. https://doi.org/10.1051/ocl/2016028

  48. Schwartz J-M, Solé V, Guéguen J et al (2015) Partial replacement of β-casein by napin, a rapeseed protein, as ingredient for processed foods: thermoreversible aggregation. LWT - Food Sci Technol 63:562–568. https://doi.org/10.1016/j.lwt.2015.03.084

    Article  CAS  Google Scholar 

  49. Jia W, Curubeto N, Rodríguez-Alonso E et al (2021) Rapeseed protein concentrate as a potential ingredient for meat analogues. Innov Food Sci Emerg Technol 72:102758. https://doi.org/10.1016/j.ifset.2021.102758

  50. Rong H, He H-Y, Chao D et al (2013) Effects of high pressure and heat treatments on physicochemical and gelation properties of rapeseed protein isolate. Food Bioproc Tech 7:1–10. https://doi.org/10.1007/s11947-013-1139-z

    Article  CAS  Google Scholar 

  51. Hojilla-Evangelista M, Selling G, Berhow M, Evangelista R (2014) Preparation, composition and functional properties of pennycress (Thlaspi arvense L.) seed protein isolates. Ind Crops Prod 55:173–179. https://doi.org/10.1016/j.indcrop.2014.02.016

    Article  CAS  Google Scholar 

  52. Finnigan T, Needham L, Abbott C (2017) Chapter 19 - Mycoprotein: a healthy new protein with a low environmental impact. In: Nadathur SR, Wanasundara JPD, Scanlin L (eds) Sustainable protein sources. Academic Press, San Diego, pp 305–325

    Chapter  Google Scholar 

  53. Arora B, Kamal S, Sharma VP (2017) Effect of binding agents on quality characteristics of mushroom based sausage analogue. J Food Process Preserv 41:e13134. https://doi.org/10.1111/jfpp.13134

  54. Jantzen da Silva Lucas A, Menegon de Oliveira L, da Rocha M, Prentice C (2020) Edible insects: an alternative of nutritional, functional and bioactive compounds. Food Chem 311:126022. https://doi.org/10.1016/j.foodchem.2019.126022

  55. Ordoñez-Araque R, Egas-Montenegro E (2021) Edible insects: a food alternative for the sustainable development of the planet. Int J Gastron Food Sci 23:100304. https://doi.org/10.1016/j.ijgfs.2021.100304

  56. Kouřimská L, Adámková A (2016) Nutritional and sensory quality of edible insects. NFS J 4:22–26. https://doi.org/10.1016/j.nfs.2016.07.001

  57. Rumpold BA, Schlüter OK (2013) Potential and challenges of insects as an innovative source for food and feed production. Innov Food Sci Emerg Technol 17:1–11

    Article  CAS  Google Scholar 

  58. de Castro RJS, Ohara A, dos Santos Aguilar JG, Domingues MAF (2018) Nutritional, functional and biological properties of insect proteins: processes for obtaining, consumption and future challenges. Trends Food Sci Technol 76:82–89. https://doi.org/10.1016/j.tifs.2018.04.006

  59. Durst PB, Johnson DV, Leslie RN, Shono K (2010) Forest insects as food : humans bite back. In: Forest insects as food: humans bite back. FAO, Bangkok, Thailand

  60. Agbidye FS, Ofuya TI, Akindele SO (2009) Marketability and nutritional qualities of some edible forest insects in Benue State, Nigeria. Pak J Nutr 8:917–922. https://doi.org/10.3923/pjn.2009.917.922

    Article  Google Scholar 

  61. Cho SY, Ryu GH (2021) Effects of mealworm larva composition and selected process parameters on the physicochemical properties of extruded meat analog. Food Sci Nutr 9:4408–4419. https://doi.org/10.1002/fsn3.2414

  62. Jagdale Y, Khot V (2020) Air protein and its derivative food–an evolutionary and sustainable future food. Food Agric Spect J 1:39. https://fasj.org/index.php/fasj/article/view/9/22

  63. Suman G, Nupur M, Anuradha S, Pradeep B (2015) Single cell protein production: a review. Int J Curr Microbiol App Sci 4:251–262

    Google Scholar 

  64. Hashempour F, Khosravi-Darani K, Hosseini H et al (2020) Mycoproteins as safe meat substitutes. J Clean Prod 253:119958. https://doi.org/10.1016/j.jclepro.2020.119958

  65. Zhang W, Li S, Zhang B et al (2016) Relationships between the gelatinization of starches and the textural properties of extruded texturized soybean protein-starch systems. J Food Eng 174:29–36. https://doi.org/10.1016/j.jfoodeng.2015.11.011

  66. Bi C, Li L, Zhu Y et al (2017) Effect of high speed shear on the non-linear rheological properties of SPI/ κ -carrageenan hybrid dispersion and fractal analysis. J Food Eng 218. https://doi.org/10.1016/j.jfoodeng.2017.09.007

  67. Asgar MA, Fazilah A, Huda N et al (2010) Nonmeat protein alternatives as meat extenders and meat analogs. Compr Rev Food Sci Food Saf 9:513–529. https://doi.org/10.1111/j.1541-4337.2010.00124.x

    Article  CAS  PubMed  Google Scholar 

  68. Gu B-Y, Ryu G-H (2018) Effects of barrel temperature and addition of corn starch on physical properties of extruded soy protein isolate. J Korean Soc Food Sci Nutr 47:485–491. https://doi.org/10.3746/jkfn.2018.47.4.485

    Article  CAS  Google Scholar 

  69. Majzoobi M, Talebanfar S, Eskandari MH, Farahnaky A (2017) Improving the quality of meat-free sausages using κ-carrageenan, konjac mannan and xanthan gum. Int J Food Sci Technol 52:1269–1275. https://doi.org/10.1111/ijfs.13394

  70. Sakai K, Sato Y, Okada M, Yamaguchi S (2021) Improved functional properties of meat analogs by laccase catalyzed protein and pectin crosslinks. Sci Rep 11:16631. https://doi.org/10.1038/s41598-021-96058-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Guerrero P, Beatty E, Kerry JP, de la Caba K (2012) Extrusion of soy protein with gelatin and sugars at low moisture content. J Food Eng 110:53–59. https://doi.org/10.1016/j.jfoodeng.2011.12.009

  72. Palanisamy M, Toepfl S, Aganovic K, Berger R (2017) Influence of iota carrageenan addition on the properties of soya protein meat analogues. LWT- Food Sci Technol 87C:546–552. https://doi.org/10.1016/j.lwt.2017.09.029

    Article  CAS  Google Scholar 

  73. Sha L, Xiong YL (2020) Plant protein-based alternatives of reconstructed meat: science, technology, and challenges. Trends Food Sci Technol 102:51–61. https://doi.org/10.1016/j.tifs.2020.05.022

  74. Klonoff D (2007) Replacements for trans fats–will there be an oil shortage? J Diabetes Sci Technol 1:415–422. https://doi.org/10.1177/193229680700100316

    Article  PubMed  PubMed Central  Google Scholar 

  75. Yang C, Wang Y, Vasanthan T, Chen L (2014) Impacts of pH and heating temperature on formation mechanisms and properties of thermally induced canola protein gels. Food Hydrocoll 40:225–236. https://doi.org/10.1016/j.foodhyd.2014.03.011

    Article  CAS  Google Scholar 

  76. Zhou X, Jiang S, Zhao D et al (2017) Changes in physicochemical properties and protein structure of surimi enhanced with camellia tea oil. Lwt- Food Sci Technol 84:562–571

    Article  CAS  Google Scholar 

  77. Diez-Simon C, Mumm R, Hall RD (2019) Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. Metabolomics 15:41. https://doi.org/10.1007/s11306-019-1493-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Bohrer BM (2019) An investigation of the formulation and nutritional composition of modern meat analogue products. Food Sci Hum Wellness 8:320–329. https://doi.org/10.1016/j.fshw.2019.11.006

    Article  Google Scholar 

  79. Cheftel JC, Kitagawa M, Quéguiner C (1992) New protein texturization processes by extrusion cooking at high moisture levels. Food Rev Int 8:235–275. https://doi.org/10.1080/87559129209540940

    Article  CAS  Google Scholar 

  80. Sonja D, Jasna Č-B, Gordana Ć (2009) By-products of fruits processing as a source of phytochemicals. Chem Ind Chem Eng Q 15:191–202. https://doi.org/10.2298/CICEQ0904191D

    Article  CAS  Google Scholar 

  81. Martínez-Bustos F, Viveros R, Galicia T et al (2011) Some functional characteristics of extruded blends of fiber from sugarcane bagasse, whey protein concentrate, and corn starch. Food Sci Technol 31:870–878. https://doi.org/10.1590/S0101-20612011000400007

    Article  Google Scholar 

  82. Almeida C, Wagner R, Mascarin L et al (2014) Production of low-fat emulsified cooked sausages using amorphous cellulose gel. J Food Qual 37:437–443. https://doi.org/10.1111/jfq.12104

    Article  CAS  Google Scholar 

  83. Hsieh F-H, Huff HE (2012) Meat analog compositions and process. US Patent. US20120093994A1

  84. Reig M, Lillford P, Toldrá F (2008) Structured meat products structured meat products. In: Aguilera, J.M., Lillford, P.J. (eds) Food Materials Science. Springer, New York, NY. pp 501–523. https://doi.org/10.1007/978-0-387-71947-4_21

  85. Tamura Y, Tomiya S, Takegaki J et al (2019) Apple polyphenols induce browning of white adipose tissue. J Nutr Biochem 77:108299. https://doi.org/10.1016/j.jnutbio.2019.108299

  86. Singh S, Varma A (2017) Structure, function, and estimation of leghemoglobin. pp 309–330

  87. Liao C, Li Y, Tjong SC (2020) Visible-light active titanium dioxide nanomaterials with bactericidal properties. Nanomaterials 10:124. https://doi.org/10.3390/nano10010124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Kyed MH (2009) Protein composition for meat products or meat analog products. US patent

  89. Fraser R, Shitut M, Agrawal P et al (2017) Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat. Int J Toxicol 37:241–262. https://doi.org/10.1177/1091581818766318

    Article  CAS  Google Scholar 

  90. Day L (2016) Protein: food sources. In: Encyclopedia of food and health. Elsevier, pp 530–537

  91. Boland M, Kaur L, Chian FM, Astruc T (2019) Muscle proteins. In: Encyclopedia of food chemistry. Elsevier, pp 164–179

  92. Day L (2013) Proteins from land plants – potential resources for human nutrition and food security. Trends Food Sci Technol 32:25–42. https://doi.org/10.1016/j.tifs.2013.05.005

    Article  CAS  Google Scholar 

  93. Lam ACY, Can Karaca A, Tyler RT, Nickerson MT (2018) Pea protein isolates: structure, extraction, and functionality. Food Rev Int 34:126–147. https://doi.org/10.1080/87559129.2016.1242135

    Article  CAS  Google Scholar 

  94. Aryee ANA, Boye JI (2017) Comparative study of the effects of processing on the nutritional, physicochemical and functional properties of lentil. J Food Process Preserv 41:e12824. https://doi.org/10.1111/jfpp.12824

  95. Stone AK, Karalash A, Tyler RT et al (2015) Functional attributes of pea protein isolates prepared using different extraction methods and cultivars. Food Res Int 76:31–38. https://doi.org/10.1016/j.foodres.2014.11.017

  96. Boye JI, Aksay S, Roufik S et al (2010) Comparison of the functional properties of pea, chickpea and lentil protein concentrates processed using ultrafiltration and isoelectric precipitation techniques. Food Res Int 43:537–546. https://doi.org/10.1016/j.foodres.2009.07.021

    Article  CAS  Google Scholar 

  97. Walstra P, Vliet T van (2007) Dispersed systems: basic considerations. In: Damodaran S, Parkin KL, Fennema OR (eds) Fennema’s food chemistry, 4th ed. CRC Press

  98. Zare F, Orsat V, Boye JI (2015) Functional, physical and sensory properties of pulse ingredients incorporated into orange and apple juice beverages. J Food Res 4:143. https://doi.org/10.5539/jfr.v4n5p143

    Article  CAS  Google Scholar 

  99. Yang S-C, Baldwin RE (1995) Functional properties of eggs in foods. In: Stadelman WJ, Newkirk D, Newby L (eds) Egg science and technology, 4th ed. CRC Press

  100. Kinsella JE (1981) Functional properties of proteins: possible relationships between structure and function in foams. Food Chem 7:273–288

    Article  CAS  Google Scholar 

  101. Mession J-L, Chihi ML, Sok N, Saurel R (2015) Effect of globular pea proteins fractionation on their heat-induced aggregation and acid cold-set gelation. Food Hydrocoll 46:233–243. https://doi.org/10.1016/j.foodhyd.2014.11.025

  102. Shand PJ, Ya H, Pietrasik Z, Wanasundara PKJPD (2008) Transglutaminase treatment of pea proteins: effect on physicochemical and rheological properties of heat-induced protein gels. Food Chem 107:692–699. https://doi.org/10.1016/j.foodchem.2007.08.095

  103. Chen Q-H, Li X-Y, Huang C-L et al (2021) Development and mechanical properties of soy protein isolate-chitin nanofibers complex gel: the role of high-pressure homogenization. LWT- Food Sci Technol 150:112090. https://doi.org/10.1016/j.lwt.2021.112090

  104. Pearson AM, Young RB (1989) 1 - Composition and structure. In: Pearson AM, Young RB (eds) Muscle and meat biochemistry. Academic Press, pp 1–33

    Google Scholar 

  105. Kalschne DL, Corso MP, Canan C (2020) Advances in meat processing technologies: modern approaches to meet consumer demand. Bentham Science Publishers

  106. Dekkers B, Boom R, Goot AJ (2018) Structuring processes for meat analogues. Trends Food Sci Technol 81:25–36. https://doi.org/10.1016/j.tifs.2018.08.011

    Article  CAS  Google Scholar 

  107. Maurya A, Said P (2014) Extrusion processing on physical and chemical properties of protein rich products-an overview. J Bioresour Eng Technol 2:61–67

    Google Scholar 

  108. Zhang J, Liu H, Yoon A et al (2018) Changes in conformation and quality of vegetable protein during texturization process by extrusion. Crit Rev Food Sci Nutr 59:1–52. https://doi.org/10.1080/10408398.2018.1487383

    Article  CAS  Google Scholar 

  109. Nikmaram N, Leong SY, Koubaa M et al (2017) Effect of extrusion on the anti-nutritional factors of food products: an overview. Food Control 79:62–73. https://doi.org/10.1016/j.foodcont.2017.03.027

  110. Basediya AL, Pandey S, Shrivastava S et al (2013) Effect of process and machine parameters on physical properties of extrudate during extrusion cooking of sorghum, horse gram and defatted soy flour blends. J Food Sci Technol 50. https://doi.org/10.1007/s13197-011-0319-y

  111. Tehrani M, Ehtiati A, Azghandi S (2017) Application of genetic algorithm to optimize extrusion condition for soy-based meat analogue texturization. J Food Sci Technol 54:1119–1125. https://doi.org/10.1007/s13197-017-2524-9

    Article  CAS  Google Scholar 

  112. van der Sman R, Chakraborty P, Kollmann N (2023) Scaling relations in rheology of proteins present in meat. Food Hydrocoll 135:108195. https://doi.org/10.1016/j.foodhyd.2022.108195

  113. Guo Z, Teng F, Huang Z et al (2020) Effects of material characteristics on the structural characteristics and flavor substances retention of meat analogs. Food Hydrocoll 105:105752. https://doi.org/10.1016/j.foodhyd.2020.105752

  114. Osen R, Toelstede S, Wild F et al (2014) High moisture extrusion cooking of pea protein isolates: raw material characteristics, extruder responses, and texture properties. J Food Eng 127:67–74. https://doi.org/10.1016/j.jfoodeng.2013.11.023

    Article  CAS  Google Scholar 

  115. Akdogan H (1999) High moisture food extrusion. Int J Food Sci Technol 34:195–207. https://doi.org/10.1046/j.1365-2621.1999.00256.x

    Article  CAS  Google Scholar 

  116. Alam MS, Kaur J, Khaira H, Gupta K (2016) Extrusion and extruded products: changes in quality attributes as affected by extrusion process parameters: a review. Crit Rev Food Sci Nutr 56:445–473. https://doi.org/10.1080/10408398.2013.779568

    Article  CAS  PubMed  Google Scholar 

  117. Pietsch V, Bühler J, Karbstein H, Emin MA (2019) High moisture extrusion of soy protein concentrate: influence of thermomechanical treatment on protein-protein interactions and rheological properties. J Food Eng 251. https://doi.org/10.1016/j.jfoodeng.2019.01.001

  118. Mosibo OK, Ferrentino G, Alam MR et al (2022) Extrusion cooking of protein-based products: potentials and challenges. Crit Rev Food Sci Nutr 62:2526–2547. https://doi.org/10.1080/10408398.2020.1854674

    Article  PubMed  Google Scholar 

  119. Zhang Z, Zhang L, He S et al (2022) High-moisture extrusion technology application in the processing of textured plant protein meat analogues: a review. Food Rev Int 00:1–36. https://doi.org/10.1080/87559129.2021.2024223

    Article  Google Scholar 

  120. Osen R, Schweiggert-Weisz U (2016) High-moisture extrusion: meat analogues. Reference Module in Food Science 1–7. https://doi.org/10.1016/b978-0-08-100596-5.03099-7

  121. Cornet SHV, Snel SJE, Schreuders FKG et al (2022) Thermo-mechanical processing of plant proteins using shear cell and high-moisture extrusion cooking. Crit Rev Food Sci Nutr 62:3264–3280

    Article  CAS  PubMed  Google Scholar 

  122. Chen FL, Wei YM, Zhang B, Ojokoh AO (2010) System parameters and product properties response of soybean protein extruded at wide moisture range. J Food Eng 96:208–213. https://doi.org/10.1016/j.jfoodeng.2009.07.014

    Article  CAS  Google Scholar 

  123. Brishti F, Zarei M, Muhammad SKS et al (2017) Evaluation of the functional properties of mung bean protein isolate for development of textured vegetable protein. Int Food Res J 24:1595–1605

    CAS  Google Scholar 

  124. Zahari I, Ferawati F, Helstad A et al (2020) Development of high-moisture meat analogues with hemp and soy protein using extrusion cooking. Foods 9. https://doi.org/10.3390/foods9060772

  125. Samard S, Gu B-Y, Ryu G-H (2019) Effects of extrusion types, screw speed and addition of wheat gluten on physicochemical characteristics and cooking stability of meat analogues. J Sci Food Agric 99:4922–4931. https://doi.org/10.1002/jsfa.9722

  126. Duque Estrada P, Berton-Carabin C, Schlangen M et al (2018) Protein oxidation in plant protein-based fibrous products: effects of encapsulated iron and process conditions. J Agric Food Chem 66. https://doi.org/10.1021/acs.jafc.8b02844

  127. Krintiras GA, Göbel J, van der Goot AJ, Stefanidis GD (2015) Production of structured soy-based meat analogues using simple shear and heat in a Couette cell. J Food Eng 160:34–41. https://doi.org/10.1016/j.jfoodeng.2015.02.015

    Article  CAS  Google Scholar 

  128. Krintiras GA (2016) Intensified protein structuring for more sustainable foods. Delft University of Technology, the Netherlands. https://repository.tudelft.nl/islandora/object/uuid:03d60954-4f2a-4989-8368-c9ccaf73ca4c/datastream/OBJ/download

  129. Grabowska KJ, Tekidou S, Boom RM, van der Goot A-J (2014) Shear structuring as a new method to make anisotropic structures from soy–gluten blends. Food Res Int 64:743–751. https://doi.org/10.1016/j.foodres.2014.08.010

    Article  CAS  PubMed  Google Scholar 

  130. Flambeau M, Redl A, Respondek F (2017) Proteins from wheat: sustainable production and new developments in nutrition-based and functional applications. Elsevier Inc.

  131. Liu P, Xu H, Zhao Y, Yang Y (2016) Rheological properties of soy protein isolate solution for fibers and films. Food Hydrocoll 64:149–156. https://doi.org/10.1016/j.foodhyd.2016.11.001

    Article  CAS  Google Scholar 

  132. Kutzli I, Griener D, Gibis M et al (2020) Improvement of emulsifying behavior of pea proteins as plant-based emulsifiers via Maillard-induced glycation in electrospun pea protein-maltodextrin fibers. Food Funct 11:4049–4056. https://doi.org/10.1039/D0FO00292E

    Article  CAS  PubMed  Google Scholar 

  133. Wongkanya R, Chuysinuan P, Pengsuk C, Nooeaid P (2017) Electrospinning of alginate/soy protein isolated nanofibers and their release characteristics for biomedical applications. J Sci-Adv Mater Dev 2:309–316. https://doi.org/10.1016/j.jsamd.2017.05.010

    Article  Google Scholar 

  134. Xue J, Wu T, Dai Y et al (2019) Nihms- Electrospinning and electrospun nanofibers: methods, materials, and applications. Chem Rev 119:5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Nieuwland M, Geerdink P, Brier P et al (2013) Food-grade electrospinning of proteins. Innov Food Sci Emerg Technol 20:269–275. https://doi.org/10.1016/j.ifset.2013.09.004

    Article  CAS  Google Scholar 

  136. Mattice K, Marangoni A (2019) Comparing methods to produce fibrous material from zein. Food Res Int 128:108804. https://doi.org/10.1016/j.foodres.2019.108804

  137. Dick A, Bhandari B, Prakash S (2019) 3D printing of meat. Meat Sci 153:35–44. https://doi.org/10.1016/j.meatsci.2019.03.005

  138. Ramachandraiah K (2021) Potential development of sustainable 3D-printed meat analogues: a review. Sustainability 13:938. https://doi.org/10.3390/su13020938

    Article  CAS  Google Scholar 

  139. Anandharamakrishnan C, Moses JA, Anukiruthika T (2022) 3D Printing of Foods. John Wiley & Sons. 576 Pages

  140. MacQueen LA, Alver CG, Chantre CO et al (2019) Muscle tissue engineering in fibrous gelatin: implications for meat analogs. NPJ Sci Food 3:1–12

    Article  Google Scholar 

  141. Dankar I, Haddarah A, El Omar F et al (2018) 3D printing technology: the new era for food customization and elaboration. Trends Food Sci Technol 75:231–242. https://doi.org/10.1016/j.tifs.2018.03.018

    Article  CAS  Google Scholar 

  142. Wang T, Kaur L, Furuhata Y et al (2022) 3D printing of textured soft hybrid meat analogues. Foods 11:478. https://doi.org/10.3390/foods11030478

    Article  PubMed  PubMed Central  Google Scholar 

  143. Jiang H, Zheng L, Zou Y et al (2018) 3D food printing: main components selection by considering rheological properties. Crit Rev Food Sci Nutr 59:1–13. https://doi.org/10.1080/10408398.2018.1514363

    Article  CAS  Google Scholar 

  144. Ko HJ, Wen Y, Choi JH et al (2021) Meat analog production through artificial muscle fiber insertion using coaxial nozzle-assisted three-dimensional food printing. Food Hydrocoll 120:106898. https://doi.org/10.1016/j.foodhyd.2021.106898

  145. Shahbazi M, Jäger H, Ettelaie R, Chen J (2021) Construction of 3D printed reduced-fat meat analogue by emulsion gels. Part I: Flow behavior, thixotropic feature, and network structure of soy protein-based inks. Food Hydrocoll 120:106967. https://doi.org/10.1016/j.foodhyd.2021.106967

  146. Anila, Wilson T., Anukiruthika J. A., Moses C., Anandharamakrishnan (2020) Customized Shapes for Chicken Meat–Based Products: Feasibility Study on 3D-Printed Nuggets. Food and Bioprocess Technology 13(11) 1968-1983 10.1007/s11947-020-02537-3

    Article  CAS  Google Scholar 

  147. Anila, Wilson T, Anukiruthika J.A, Moses C., Anandharamakrishnan (2023) Preparation of Fiber-enriched Chicken Meat Constructs Using 3D Printing. Journal of Culinary Science & Technology 21(1) 127-138 8 10.1080/15428052.2021.1901817

  148. Liu Z, Zhang M, Bhandari B, Wang Y (2017) 3D printing: printing precision and application in food sector. Trends Food Sci Technol 69:83–94. https://doi.org/10.1016/j.tifs.2017.08.018

  149. Murphy SV, de Coppi P, Atala A (2020) Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng 4:370–380. https://doi.org/10.1038/s41551-019-0471-7

    Article  PubMed  Google Scholar 

  150. Yoha KS, Moses, JA (2023) 3D printing approach to valorization of agri-food processing waste streams. Foods 12(1):212. https://doi.org/10.3390/foods12010212

  151. Langelaan MLP, Boonen KJM, Polak RB et al (2010) Meet the new meat: tissue engineered skeletal muscle. Trends Food Sci Technol 21:59–66

    Article  CAS  Google Scholar 

  152. Zhang G, Zhao X, Li X et al (2020) Challenges and possibilities for bio-manufacturing cultured meat. Trends Food Sci Technol 97:443–450. https://doi.org/10.1016/j.tifs.2020.01.026

  153. O’Brien FJ (2011) Biomaterials & scaffolds for tissue engineering. Mater Today 14:88–95. https://doi.org/10.1016/S1369-7021(11)70058-X

  154. Kosnik PE, Dennis RG, Vandenburgh HH (2003) Tissue engineering skeletal muscle. In: Functional tissue engineering. Springer, pp 377–392

  155. Stephens N, Di Silvio L, Dunsford I et al (2018) Bringing cultured meat to market: technical, socio-political, and regulatory challenges in cellular agriculture. Trends Food Sci Technol 78:155–166. https://doi.org/10.1016/j.tifs.2018.04.010

  156. Smith AST, Passey S, Greensmith L et al (2012) Characterization and optimization of a simple, repeatable system for the long term in vitro culture of aligned myotubes in 3D. J Cell Biochem 113:1044–1053. https://doi.org/10.1002/jcb.23437

  157. Sze JH, Brownlie JC, Love CA (2016) Biotechnological production of hyaluronic acid: a mini review. 3 Biotech 6:67. https://doi.org/10.1007/s13205-016-0379-9

  158. Zakhem E, Raghavan S, Gilmont RR, Bitar KN (2012) Chitosan-based scaffolds for the support of smooth muscle constructs in intestinal tissue engineering. Biomaterials 33:4810–4817. https://doi.org/10.1016/j.biomaterials.2012.03.051

  159. Wong HK, Lam CRI, Wen F et al (2016) Novel method to improve vascularization of tissue engineered constructs with biodegradable fibers. Biofabrication 8:15004. https://doi.org/10.1088/1758-5090/8/1/015004

    Article  CAS  Google Scholar 

  160. Sharma S, Thind SS, Kaur A (2015) In vitro meat production system: why and how? J Food Sci Technol 52:7599–7607. https://doi.org/10.1007/s13197-015-1972-3

    Article  PubMed  PubMed Central  Google Scholar 

  161. Edelman PD, McFarland DC, Mironov VA, Matheny JG (2005) Commentary: in vitro-cultured meat production. Tissue Eng 11:659–662

    Article  CAS  PubMed  Google Scholar 

  162. Dennis RG, Kosnik PE (2000) Excitability and isometric contractile properties of mammalian skeletal muscle constructs engineered in vitro. In Vitro Cell Dev Biol Anim 36:327–335

    Article  CAS  PubMed  Google Scholar 

  163. Datar I, Betti M (2010) Possibilities for an in vitro meat production system. Innov Food Sci Emerg Technol 11:13–22. https://doi.org/10.1016/j.ifset.2009.10.007

  164. Fraeye I, Kratka M, Vandenburgh H, Thorrez L (2020) Sensorial and nutritional aspects of cultured meat in comparison to traditional meat: much to be inferred. Front Nutr 7:35. https://doi.org/10.3389/fnut.2020.00035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Girija J, Kamalasundari S, Hemalatha G, Umamaheswari T (2021) Production methodologies of meat analogues: a review. J Agric Eng 58:2

    Google Scholar 

  166. Samant SK, Singhal RS, KulkarnI PR, Rege DV (1993) Protein-polysaccharide interactions: a new approach in food formulations. Int J Food Sci Technol 28:547–562. https://doi.org/10.1111/j.1365-2621.1993.tb01306.x

  167. Onwezen MC, Bouwman EP, Reinders MJ, Dagevos H (2021) A systematic review on consumer acceptance of alternative proteins: pulses, algae, insects, plant-based meat alternatives, and cultured meat. Appetite 159:105058. https://doi.org/10.1016/j.appet.2020.105058

  168. Michel F, Hartmann C, Siegrist M (2021) Consumers’ associations, perceptions and acceptance of meat and plant-based meat alternatives. Food Qual Prefer 87:104063. https://doi.org/10.1016/j.foodqual.2020.104063

  169. Hoek AC, Luning PA, Weijzen P et al (2011) Replacement of meat by meat substitutes. A survey on person- and product-related factors in consumer acceptance. Appetite 56:662–673. https://doi.org/10.1016/j.appet.2011.02.001

  170. Aimutis WR (2022) Plant-based proteins: the good, bad, and ugly. Annu Rev Food Sci Technol 13:1–17. https://doi.org/10.1146/annurev-food-092221-041723

    Article  CAS  PubMed  Google Scholar 

  171. Hartmann C, Ruby MB, Schmidt P, Siegrist M (2018) Brave, health-conscious, and environmentally friendly: positive impressions of insect food product consumers. Food Qual Prefer 68:64–71. https://doi.org/10.1016/j.foodqual.2018.02.001

  172. Markets and Markets (2021) Meat substitutes market by source (soy protein, wheat protein, pea protein, and other sources), product (tofu, tempeh, seitan, quorn, and other products), type (textured, concentrates, and isolates), form, category, and region - global forecast to 2027. https://www.marketsandmarkets.com/Market-Reports/meat-substitutes-market-979.html. Accessed 10 Dec 2021

  173. Chouhan N, Vig H, Deshmukh R (2021) Meat substitute market by product type (tofu-based, tempeh-based, TVP-based, seitan–based, quorn-based, and others), source(soy-based, wheat-based, mycoprotein, and others), and category (frozen, refrigerated, and shelf stable): global opportunity analysis and industry forecast, 2021–2027. In: Allied Market Research. https://www.alliedmarketresearch.com/meat-substitute-market#:~:text=By%20product%2C%20the%20meat%20substitute,protein%2C%20and%20other%20sources. Accessed 7 Jan 2022

  174. Foschia M, Horstmann SW, Arendt EK, Zannini E (2017) Legumes as functional ingredients in gluten-free bakery and pasta products. Annu Rev Food Sci Technol 8:75–96. https://doi.org/10.1146/annurev-food-030216-030045

    Article  CAS  PubMed  Google Scholar 

  175. Koeberl M, Sharp MF, Tian R et al (2018) Lupine allergen detecting capability and cross-reactivity of related legumes by ELISA. Food Chem 256:105–112. https://doi.org/10.1016/j.foodchem.2018.02.043

    Article  CAS  PubMed  Google Scholar 

  176. Hoffmann B, Münch S, Schwägele F et al (2017) A sensitive HPLC-MS/MS screening method for the simultaneous detection of lupine, pea, and soy proteins in meat products. Food Control 71:200–209. https://doi.org/10.1016/j.foodcont.2016.06.021

    Article  CAS  Google Scholar 

  177. Piccolo F, Vollano L, Base G et al (2016) Soybean and Lactose in meat products and preparations sampled at retail. Ital J Food Saf 5. https://doi.org/10.4081/ijfs.2016.5780

  178. Jappe U, Schwager C (2017) Relevance of lipophilic allergens in food allergy diagnosis. Curr Allergy Asthma Rep 17. https://doi.org/10.1007/s11882-017-0731-0

  179. De Punder K, Pruimboom L (2013) The dietary intake of wheat and other cereal grains and their role in inflammation. Nutrients 5:771–787. https://doi.org/10.3390/nu5030771

    Article  PubMed  PubMed Central  Google Scholar 

  180. Gier S, Verhoeckx K (2018) Insect (food) allergy and allergens. Mol Immunol 100. https://doi.org/10.1016/j.molimm.2018.03.015

  181. Pomés A, Mueller G, Randall T et al (2017) New insights into cockroach allergens. Curr Allergy Asthma Rep 17. https://doi.org/10.1007/s11882-017-0694-1

  182. Caldwell JM (2021) How safe are plant-based meat alternatives? In: Food technology magazine. https://www.ift.org/news-and-publications/food-technology-magazine/issues/2021/february/columns/food-safety-and-quality-how-safe-are-plant-based-meat-alternatives. Accessed 7 Jan 2022

  183. Petrus RR, do Amaral Sobral PJ, Tadini CC, Gonçalves CB, (2021) The NOVA classification system: a critical perspective in food science. Trends Food Sci Technol 116:603–608. https://doi.org/10.1016/j.tifs.2021.08.010

    Article  CAS  Google Scholar 

  184. Hoffman R (2021) Plant-based burgers: should some be considered ‘junk food’? In: Outlook. https://www.outlookindia.com/newsscroll/plantbased-burgers-should-some-be-considered-junk-food/2117441. Accessed 7 Jan 2022

  185. Joshi VK, Kumar S (2015) Meat Analogues: plant based alternatives to meat products-A review. Int J Food Ferment Technol 5:107–119

    Article  Google Scholar 

  186. Kumar P, Chatli MK, Mehta N et al (2015) Meat analogues: health promising meat substitutes. Crit Rev Food Sci Nutr. https://doi.org/10.1080/10408398.2014.939739

    Article  PubMed  Google Scholar 

  187. Yu S, Zeng W, Xu S, Zhou J (2022) Expediting the growth of plant-based meat alternatives by microfluidic technology: identification of the opportunities and challenges. Curr Opin Biotechnol 75:102720. https://doi.org/10.1016/j.copbio.2022.102720

  188. Logesh D, Vallikkadan MS, Leena MM et al (2021) Advances in microfluidic systems for the delivery of nutraceutical ingredients. Trends Food Sci Technol 116:501–524. https://doi.org/10.1016/j.tifs.2021.07.011

  189. Xie Y, Cai L, Huang Z et al (2022) Plant-based meat analogues weaken gastrointestinal digestive function and show less digestibility than real meat in mice. J Agric Food Chem. https://doi.org/10.1021/acs.jafc.2c04246

    Article  PubMed  Google Scholar 

  190. Choi JS, Chin KB (2021) Structural changes of meat protein of chicken sausages with various levels of salt and phosphate and their effects on in vitro digestion. Int J Food Sci Technol 56:5250–5258. https://doi.org/10.1111/ijfs.15181

  191. Santo RE, Kim BF, Goldman SE et al (2020) Considering plant-based meat substitutes and cell-based meats: a public health and food systems perspective. Front Sustain Food Syst 4:134

    Article  Google Scholar 

  192. Rubio NR, Xiang N, Kaplan DL (2020) Plant-based and cell-based approaches to meat production. Nat Commun 11:6276. https://doi.org/10.1038/s41467-020-20061-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Garfield L (2018) There’s a growing battle between fake meat startups and Big Beef, and neither side is backing down. Insider. https://www.businessinsider.com/beef-companies-file-petition-against-lab-grown-meat-startups-2018-2?r=US&IR=T&utm_source=reddit.com

  194. Vatansever S, Tulbek MC, Riaz MN (2020) Low- and high-moisture extrusion of pulse proteins as plant-based meat ingredients: a review. Cereal Foods World 65. https://doi.org/10.1094/CFW-65-4-0038

  195. Wi G, Bae J, Kim H et al (2020) Evaluation of the physicochemical and structural properties and the sensory characteristics of meat analogues prepared with various non-animal based liquid additives. Foods 9:461. https://doi.org/10.3390/foods9040461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Schmid EM, Farahnaky A, Adhikari B, Torley PJ (2022) High moisture extrusion cooking of meat analogs: a review of mechanisms of protein texturization. Compr Rev Food Sci Food Saf 1–37. https://doi.org/10.1111/1541-4337.13030

  197. Jairath G, Mal G, Gopinath D, Singh B (2021) A holistic approach to access the viability of cultured meat: a review. Trends Food Sci Technol 110:700–710. https://doi.org/10.1016/j.tifs.2021.02.024

  198. Novameat (2021) Plant-based meat, reinvented. https://www.novameat.com/. Accessed 10 Jan 2022

  199. Redefine meat (2021) https://www.redefinemeat.com/. Accessed 10 Jan 2022

  200. The Flexitarian (2019) IMA Vegan ‘salmon’ sushi. https://theflexitarian.co.uk/news/ima-vegan-salmon-sushi/. Accessed 10 Jan 2022

  201. Impossible Foods (2022) https://impossiblefoods.com/. Accessed 10 Jan 2022

  202. Beyond Meat (2022) https://www.beyondmeat.com/en-US/. Accessed 10 Jan 2022

  203. Sunshine Burger (2022) https://www.sunshineburger.com/. Accessed 10 Jan 2022

  204. Berry D (2017) Nutrition Notes: Clean meat. Sosland Publishing. https://www.meatpoultry.com/articles/16451-nutrition-notes-clean-meat. Accessed 10 Jan 2022

  205. Prime Roots (2022) Plant-based hickory bacon. https://www.primeroots.com/products/plant-based-hickory-bacon. Accessed 10 Jan 2022

  206. Morning Star Farms (2021) https://www.morningstarfarms.com/en_US/home.html. Accessed 10 Jan 2022

  207. Gardein (2021) https://gardein.com/. Accessed 10 Jan 2022

  208. Light life (2020) https://lightlife.com/. Accessed 10 Jan 2022

  209. BOCA (2019) Original Chik’n Veggie Patties. https://www.bocaburger.com/products/00759283600079. Accessed 10 Jan 2022

  210. Nature's Fynd (2022) Meatless Breakfast Patties. https://www.naturesfynd.com/products/meatless-breakfast-sausage. Accessed 10 Jan 2022

  211. Eat Meati (2022) https://meati.com/. Accessed 10 Jan 2022

  212. Green Rebel (2022) https://greenrebelfoods.com/. Accessed 10 Jan 2022

  213. Aleph Farms (2021) https://www.aleph-farms.com/. Accessed 10 Jan 2022

  214. Schouten (2022) Vegan hamburger (80 g). https://www.schoutenfood.com/vegetarian-products/vegan-hamburger/. Accessed 10 Jan 2022

  215. Sophie's Kitchen (2021) Plant-based crab cakes. https://www.sophieskitchen.com/crab-cakes. Accessed 10 Jan 2022

  216. Sophie's Kitchen (2021) Plant-based shrimp. https://www.sophieskitchen.com/shrimp. Accessed 10 Jan 2022

  217. Nestle Professional (2022) Garden gourmet® vegan nuggets. https://www.nestleprofessional.co.uk/garden-gourmet/products/vegan-nuggets. Accessed 10 Jan 2022

  218. Nestle Professional (2022) Garden gourmet® vegan sensational burger. https://www.nestleprofessional.co.uk/garden-gourmet/products/sensational-burger. Accessed 10 Jan 2022

  219. The Vegetarian Butcher (2022) https://www.thevegetarianbutcher.co.uk/. Accessed 10 Jan 2022

  220. Linda McCartney’s (2022) https://www.lindamccartneyfoods.co.uk/. Accessed 10 Jan 2022

  221. Quorn (2022). QUORN meatless chiqin nuggets. https://www.quorn.us/products/quorn-meatless-chicken-nuggets. Accessed 10 Jan 2022

  222. Tofurky (2021) Plant-based ham roast with amber ale glaze. https://tofurky.com/what-we-make/roasts/ham-roast/#flavormenu. Accessed 10 Jan 2022

Download references

Acknowledgements

Dutta acknowledges the Department of Science and Technology (DST), Government of India for providing INSPIRE Faculty fellowship (INSPIRE Faculty program, IFA-17/ENG-238).

Author information

Authors and Affiliations

Authors

Contributions

M.S. Vallikkadan, Logesh D., and S. Dutta: literature survey, drafting and editing of the manuscript; Sivakamasundari SK: review and editing of the manuscript; J. A. Moses: review and editing of the manuscript and supervision; C. Anandharamakrishnan: concept development, review, and editing.

Corresponding author

Correspondence to C. Anandharamakrishnan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vallikkadan, M.S., Dhanapal, L., Dutta, S. et al. Meat Alternatives: Evolution, Structuring Techniques, Trends, and Challenges. Food Eng Rev 15, 329–359 (2023). https://doi.org/10.1007/s12393-023-09332-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09332-8

Keywords

Navigation