Skip to main content
Log in

Markers and Mechanisms of Deterioration Reactions in Dairy Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Dairy products, such as liquid, powdered, and fermented milk, provide an excellent source of nutrition and constitute part of a well-balanced diet. However, measures to prevent the deterioration of the quality of dairy products during thermal treatment and storage are lacking at present. Deterioration of milk quality is primarily related to reactions of oxidation, hydrolysis, and Maillard reaction. While multiple studies have focused on the factors influencing the deterioration of dairy products during processing and storage, systematic analysis of the underlying mechanisms is essential to improve our overall understanding of the process. This report presents a structured overview of the mechanisms and markers associated with deterioration reactions in marketed dairy products. The overall impacts of deterioration reactions on the quality and flavor of dairy products are additionally reviewed. Furthermore, potential markers of deterioration reactions and future development directions of the dairy industry are discussed, with a view to providing a reference for the quality and safety guarantee of dairy products.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The statistics that assist this review are handy from the authors upon practical request.

References

  1. Beermann C, Hartung J (2013) Physiological properties of milk ingredients released by fermentation. Food Funct 4(2):185–199. https://doi.org/10.1039/c2fo30153a

    Article  CAS  PubMed  Google Scholar 

  2. Clarke HJ, McCarthy WP, O'Sullivan MG, Kerry JP, Kilcawley KN (2021) Oxidative quality of dairy powders: influencing factors and analysis. Foods 10(10). https://doi.org/10.3390/foods10102315

  3. Francisquini JD, Martins E, Silva PH, Schuck P, Perrone ÍT, Carvalho AF (2017) Maillard reaction: review. J Candido Tostes Dairy Inst 72(1):48–57. https://doi.org/10.14295/2238-6416.v72i1.541

  4. Garcia-Martinez MC, Fontecha J, Velasco J, Holgado F, Marquez-Ruiz G (2018) Occurrence of lipid oxidation compounds in commercialised functional dairy products. Int Dairy J 86:27–35. https://doi.org/10.1016/j.idairyj.2018.06.020

    Article  CAS  Google Scholar 

  5. Meyer B, Baum F, Vollmer G, Pischetsrieder M (2012) Distribution of protein oxidation products in the proteome of thermally processed milk. J Agric Food Chem 60(29):7306–7311. https://doi.org/10.1021/jf301666r

    Article  CAS  PubMed  Google Scholar 

  6. Yuan L, Sadiq FA, Burmolle M, Wang N, He GQ (2019) Insights into psychrotrophic bacteria in raw milk: a review. J Food Prot 82(7):1148–1159. https://doi.org/10.4315/0362-028X.JFP-19-032

    Article  CAS  PubMed  Google Scholar 

  7. Foroutan A, Guo AC, Vazquez-Fresno R, Lipfert M, Zhang L, Zheng J, Badran H, Budinski Z, Mandal R, Ametaj BN, Wishart DS (2019) Chemical composition of commercial cow’s milk. J Agric Food Chem 67(17):4897–4914. https://doi.org/10.1021/acs.jafc.9b00204

    Article  CAS  PubMed  Google Scholar 

  8. Warensjo E, Nolan D, Tapsell L (2010) Chapter 1 - Dairy food consumption and obesity-related chronic disease. In: Taylor SL (ed) Advances in Food and Nutrition Research. Academic Press p 1–41

  9. Aalaei K, Rayner M, Sjoholm I (2019) Chemical methods and techniques to monitor early Maillard reaction in milk products; a review. Crit Rev Food Sci Nutr 59(12):1829–1839. https://doi.org/10.1080/10408398.2018.1431202

    Article  CAS  PubMed  Google Scholar 

  10. Delatour T, Hegele J, Parisod V, Richoz J, Maurer S, Steven M, Buetler T (2009) Analysis of advanced glycation endproducts in dairy products by isotope dilution liquid chromatography-electrospray tandem mass spectrometry. the particular case of carboxymethyllysine. J Chromatogr A 1216(12):2371–81. https://doi.org/10.1016/j.chroma.2009.01.011

  11. Bucky AR, Hayes PR, Robinson DS (1988) Enhanced inactivation of bacterial lipases and proteinases in whole milk by a modified ultra high temperature treatment. 55:373–380. https://doi.org/10.1017/s0022029900028636

  12. Stoeckel M, Lidolt M, Stressler T, Fischer L, Wenning M, Hinrichs J (2016) Heat stability of indigenous milk plasmin and proteases from Pseudomonas: a challenge in the production of ultra-high temperature milk products. Int Dairy J 61:250–261. https://doi.org/10.1016/j.idairyj.2016.06.009

  13. Stoeckel M, Lidolt M, Achberger V, Glück C, Krewinkel M, Stressler T, von Neubeck M, Wenning M, Scherer S, Fischer L, Hinrichs J (2016) Growth of Pseudomonas weihenstephanensis, Pseudomonas proteolytica and Pseudomonas sp. in raw milk: impact of residual heat-stable enzyme activity on stability of UHT milk during shelf-life. Int Dairy J 59:20–28. https://doi.org/10.1016/j.idairyj.2016.02.045

  14. Pereira FA, Luiz LL, Bruzaroski SR, Poli-Frederico RC, Fagnani R, Santana EH (2019) The effect of cold storage, time and the population of Pseudomonas species on milk lipolysis. Grasas Aceites 70(No.2):e300 https://doi.org/10.3989/gya.0583181

  15. Glantz M, Rosenlöw M, Lindmark-Månsson H, Johansen LB, Hartmann J, Höjer A, Waak E, Löfgren R, Saeden KH, Svensson C, Svensson B (2020) Impact of protease and lipase activities on quality of Swedish raw milk. Int Dairy J 107:104724. https://doi.org/10.1016/j.idairyj.2020.104724

  16. Zhang CY, Bijl E, Muis KE, Hettinga K (2020) Stability of fat globules in UHT milk during proteolysis by the AprX protease from Pseudomonas fluorescens and by plasmin. J Dairy Sci 103(1):179–190. https://doi.org/10.3168/jds.2019-17150

    Article  CAS  PubMed  Google Scholar 

  17. Hidalgo FJ, Zamora R (2005) Interplay between the maillard reaction and lipid peroxidation in biochemical systems. Ann N Y Acad Sci 1043:319–326. https://doi.org/10.1196/annals.1333.039

    Article  CAS  PubMed  Google Scholar 

  18. Thomsen MK, Lauridsen L, Skibsted LH, Risbo J (2005) Temperature effect on lactose crystallization, maillard reactions, and lipid oxidation in whole milk powder. J Agric Food Chem 53(18):7082–7090. https://doi.org/10.1021/jf050862p

    Article  CAS  PubMed  Google Scholar 

  19. Clarke HJ, O’Sullivan MG, Kerry JP, Kilcawley KN (2020) Correlating volatile lipid oxidation compounds with consumer sensory data in dairy based powders during storage. Antioxidants 9(4). https://doi.org/10.3390/antiox9040338

  20. Wang CY, Wu SC, Ng CC, Shyu YT (2010) Effect of Lactobacillus-fermented adlay-based milk on lipid metabolism of hamsters fed cholesterol-enriched diet. Food Res Int 43(3):819–824. https://doi.org/10.1016/j.foodres.2009.11.020

  21. Yilmaz I, Dolar ME, Ozpinar H (2019) Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: a randomized controlled trial. Turk J Gastroenterol 30(3):242–253. https://doi.org/10.5152/tjg.2018.18227

    Article  PubMed  Google Scholar 

  22. Zhang K, Dai H, Liang W, Zhang L, Deng Z (2019) Fermented dairy foods intake and risk of cancer. Int J Cancer 144(9):2099–2108. https://doi.org/10.1002/ijc.31959

    Article  CAS  PubMed  Google Scholar 

  23. Cais-Sokolinska D, Walkowiak-Tomczak D (2021) Consumer-perception, nutritional, and functional studies of a yogurt with restructured elderberry juice. J Dairy Sci 104(2):1318–1335. https://doi.org/10.3168/jds.2020-18770

    Article  CAS  PubMed  Google Scholar 

  24. Solanki D, Hati S (2018) Fermented camel milk: a review on its bio-functional properties. Emirates J Food Agric 30(4):268–74. https://doi.org/10.9755/ejfa.2018.v30.i4.1661

  25. Mirzaei H, Sharafati Chaleshtori R (2021) Role of fermented goat milk as a nutritional product to improve anemia. J Food Biochem e13969. https://doi.org/10.1111/jfbc.13969

  26. Deeth HC, Lewis MJ (2017) Index. High Temperature Processing of Milk and Milk Products. p 541–556. https://doi.org/10.1002/9781118460467.index

  27. Unger N, Holzgrabe U (2018) Stability and assessment of amino acids in parenteral nutrition solutions. J Pharm Biomed Anal 147:125–139. https://doi.org/10.1016/j.jpba.2017.07.064

    Article  CAS  PubMed  Google Scholar 

  28. Mehta BM, Deeth HC (2016) Blocked lysine in dairy products: formation, occurrence, analysis, and nutritional implications. Compr Rev Food Sci Food Saf 15(1):206–218. https://doi.org/10.1111/1541-4337.12178

    Article  CAS  PubMed  Google Scholar 

  29. Yilmaz Y, Toledo R (2005) Antioxidant activity of water-soluble Maillard reaction products. Food Chem 93(2):273–278. https://doi.org/10.1016/j.foodchem.2004.09.043

  30. Brands CM, Alink GM, van Boekel MA, Jongen WM (2000) Mutagenicity of heated sugar-casein systems: effect of the Maillard reaction. J Agric Food Chem 48(6):2271–2275. https://doi.org/10.1021/jf9907586

    Article  CAS  PubMed  Google Scholar 

  31. Poulsen MW, Hedegaard RV, Andersen JM, de Courten B, Bugel S, Nielsen J, Skibsted LH, Dragsted LO (2013) Advanced glycation endproducts in food and their effects on health. Food Chem Toxicol 60:10–37. https://doi.org/10.1016/j.fct.2013.06.052

    Article  CAS  PubMed  Google Scholar 

  32. Cho Y-H, Hong S-M, Kim C-H (2012) Determination of Lactulose and furosine formation in heated milk as a milk quality indicator. Food Sci Anim Resour 32(5):540–544. https://doi.org/10.5851/KOSFA.2012.32.5.540

    Article  Google Scholar 

  33. Contreras-Calderon J, Guerra-Hernandez E, Garcia-Villanova B (2009) Utility of some indicators related to the Maillard browning reaction during processing of infant formulas. Food Chem 114(4):1265–1270. https://doi.org/10.1016/j.foodchem.2008.11.004

    Article  CAS  Google Scholar 

  34. Morgan F, Nouzille CA, Baechler R, Vuataz G, Raemy AJL (2005) Lactose crystallisation and early Maillard reaction in skim milk powder and whey protein concentrates. 85:315–323

    CAS  Google Scholar 

  35. Contreras-Calderón J, Guerra-Hernández E, García-Villanova B (2009) Utility of some indicators related to the Maillard browning reaction during processing of infant formulas. Food Chem 114(4):1265–1270. https://doi.org/10.1016/j.foodchem.2008.11.004

  36. Lan XY, Wang JQ, Bu DP, Shen JS, Zheng N, Sun P (2010) Effects of heating temperatures and addition of reconstituted milk on the heat indicators in milk. J Food Sci 75(8):C653–C658. https://doi.org/10.1111/j.1750-3841.2010.01802.x

  37. Liu H, Huang R, Zeng G, Xu Z, Sun Y, Lei H, Sheng Y, Wang H, Xu B, Wei X (2020) Discrimination of reconstituted milk in China market using the content ratio of lactulose to furosine as a marker determined by LC-MS/MS. LWT 117:108648. https://doi.org/10.1016/j.lwt.2019.108648

  38. Brands CM, van Boekel MA (2001) Reactions of monosaccharides during heating of sugar-casein systems: building of a reaction network model. J Agric Food Chem 49(10):4667–4675. https://doi.org/10.1021/jf001430b

    Article  CAS  PubMed  Google Scholar 

  39. Morales FJ, Jiménez-Pérez S (1998) Study of hydroxymethylfurfural formation from acid degradation of the amadori product in milk-resembling systems. J Agric Food Chem 46(10):3885–3890. https://doi.org/10.1021/jf980299t

    Article  CAS  Google Scholar 

  40. Chavez-Servin JL, Castellote AI, Lopez-Sabater MC (2005) Analysis of potential and free furfural compounds in milk-based formulae by high-performance liquid chromatography. Evolution during storage J Chromatogr A 1076(1–2):133–140. https://doi.org/10.1016/j.chroma.2005.04.046

    Article  CAS  PubMed  Google Scholar 

  41. Chávez-Servín JL, Castellote AI, López-Sabater MC (2006) Evolution of potential and free furfural compounds in milk-based infant formula during storage. Food Res Int 39(5):536–543. https://doi.org/10.1016/j.foodres.2005.10.012

  42. Janzowski C, Glaab V, Samimi E, Schlatter J, Eisenbrand G (2000) 5-Hydroxymethylfurfural: assessment of mutagenicity, DNA-damaging potential and reactivity towards cellular glutathione. Food Chem Toxicol 38(9):801–809. https://doi.org/10.1016/S0278-6915(00)00070-3

  43. Ferrer E, Alegrıa A, Courtois G, Farré R (2000) High-performance liquid chromatographic determination of Maillard compounds in store-brand and name-brand ultra-high-temperature-treated cows’ milk. J Chromatogr A 881(1):599–606. https://doi.org/10.1016/S0021-9673(00)00218-1

  44. Hohmann C, Liehr K, Henning C, Fiedler R, Girndt M, Gebert M, Hulko M, Storr M, Glomb MA (2017) Detection of free advanced glycation end products in vivo during hemodialysis. J Agric Food Chem 65(4):930–937. https://doi.org/10.1021/acs.jafc.6b05013

    Article  CAS  PubMed  Google Scholar 

  45. Nowotny K, Schroter D, Schreiner M, Grune T (2018) Dietary advanced glycation end products and their relevance for human health. Ageing Res Rev 47:55–66. https://doi.org/10.1016/j.arr.2018.06.005

    Article  CAS  PubMed  Google Scholar 

  46. Chaudhuri J, Bains Y, Guha S, Kahn A, Hall D, Bose N, Gugliucci A, Kapahi P (2018) The role of advanced glycation end products in aging and metabolic diseases: bridging association and causality. Cell Metab 28(3):337–352. https://doi.org/10.1016/j.cmet.2018.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vlassara H, Palace MR (2002) Diabetes and advanced glycation endproducts. J Intern Med 251(2):87–101. https://doi.org/10.1046/j.1365-2796.2002.00932.x

    Article  CAS  PubMed  Google Scholar 

  48. van Heijst JW, Niessen HW, Hoekman K, Schalkwijk CG (2005) Advanced glycation end products in human cancer tissues: detection of Nepsilon-(carboxymethyl)lysine and argpyrimidine. Ann N Y Acad Sci 1043:725–733. https://doi.org/10.1196/annals.1333.084

    Article  CAS  PubMed  Google Scholar 

  49. Takeuchi M, Yamagishi S (2008) Possible involvement of advanced glycation end-products (AGEs) in the pathogenesis of Alzheimer’s disease. Curr Pharm Des 14(10):973–978. https://doi.org/10.2174/138161208784139693

    Article  CAS  PubMed  Google Scholar 

  50. Mehta BM, Deeth HC (2016) Blocked lysine in dairy products: formation, occurrence, analysis, and nutritional implications. Compr Rev Food Sci Food Saf 15(1):206–218. https://doi.org/10.1111/1541-4337.12178

  51. Charissou A, Ait-Ameur L, Birlouez-Aragon I (2007) Evaluation of a gas chromatography/mass spectrometry method for the quantification of carboxymethyllysine in food samples. J Chromatogr A 1140(1):189–194. https://doi.org/10.1016/j.chroma.2006.11.066

  52. Ames JM (2008) Determination of Nɛ-(carboxymethyl)lysine in foods and related systems. Ann NY Acad Sci 1126(1):20–24. https://doi.org/10.1196/annals.1433.030

  53. Nguyen HT, van der Fels-Klerx HJ, van Boekel MAJS (2014) N ϵ-(carboxymethyl)lysine: a review on analytical methods, formation, and occurrence in processed food, and health impact. Food Rev Intl 30(1):36–52. https://doi.org/10.1080/87559129.2013.853774

    Article  CAS  Google Scholar 

  54. Estévez M, Luna C (2017) Dietary protein oxidation: a silent threat to human health? Crit Rev Food Sci Nutr 57(17):3781–3793. https://doi.org/10.1080/10408398.2016.1165182

    Article  CAS  PubMed  Google Scholar 

  55. Estévez M, Li Z, Soladoye OP, Van-Hecke T (2017) Chapter Two - Health risks of food oxidation. In: Toldrá F (ed) Advances in Food and Nutrition Research. Academic Press, p 45–81

  56. Zhang C, Bijl E, Hettinga K (2018) Destabilization of UHT milk by protease AprX from Pseudomonas fluorescens and plasmin. Food Chem 263:127–134. https://doi.org/10.1016/j.foodchem.2018.04.128

  57. Juhlin J, Fikse WF, Pickova J, Lunden A (2012) Association of DGAT1 genotype, fatty acid composition, and concentration of copper in milk with spontaneous oxidized flavor. J Dairy Sci 95(8):4610–4617. https://doi.org/10.3168/jds.2011-4915

    Article  CAS  PubMed  Google Scholar 

  58. Romeu-Nadal M, Chavez-Servin JL, Castellote AI, Rivero M, Lopez-Sabater MC (2007) Oxidation stability of the lipid fraction in milk powder formulas. Food Chem 100(2):756–763. https://doi.org/10.1016/j.foodchem.2005.10.037

    Article  CAS  Google Scholar 

  59. Lloyd MA, Drake MA, Gerard PD (2009) Flavor variability and flavor stability of U.S.-produced whole milk powder. J Food Sci 74(7):S334–S343. https://doi.org/10.1111/j.1750-3841.2009.01299.x

  60. Bendall JG (2001) Aroma compounds of fresh milk from New Zealand cows fed different diets. J Agric Food Chem 49(10):4825–4832. https://doi.org/10.1021/jf010334n

    Article  CAS  PubMed  Google Scholar 

  61. Vazquez-Landaverde PA, Velazquez G, Torres JA, Qian MC (2005) Quantitative determination of thermally derived off-flavor compounds in milk using solid-phase microextraction and gas chromatography. J Dairy Sci 88(11):3764–3772. https://doi.org/10.3168/jds.S0022-0302(05)73062-9

  62. Whetstine MEC, Drake M (2007) The flavor and flavor stability of skim and whole milk powders. Flavor of Dairy Products. American Chemical Society, pp 217–251

    Chapter  Google Scholar 

  63. Friedrich JE, Acree TE (1998) Gas chromatography olfactometry (GC/O) of dairy products. Int Dairy J 8(3):235–241. https://doi.org/10.1016/S0958-6946(98)80002-2

  64. Singh TK, Drake MA, Cadwallader KR (2003) Flavor of cheddar cheese: a chemical and sensory perspective. Compr Rev Food Sci Food Saf 2(4):166–189. https://doi.org/10.1111/j.1541-4337.2003.tb00021.x

    Article  CAS  PubMed  Google Scholar 

  65. Slatter DA, Bolton CH, Bailey AJ (2000) The importance of lipid-derived malondialdehyde in diabetes mellitus. Diabetologia 43(5):550–557. https://doi.org/10.1007/s001250051342

    Article  CAS  PubMed  Google Scholar 

  66. Chen J, Zhao J, Kong B, Chen Q, Liu Q, Liu C (2021) Comparative study of oxidative structural modifications of unadsorbed and adsorbed proteins in whey protein isolate-stabilized oil-in-water emulsions under the stress of primary and secondary lipid oxidation products. Foods 10(3). https://doi.org/10.3390/foods10030593

  67. Niu X, Wang X, Han Y, Lu C, Chen X, Wang T, Xu M, Zhu Q (2019) Influence of malondialdehyde-induced modifications on physicochemical and digestibility characteristics of whey protein isolate. J Food Biochem 43(12):e13041. https://doi.org/10.1111/jfbc.13041

  68. Adams A, De Kimpe N, van Boekel MA (2008) Modification of casein by the lipid oxidation product malondialdehyde. J Agric Food Chem 56(5):1713–1719. https://doi.org/10.1021/jf072385b

    Article  CAS  PubMed  Google Scholar 

  69. Morales FJ, Jimenez-Perez S (2000) Effect of malondialdehyde on the determination of furosine in milk-based products. J Agric Food Chem 48(3):680–684. https://doi.org/10.1021/jf990403m

    Article  CAS  PubMed  Google Scholar 

  70. de Moura Bell JM, Maurer D, Yao L, Wang T, Jung S, Johnson LA (2013) Characteristics of oil and skim in enzyme-assisted aqueous extraction of soybeans. J Am Oil Chem Soc 90(7):1079–1088. https://doi.org/10.1007/s11746-013-2248-6

  71. Hoyland DV, Taylor AJ (1991) A review of the methodology of the 2-thiobarbituric acid test. Food Chem 40(3):271–291. https://doi.org/10.1016/0308-8146(91)90112-2

  72. Papastergiadis A, Mubiru E, Van Langenhove H, De Meulenaer B (2012) Malondialdehyde measurement in oxidized foods: evaluation of the spectrophotometric thiobarbituric acid reactive substances (TBARS) test in various foods. J Agric Food Chem 60(38):9589–9594. https://doi.org/10.1021/jf302451c

    Article  CAS  PubMed  Google Scholar 

  73. Pitino MA, Alashmali SM, Hopperton KE, Unger S, Pouliot Y, Doyen A, O’Connor DL, Bazinet RP (2019) Oxylipin concentration, but not fatty acid composition, is altered in human donor milk pasteurised using both thermal and non-thermal techniques. Br J Nutr 122(1):47–55. https://doi.org/10.1017/S0007114519000916

    Article  CAS  PubMed  Google Scholar 

  74. Dias FF, Augusto-Obara TR, Hennebelle M, Chantieng S, Ozturk G, Taha AY, de Souza Vieira TM, de Moura JM (2020) Effects of industrial heat treatments on bovine milk oxylipins and conventional markers of lipid oxidation. Prostaglandins Leukot Essent Fatt Acids 152:102040. https://doi.org/10.1016/j.plefa.2019.102040

  75. Samarra I, Masdevall C, Foguet-Romero E, Guirro M, Riu M, Herrero P, Canela N, Delpino-Rius A (2021) Analysis of oxylipins to differentiate between organic and conventional UHT milks. Food Chem 343:128477. https://doi.org/10.1016/j.foodchem.2020.128477

  76. Lu J, Langton M, Sampels S, Pickova J (2019) Lipolysis and oxidation in ultra-high temperature milk depend on sampling month, storage duration, and temperature. J Food Sci 84(5):1045–1053. https://doi.org/10.1111/1750-3841.14514

    Article  CAS  PubMed  Google Scholar 

  77. Rauh V, Xiao Y (2022) The shelf life of heat-treated dairy products. Int Dairy J 125:105235. https://doi.org/10.1016/j.idairyj.2021.105235

  78. Faustman C, Sun Q, Mancini R, Suman SP (2010) Myoglobin and lipid oxidation interactions: mechanistic bases and control. Meat Sci 86(1):86–94. https://doi.org/10.1016/j.meatsci.2010.04.025

    Article  CAS  PubMed  Google Scholar 

  79. Hellwig M (2020) Analysis of protein oxidation in food and feed products. J Agric Food Chem 68(46):12870–12885. https://doi.org/10.1021/acs.jafc.0c00711

    Article  CAS  PubMed  Google Scholar 

  80. Thompson LV, Durand D, Fugere NA, Ferrington DA (2006) Myosin and actin expression and oxidation in aging muscle. J Appl Physiol 101(6):1581–1587. https://doi.org/10.1152/japplphysiol.00426.2006

  81. Sante-Lhoutellier V, Aubry L, Gatellier P (2007) Effect of oxidation on in vitro digestibility of skeletal muscle myofibrillar proteins. J Agric Food Chem 55(13):5343–5348. https://doi.org/10.1021/jf070252k

    Article  CAS  PubMed  Google Scholar 

  82. Kolpin M, Hellwig M (2019) Quantitation of methionine sulfoxide in milk and milk-based beverages-minimizing artificial oxidation by anaerobic enzymatic hydrolysis. J Agric Food Chem 67(32):8967–8976. https://doi.org/10.1021/acs.jafc.9b03605

    Article  CAS  PubMed  Google Scholar 

  83. Stadtman ER, Levine RL (2003) Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids 25(3–4):207–218. https://doi.org/10.1007/s00726-003-0011-2

    Article  CAS  PubMed  Google Scholar 

  84. Mello CF, Sultana R, Piroddi M, Cai J, Pierce WM, Klein JB, Butterfield DA (2007) Acrolein induces selective protein carbonylation in synaptosomes. Neuroscience 147(3):674–679. https://doi.org/10.1016/j.neuroscience.2007.04.003

    Article  CAS  PubMed  Google Scholar 

  85. Williams TI, Lynn BC, Markesbery WR, Lovell MA (2006) Increased levels of 4-hydroxynonenal and acrolein, neurotoxic markers of lipid peroxidation, in the brain in Mild Cognitive Impairment and early Alzheimer’s disease. Neurobiol Aging 27(8):1094–1099. https://doi.org/10.1016/j.neurobiolaging.2005.06.004

    Article  CAS  PubMed  Google Scholar 

  86. Zhang W, Xiao S, Ahn DU (2013) Protein oxidation: basic principles and implications for meat quality. Crit Rev Food Sci Nutr 53(11):1191–1201. https://doi.org/10.1080/10408398.2011.577540

    Article  CAS  PubMed  Google Scholar 

  87. Bhat SA, Bhat WF, Afsar M, Khan MS, Al-Bagmi MS, Bano B (2018) Modification of chickpea cystatin by reactive dicarbonyl species: glycation, oxidation and aggregation. Arch Biochem Biophys 650:103–115. https://doi.org/10.1016/j.abb.2018.05.015

  88. Kamalov M, Harris PW, Cooper GJ, Brimble MA (2014) Site-specific cross-linking of collagen peptides by lysyl advanced glycation endproducts. Chem Commun (Camb) 50(38):4944–4946. https://doi.org/10.1039/c4cc02003k

    Article  CAS  PubMed  Google Scholar 

  89. Zhao D, Zhang X, Xu D, Su G, Li B, Li C (2020) Heat-induced amyloid-like aggregation of β-lactoglobulin affected by glycation by α-dicarbonyl compounds in a model study. 100(2):607–613. https://doi.org/10.1002/jsfa.10054

  90. Glomb MA, Lang G (2001) Isolation and characterization of glyoxal−arginine modifications. J Agric Food Chem 49(3):1493–1501. https://doi.org/10.1021/jf001082d

    Article  CAS  PubMed  Google Scholar 

  91. Lederer MO, Klaiber RG (1999) Cross-linking of proteins by maillard processes: characterization and detection of lysine–arginine cross-links derived from glyoxal and methylglyoxal. Bioorg Med Chem 7(11):2499–2507. https://doi.org/10.1016/S0968-0896(99)00212-6

  92. Armenteros M, Heinonen M, Ollilainen V, Toldrá F, Estevez M (2009) Analysis of protein carbonyls in meat products by using the DNPH-method, fluorescence spectroscopy and liquid chromatography–electrospray ionisation–mass spectrometry (LC–ESI–MS). Meat Sci 83(1):104–112. https://doi.org/10.1016/j.meatsci.2009.04.007

  93. Luo S, Wehr NB (2009) Protein carbonylation: avoiding pitfalls in the 2,4-dinitrophenylhydrazine assay. Redox Rep 14(4):159–166. https://doi.org/10.1179/135100009X392601

    Article  CAS  PubMed  Google Scholar 

  94. Liu HY, Grosvenor AJ, Li X, Wang XL, Ma Y, Clerens S, Dyer JM, Day L (2019) Changes in milk protein interactions and associated molecular modification resulting from thermal treatments and storage. J Food Sci 84(7):1737–1745. https://doi.org/10.1111/1750-3841.14663

    Article  CAS  PubMed  Google Scholar 

  95. Lund MN, Heinonen M, Baron CP, Estevez M (2011) Protein oxidation in muscle foods: a review. Mol Nutr Food Res 55(1):83–95. https://doi.org/10.1002/mnfr.201000453

    Article  CAS  PubMed  Google Scholar 

  96. Ma W, Qi B, Sami R, Jiang L, Li Y, Wang H (2018) Conformational and functional properties of soybean proteins produced by extrusion-hydrolysis approach. Int J Anal Chem 2018:9182508. https://doi.org/10.1155/2018/9182508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Newstead DF, Paterson G, Anema SG, Coker CJ, Wewala AR (2006) Plasmin activity in direct-steam-injection UHT-processed reconstituted milk: effects of preheat treatment. Int Dairy J 16(6):573–579. https://doi.org/10.1016/j.idairyj.2005.11.011

  98. Glück C, Rentschler E, Krewinkel M, Merz M, von Neubeck M, Wenning M, Scherer S, Stoeckel M, Hinrichs J, Stressler T, Fischer L (2016) Thermostability of peptidases secreted by microorganisms associated with raw milk. Int Dairy J 56:186–197. https://doi.org/10.1016/j.idairyj.2016.01.025

  99. Anema SG (2019) Age gelation, sedimentation, and creaming in UHT milk: a review. Compr Rev Food Sci Food Saf 18(1):140–166. https://doi.org/10.1111/1541-4337.12407

  100. Davis JP, Doucet D, Foegeding EA (2005) Foaming and interfacial properties of hydrolyzed β-lactoglobulin. J Colloid Interface Sci 288(2):412–422. https://doi.org/10.1016/j.jcis.2005.03.002

  101. Chavan RS, Chavan SR, Khedkar CD, Jana AH (2011) UHT milk processing and effect of plasmin activity on shelf life: a review. 10:251–268. https://doi.org/10.1111/j.1541-4337.2011.00157.x

  102. van der Ven C, Gruppen H, de Bont DBA, Voragen AGJ (2002) Correlations between biochemical characteristics and foam-forming and -stabilizing ability of whey and casein hydrolysates. J Agric Food Chem 50(10):2938–2946. https://doi.org/10.1021/jf011190f

    Article  CAS  PubMed  Google Scholar 

  103. Nielsen SS (2002) Plasmin system and microbial proteases in milk: characteristics, roles, and relationship. J Agric Food Chem 50(22):6628–6634. https://doi.org/10.1021/jf0201881

    Article  CAS  PubMed  Google Scholar 

  104. Crudden A, Afoufa-Bastien D, Fox PF, Brisson G, Kelly AL (2005) Effect of hydrolysis of casein by plasmin on the heat stability of milk. Int Dairy J 15(10):1017–1025. https://doi.org/10.1016/j.idairyj.2004.11.001

  105. Rutherfurd SM (2010) Methodology for determining degree of hydrolysis of proteins in Hydrolysates: a review. J AOAC Int 93(5):1515–1522

    Article  CAS  PubMed  Google Scholar 

  106. Izco JM, Torre P, Barcina Y (2000) Ripening of Ossau-Iraty cheese: determination of free amino acids by RP-HPLC and of total free amino acids by the TNBS method. Food Control 11(1):7–11. https://doi.org/10.1016/S0956-7135(99)00031-6

  107. Niro S, Succi M, Tremonte P, Sorrentino E, Coppola R, Panfili G, Fratianni A (2017) Evolution of free amino acids during ripening of Caciocavallo cheeses made with different milks. J Dairy Sci 100(12):9521–9531. https://doi.org/10.3168/jds.2017-13308

  108. Su X, Tortorice M, Ryo S, Li X, Waterman K, Hagen A, Yin Y (2020) Sensory lexicons and formation pathways of off-aromas in dairy ingredients: a review. Molecules 25. https://doi.org/10.3390/molecules25030569.

  109. Deeth HC (2006) Lipoprotein lipase and lipolysis in milk. Int Dairy J 16(6):555–562. https://doi.org/10.1016/j.idairyj.2005.08.011

  110. Champagne CP, Laing RR, Roy D, Mafu AA, Griffiths MW, White C (1994) Psychrotrophs in dairy products: their effects and their control. Crit Rev Food Sci Nutr 34 1:1–30. https://doi.org/10.1080/10408399409527648

  111. Juan B, Quevedo JM, Zamora A, Guamis B, Trujillo AJ (2015) Lipolysis of cheeses made from goat milk treated by ultra-high pressure homogenization. LWT - Food Sci Technol 60(2, Part 1):1034–1038. https://doi.org/10.1016/j.lwt.2014.10.003

  112. Kondyli E, Massouras T, Katsiari MC, Voutsinas LP (2013) Lipolysis and volatile compounds of Galotyri-type cheese made using different procedures. Small Ruminant Res 113(2):432–436. https://doi.org/10.1016/j.smallrumres.2013.04.006

  113. Simeoni MC, Sergi M, Pepe A, Mattocci E, Martino G, Compagnone D (2018) Determination of free fatty acids in cheese by means of matrix solid-phase dispersion followed by ultra-high performance liquid chromatography and tandem mass spectrometry analysis. Food Anal Methods 11(10):2961–2968. https://doi.org/10.1007/s12161-018-1276-0

    Article  Google Scholar 

Download references

Acknowledgements

This study was done under the support of the Key Research and Development Program of Shandong province (2019YYSP025, 2019GSF111014); Projects of introducing urgently needed talents in key supported regions of Shandong Province and Shandong Major Agricultural Technology Innovation Project (SD2019ZZ006).

Author information

Authors and Affiliations

Authors

Contributions

Xiaoxue Fan: writing—original draft and writing—review and editing. Cunfang Wang: funding acquisition, supervision, and writing–review and editing. Ming Cheng: conceptualization and project administration. Haitao Wei: investigation. Xingming Gao: data curation and visualization. Mengjia Ma: conceptualization and validation. Xipeng Wang: data curation and validation. Zhenghao Li: conceptualization and visualization. 

Corresponding author

Correspondence to Cunfang Wang.

Ethics declarations

Ethics Approval

Ethics approval is not required for this review paper.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, X., Wang, C., Cheng, M. et al. Markers and Mechanisms of Deterioration Reactions in Dairy Products. Food Eng Rev 15, 230–241 (2023). https://doi.org/10.1007/s12393-023-09331-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-023-09331-9

Keywords

Navigation