Skip to main content
Log in

Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Fruits and vegetables are essential for overall human health and nutrition, and there is a high quest for fruits and vegetables of superior quality. Nonetheless, the preservation of fruit is still challenging due to the high moisture content. Pretreatments have assisted fruit and vegetable drying in improving shelf-life and maintaining quality. However, conventional pretreatments affect the physicochemical properties and product qualities. Therefore, thermal and nonthermal pretreatments followed by drying have been researched to improve and enhance fruits and vegetables’ physicochemical properties. This article evaluates sequential thermal (ohmic, electrohydrodynamic, infrared, etc.) or  nonthermal (high-pressure processing, ultrasonic, pulsed-electric field, etc.) pretreatment technologies and drying in the last 5 years, underscoring their efficiency in augmenting the product qualities of fruits and vegetables. In addition, details of nonthermal and thermal pretreatment technologies are explained, and their success stories, drawbacks, and future studies on improving these technologies are provided. Besides, the safety evaluations of various pretreatments are also delved in. Finally, it is recommended that the next 5 years of research should also explore pulsed light, manothermosonication, ultraviolet light, oscillating magnetic field, thermosonication, and ionization radiation pretreatment to augment dried fruits and vegetables’ product qualities and physicochemical properties. This will help better comprehend the impact of emerging technologies on fruits and vegetables’ physicochemical properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ABTS:

2,2-Azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid)

AOA:

Antioxidant activity

a* :

Greenness to redness; (0 to +100) signify redness, and a* (0 to −80) denote greenness

b* :

Yellowness to blueness; b* (0 to +70) indicates yellowness, and b* (0 to −70) shows blueness

C :

Chromaticity

DPPH:

2,2-Diphenyl-1-picrylhydrazyl

D eff :

Moisture diffusivity

ΔE :

The total color difference (magnitude of the difference between two colors based on their L*, a*, and b* values)

EHD:

Electrohydrodynamic

FD:

Freeze-drying

FL:

Flow-rate

FRAP:

Ferric reducing antioxidant power

HAD:

Hot-air drying

HHHAB:

High-humidity hot-air blanching

HPP:

High-pressure processing

HTP:

High-temperature plasma

HTST:

Higher temperatures and short time

IR:

Infrared

IRB:

Infrared blanching

LTLT:

Lower temperature longer time

LTP:

Low-temperature plasma

LF-NMR:

Low-frequency nuclear magnetic resonance

L* :

Lightness

MT:

Magnetostrictive transducers

MW:

Microwave

MWB:

Microwave blanching

MWV:

Microwave vacuum

NT:

Nonthermal

NTP:

Nonthermal plasma

OH:

Ohmic heating

PEF:

Pulsed-electric field

POD:

Polyphenol peroxidase

PPO:

Polyphenol oxidase

PT:

Piezoelectric transducers

TP:

Thermal plasma

TFC:

Total flavonoids content

TPC:

Total phenolics content

SEM:

Scanning electron microscope

References

  1. USDA (2022) NIFA Programs Increasing Access to Fresh Fruits and Vegetables. https://www.nifa.usda.gov/about-nifa/blogs/nifa-programs-increasing-access-fresh-fruits-vegetables. Accessed 16 Sep 2022

  2. FAO (2021) Seeking end to loss and waste of food along production chain. Food Agric Organ United Nations. https://www.fao.org/in-action/seeking-end-to-loss-and-waste-of-food-along-production-chain/en/. Accessed 24 Sep 2022

  3. Xu B, Sylvain Tiliwa E, Yan W et al (2022) Recent development in high quality drying of fruits and vegetables assisted by ultrasound: a review. Food Res Int. https://doi.org/10.1016/j.foodres.2021.110744

    Article  PubMed  Google Scholar 

  4. Abbaspour-Gilandeh Y, Jahanbakhshi A (2019) Prediction kinetic, energy and exergy of quince under hot air dryer using ANNs and ANFIS. Food Sci Nutr. https://doi.org/10.1002/fsn3.1347

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhang M, Chen H, Mujumdar AS et al (2017) Recent developments in high-quality drying of vegetables, fruits, and aquatic products. Crit Rev Food Sci Nutr 57:1239–1255. https://doi.org/10.1080/10408398.2014.979280

    Article  CAS  PubMed  Google Scholar 

  6. Osae R, Essilfie G, Alolga RN et al (2020) Drying of ginger slices—evaluation of quality attributes, energy consumption, and kinetics study. J Food Process Eng 43:1–14. https://doi.org/10.1111/jfpe.13348

    Article  Google Scholar 

  7. Onwude DI, Hashim N, Janius R et al (2017) Non-thermal hybrid drying of fruits and vegetables: a review of current technologies. Innov Food Sci Emerg Technol 43:223–238. https://doi.org/10.1016/j.ifset.2017.08.010

    Article  CAS  Google Scholar 

  8. Alolga RN, Osae R, Essilfie G et al (2021) Sonication, osmosonication and vacuum-assisted osmosonication pretreatment of Ghanaian garlic slices: Effect on physicochemical properties and quality characteristics. Food Chem 343:128535. https://doi.org/10.1016/j.foodchem.2020.128535

    Article  CAS  PubMed  Google Scholar 

  9. Gopal, Korlepara Raja, Kalla AM, Keerthi S (2017) High pressure processing of fruits and vegetable products: a review. Int J Pure Appl Biosci 5:680–692. https://doi.org/10.18782/2320-7051.2930

  10. Bassey EJ, Cheng JH, Sun DW (2021) Novel nonthermal and thermal pretreatments for enhancing drying performance and improving quality of fruits and vegetables. Trends Food Sci Technol 112:137–148. https://doi.org/10.1016/j.tifs.2021.03.045

    Article  CAS  Google Scholar 

  11. Osae R, Essilfie G, Alolga RN et al (2020) Application of non-thermal pretreatment techniques on agricultural products prior to drying: a review. J Sci Food Agric 100:2585–2599. https://doi.org/10.1002/jsfa.10284

    Article  CAS  PubMed  Google Scholar 

  12. Hernández-Hernández HM, Moreno-Vilet L, Villanueva-Rodríguez SJ (2019) Current status of emerging food processing technologies in Latin America: novel non-thermal processing. Innov Food Sci Emerg Technol 58:102233. https://doi.org/10.1016/j.ifset.2019.102233

    Article  Google Scholar 

  13. Loureiro AD, Souza FD, Sanches EA et al (2021) Cold plasma technique as a pretreatment for drying fruits: evaluation of the excitation frequency on drying process and bioactive compounds. Food Res Int 147. https://doi.org/10.1016/j.foodres.2021.110462

  14. Boateng ID, Zhang W, Li Y et al (2022) Non-thermal pretreatment affects Ginkgo biloba L . seed ’ s product qualities , sensory , and physicochemical properties. J Food Sci 1–18. https://doi.org/10.1111/1750-3841.15999

  15. Ai Z, Lin Y, Xie Y et al (2022) Effect of high-humidity hot air impingement steaming on Cistanche deserticola slices: drying characteristics, weight loss, microstructure, color, and active components. Front Nutr 9:1–13. https://doi.org/10.3389/fnut.2022.824822

  16. Deng LZ, Mujumdar AS, Zhang Q et al (2019) Chemical and physical pretreatments of fruits and vegetables: effects on drying characteristics and quality attributes–a comprehensive review. Crit Rev Food Sci Nutr 59:1408–1432. https://doi.org/10.1080/10408398.2017.1409192

    Article  CAS  PubMed  Google Scholar 

  17. Llavata B, García-Pérez JV, Simal S, Cárcel JA (2020) Innovative pre-treatments to enhance food drying: a current review. Curr Opin Food Sci 35:20–26. https://doi.org/10.1016/j.cofs.2019.12.001

    Article  Google Scholar 

  18. Huang CC, Wu JSB, Wu JS, Ting Y (2019) Effect of novel atmospheric-pressure jet pretreatment on the drying kinetics and quality of white grapes. J Sci Food Agric 99:5102–5111. https://doi.org/10.1002/jsfa.9754

    Article  CAS  PubMed  Google Scholar 

  19. Bao T, Hao X, Shishir MRI et al (2021) Cold plasma: an emerging pretreatment technology for the drying of jujube slices. Food Chem 337:127783. https://doi.org/10.1016/j.foodchem.2020.127783

    Article  CAS  PubMed  Google Scholar 

  20. Du Y, Yang F, Yu H et al (2022) Improving food drying performance by cold plasma pretreatment: a systematic review. Compr Rev Food Sci Food Saf. https://doi.org/10.1111/1541-4337.13027

    Article  PubMed  Google Scholar 

  21. Chen YQ, Cheng JH, Sun DW (2020) Chemical, physical and physiological quality attributes of fruit and vegetables induced by cold plasma treatment: mechanisms and application advances. Crit Rev Food Sci Nutr 60:2676–2690. https://doi.org/10.1080/10408398.2019.1654429

    Article  CAS  PubMed  Google Scholar 

  22. Ganesan AR, Tiwari U, Ezhilarasi PN, Rajauria G (2021) Application of cold plasma on food matrices: a review on current and future prospects. J Food Process Preserv 45:1–16. https://doi.org/10.1111/jfpp.15070

    Article  CAS  Google Scholar 

  23. Bevilacqua A, Petruzzi L, Perricone M et al (2018) Nonthermal technologies for fruit and vegetable juices and beverages: overview and advances. Compr Rev Food Sci Food Saf 17:2–62. https://doi.org/10.1111/1541-4337.12299

    Article  PubMed  Google Scholar 

  24. Muhammad AI, Xiang Q, Liao X et al (2018) Understanding the impact of nonthermal plasma on food constituents and microstructure—a review. Food Bioprocess Technol 11:463–486. https://doi.org/10.1007/s11947-017-2042-9

    Article  CAS  Google Scholar 

  25. Esua OJ, Cheng JH, Sun DW (2020) Antimicrobial activities of plasma-functionalized liquids against foodborne pathogens on grass carp (Ctenopharyngodon Idella). Appl Microbiol Biotechnol 104:9581–9594. https://doi.org/10.1007/s00253-020-10926-z

    Article  CAS  PubMed  Google Scholar 

  26. Pan Y, Cheng JH, Sun DW (2019) Cold plasma-mediated treatments for shelf life extension of fresh produce: a review of recent research developments. Compr Rev Food Sci Food Saf 18:1312–1326. https://doi.org/10.1111/1541-4337.12474

    Article  PubMed  Google Scholar 

  27. Esua OJ, Cheng JH, Sun DW (2021) Functionalization of water as a nonthermal approach for ensuring safety and quality of meat and seafood products. Crit Rev Food Sci Nutr 61:431–449. https://doi.org/10.1080/10408398.2020.1735297

    Article  CAS  PubMed  Google Scholar 

  28. Misra NN, Pankaj SK, Frias JM et al (2015) The effects of nonthermal plasma on chemical quality of strawberries. Postharvest Biol Technol 110:197–202. https://doi.org/10.1016/j.postharvbio.2015.08.023

    Article  CAS  Google Scholar 

  29. Puligundla P, Lee T, Mok C (2018) Effect of intermittent corona discharge plasma treatment for improving microbial quality and shelf life of kumquat (Citrus japonica) fruits. LWT - Food Sci Technol 91:8–13. https://doi.org/10.1016/j.lwt.2018.01.019

    Article  CAS  Google Scholar 

  30. Won MY, Lee SJ, Min SC (2017) Mandarin preservation by microwave-powered cold plasma treatment. Innov Food Sci Emerg Technol 39:25–32. https://doi.org/10.1016/j.ifset.2016.10.021

    Article  CAS  Google Scholar 

  31. Ramazzina I, Berardinelli A, Rizzi F et al (2015) Effect of cold plasma treatment on physico-chemical parameters and antioxidant activity of minimally processed kiwifruit. Postharvest Biol Technol 107:55–65. https://doi.org/10.1016/j.postharvbio.2015.04.008

    Article  CAS  Google Scholar 

  32. Dong XY, Yang YL (2019) A novel approach to enhance blueberry quality during storage using cold plasma at atmospheric air pressure. Food Bioprocess Technol 12:1409–1421. https://doi.org/10.1007/s11947-019-02305-y

    Article  CAS  Google Scholar 

  33. Karim N, Shishir MRI, Bao T, Chen W (2021) Effect of cold plasma pretreated hot-air drying on the physicochemical characteristics, nutritional values and antioxidant activity of shiitake mushroom. J Sci Food Agric 101:6271–6280. https://doi.org/10.1002/jsfa.11296

    Article  CAS  PubMed  Google Scholar 

  34. Grzegorzewski F, Rohn S, Kroh LW et al (2010) Surface morphology and chemical composition of lamb’s lettuce (Valerianella locusta) after exposure to a low-pressure oxygen plasma. Food Chem 122:1145–1152. https://doi.org/10.1016/j.foodchem.2010.03.104

    Article  CAS  Google Scholar 

  35. Zhang M, Oh JK, Cisneros-Zevallos L, Akbulut M (2013) Bactericidal effects of nonthermal low-pressure oxygen plasma on S. typhimurium LT2 attached to fresh produce surfaces. J Food Eng 119:425–432. https://doi.org/10.1016/j.jfoodeng.2013.05.045

    Article  CAS  Google Scholar 

  36. Cao Y, Hua H, Yang P et al (2020) Investigation into the reaction mechanism underlying the atmospheric low-temperature plasma-induced oxidation of cellulose. Carbohydr Polym 233:115632. https://doi.org/10.1016/j.carbpol.2019.115632

    Article  CAS  PubMed  Google Scholar 

  37. Momeni M, Tabibiazar M, Khorram S et al (2018) Pectin modification assisted by nitrogen glow discharge plasma. Int J Biol Macromol 120:2572–2578. https://doi.org/10.1016/j.ijbiomac.2018.09.033

    Article  CAS  PubMed  Google Scholar 

  38. Wu W, Jin X, Liu Z et al (2021) Effect of low temperature plasma pretreatment on drying process of vegetables with waxy layer. J Food Process Eng. https://doi.org/10.1111/jfpe.13911

  39. Miraei Ashtiani SH, Rafiee M, Mohebi Morad M et al (2020) Impact of gliding arc plasma pretreatment on drying efficiency and physicochemical properties of grape. Innov Food Sci Emerg Technol 63:102381. https://doi.org/10.1016/j.ifset.2020.102381

    Article  CAS  Google Scholar 

  40. Zhang XL, Zhong CS, Mujumdar AS et al (2019) Cold plasma pretreatment enhances drying kinetics and quality attributes of chili pepper (Capsicum annuum L.). J Food Eng 241:51–57. https://doi.org/10.1016/j.jfoodeng.2018.08.002

    Article  CAS  Google Scholar 

  41. Pour AK, Khorram S, Ehsani A et al (2022) Atmospheric cold plasma effect on quality attributes of banana slices: its potential use in blanching process. Innov Food Sci Emerg Technol 76:102945. https://doi.org/10.1016/j.ifset.2022.102945

    Article  Google Scholar 

  42. Bao T, Hao X, Shishir MRI et al (2022) Green alternative methods for pretreatment of whole jujube before the drying process. J Sci Food Agric 102:1030–1039. https://doi.org/10.1002/jsfa.11438

    Article  CAS  PubMed  Google Scholar 

  43. Shishir MRI, Karim N, Bao T et al (2020) Cold plasma pretreatment–a novel approach to improve the hot air drying characteristics, kinetic parameters, and nutritional attributes of shiitake mushroom. Dry Technol 38:2134–2150. https://doi.org/10.1080/07373937.2019.1683860

    Article  CAS  Google Scholar 

  44. Zhou YH, Vidyarthi SK, Zhong CS et al (2020) Cold plasma enhances drying and color, rehydration ratio and polyphenols of wolfberry via microstructure and ultrastructure alteration. Lwt 134:1–7. https://doi.org/10.1016/j.lwt.2020.110173

    Article  CAS  Google Scholar 

  45. Latest Helium HNT Price Prediction. https://changelly.com/blog/helium-price-prediction/. Accessed 24 Sep 2022

  46. Chen X, Ding J, Ji D et al (2020) Optimization of ultrasonic-assisted extraction conditions for bioactive components from coffee leaves using the Taguchi design and response surface methodology. J Food Sci 85:1742–1751. https://doi.org/10.1111/1750-3841.15111

    Article  CAS  PubMed  Google Scholar 

  47. Boateng ID, Yang X (2021) Do non-thermal pretreatments followed by intermediate-wave infrared drying affect toxicity, allergenicity, bioactives, functional groups, and flavor components of Ginkgo biloba seed ? A case study Ind Crop Prod 165:113421. https://doi.org/10.1016/j.indcrop.2021.113421

    Article  CAS  Google Scholar 

  48. Smagowska B, Pawlaczyk-Łuszczyńska M (2013) Effects of ultrasonic noise on the human body—a bibliographic review. Int J Occup Saf Ergon 19:195–202. https://doi.org/10.1080/10803548.2013.11076978

    Article  PubMed  Google Scholar 

  49. Yao Y, Pan Y, Liu S (2020) Power ultrasound and its applications: a state-of-the-art review. Ultrason Sonochem 62:104722. https://doi.org/10.1016/j.ultsonch.2019.104722

    Article  CAS  PubMed  Google Scholar 

  50. Zhang Y, Abatzoglou N (2020) Review: fundamentals, applications and potentials of ultrasound-assisted drying. Chem Eng Res Des 154:21–46. https://doi.org/10.1016/j.cherd.2019.11.025

    Article  CAS  Google Scholar 

  51. Boateng ID, Yang X (2021) Osmotic, osmovacuum, sonication, and osmosonication pretreatment on the infrared drying of Ginkgo seed slices: mass transfer, mathematical modeling, drying, and rehydration kinetics and energy consumption. J Food Sci. https://doi.org/10.1111/1750-3841.15916

    Article  PubMed  Google Scholar 

  52. Fijalkowska A, Nowacka M, Wiktor A et al (2016) Ultrasound as a pretreatment method to improve drying kinetics and sensory properties of dried apple. J Food Process Eng 39:256–265. https://doi.org/10.1111/jfpe.12217

    Article  Google Scholar 

  53. Jin W, Zhang M, Shi W (2018) Evaluation of ultrasound pretreatment and drying methods on selected quality attributes of bitter melon (Momordica charantia L.). Dry Technol 0:1–10. https://doi.org/10.1080/07373937.2018.1458735

  54. Xu B, Sylvain Tiliwa E, Wei B et al (2022) Multi-frequency power ultrasound as a novel approach improves intermediate-wave infrared drying process and quality attributes of pineapple slices. Ultrason Sonochem. https://doi.org/10.1016/j.ultsonch.2022.106083

    Article  PubMed  PubMed Central  Google Scholar 

  55. Zhang Z, Liu Z, Liu C et al (2016) Effects of ultrasound pretreatment on drying kinetics and quality parameters of button mushroom slices. Dry Technol. https://doi.org/10.1080/07373937.2015.1117486

    Article  Google Scholar 

  56. Ricce C, Rojas ML, Miano AC et al (2016) Ultrasound pre-treatment enhances the carrot drying and rehydration. Food Res Int 89:701–708. https://doi.org/10.1016/j.foodres.2016.09.030

    Article  CAS  PubMed  Google Scholar 

  57. Wang L, Xu B, Wei B, Zeng R (2018) Low frequency ultrasound pretreatment of carrot slices: effect on the moisture migration and quality attributes by intermediate-wave infrared radiation drying. Ultrason Sonochem 40:619–628. https://doi.org/10.1016/j.ultsonch.2017.08.005

    Article  CAS  PubMed  Google Scholar 

  58. An K, Tang D, Wu J et al (2019) Comparison of pulsed vacuum and ultrasound osmotic dehydration on drying of Chinese ginger (Zingiber officinale Roscoe): drying characteristics, antioxidant capacity, and volatile profiles. Food Sci Nutr 7:2537–2545. https://doi.org/10.1002/fsn3.1103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bozkir H, Rayman Ergün A, Serdar E et al (2019) Influence of ultrasound and osmotic dehydration pretreatments on drying and quality properties of persimmon fruit. Ultrason Sonochem 54:135–141. https://doi.org/10.1016/j.ultsonch.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  60. Šic Žlabur J, Colnar D, Voća S et al (2019) Effect of ultrasound pre-treatment and drying method on specialized metabolites of honeyberry fruits (Lonicera caerulea var. kamtschatica). Ultrason Sonochem 56:372–377. https://doi.org/10.1016/j.ultsonch.2019.04.034

    Article  CAS  PubMed  Google Scholar 

  61. Osae R, Zhou C, Xu B et al (2019) Effects of ultrasound, osmotic dehydration, and osmosonication pretreatments on bioactive compounds, chemical characterization, enzyme inactivation, color, and antioxidant activity of dried ginger slices. J Food Biochem 43:1–14. https://doi.org/10.1111/jfbc.12832

    Article  CAS  Google Scholar 

  62. Horuz E, Jaafar HJ, Maskan M (2017) Ultrasonication as pretreatment for drying of tomato slices in a hot air–microwave hybrid oven. Dry Technol 35:849–859. https://doi.org/10.1080/07373937.2016.1222538

    Article  CAS  Google Scholar 

  63. Amami E, Khezami W, Mezrigui S et al (2017) Effect of ultrasound-assisted osmotic dehydration pretreatment on the convective drying of strawberry. Ultrason Sonochem 36:286–300. https://doi.org/10.1016/j.ultsonch.2016.12.007

    Article  CAS  PubMed  Google Scholar 

  64. Zhao YY, Yi JY, Bi JF et al (2019) Improving of texture and rehydration properties by ultrasound pretreatment for infrared-dried shiitake mushroom slices. Dry Technol 37:352–362. https://doi.org/10.1080/07373937.2018.1456449

    Article  CAS  Google Scholar 

  65. Wang H, Zhao QS, Wang XD et al (2019) Pretreatment of ultrasound combined vacuum enhances the convective drying efficiency and physicochemical properties of okra (Abelmoschus esculentus). Lwt 112:108201. https://doi.org/10.1016/j.lwt.2019.05.099

    Article  CAS  Google Scholar 

  66. Ren F, Perussello CA, Zhang Z et al (2018) Impact of ultrasound and blanching on functional properties of hot-air dried and freeze dried onions. LWT - Food Sci Technol 87:102–111. https://doi.org/10.1016/j.lwt.2017.08.053

    Article  CAS  Google Scholar 

  67. Dias da Silva G, Barros ZMP, de Medeiros RAB et al (2016) Pretreatments for melon drying implementing ultrasound and vacuum. LWT - Food Sci Technol 74:114–119. https://doi.org/10.1016/j.lwt.2016.07.039

    Article  CAS  Google Scholar 

  68. Yildiz G, Izli G (2019) The effect of ultrasound pretreatment on quality attributes of freeze-dried quince slices: physical properties and bioactive compounds. J Food Process Eng 42:1–8. https://doi.org/10.1111/jfpe.13223

    Article  CAS  Google Scholar 

  69. Lagnika C, Jiang N, Song J et al (2019) Effects of pretreatments on properties of microwave-vacuum drying of sweet potato slices. Dry Technol 37:1901–1914. https://doi.org/10.1080/07373937.2018.1543702

    Article  CAS  Google Scholar 

  70. Cao X, Islam MN, Zhong S et al (2020) Drying kinetics, antioxidants, and physicochemical properties of litchi fruits by ultrasound-assisted hot air-drying. J Food Biochem 44:1–9. https://doi.org/10.1111/jfbc.13073

    Article  Google Scholar 

  71. Rodríguez Ó, Eim V, Rosselló C et al (2018) Application of power ultrasound on the convective drying of fruits and vegetables: effects on quality. J Sci Food Agric 99:966. https://doi.org/10.1002/jsfa.9390

    Article  CAS  Google Scholar 

  72. Colucci D, Fissore D, Rossello C, Carcel JA (2018) On the effect of ultrasound-assisted atmospheric freeze-drying on the antioxidant properties of eggplant. Food Res Int 106:580–588. https://doi.org/10.1016/j.foodres.2018.01.022

    Article  CAS  PubMed  Google Scholar 

  73. Gamboa-Santos J, Montilla A, Soria AC et al (2014) Impact of power ultrasound on chemical and physicochemical quality indicators of strawberries dried by convection. Food Chem 161:40–46. https://doi.org/10.1016/j.foodchem.2014.03.106

    Article  CAS  PubMed  Google Scholar 

  74. Vallespir F, Rodríguez Ó, Cárcel JA et al (2019) Ultrasound assisted low-temperature drying of kiwifruit: effects on drying kinetics, bioactive compounds and antioxidant activity. J Sci Food Agric 99:2901–2909. https://doi.org/10.1002/jsfa.9503

    Article  CAS  PubMed  Google Scholar 

  75. Cao Y, Tao Y, Zhu X et al (2020) Effect of microwave and air-borne ultrasound-assisted air drying on drying kinetics and phytochemical properties of broccoli floret. Dry Technol 38:1733–1748. https://doi.org/10.1080/07373937.2019.1662437

    Article  CAS  Google Scholar 

  76. Guo Y, Wu B, Guo X et al (2020) Effects of power ultrasound enhancement on infrared drying of carrot slices: moisture migration and quality characterizations. Lwt 126:109312. https://doi.org/10.1016/j.lwt.2020.109312

    Article  CAS  Google Scholar 

  77. Moreno C, Brines C, Mulet A et al (2017) Antioxidant potential of atmospheric freeze-dried apples as affected by ultrasound application and sample surface. Dry Technol 35:957–968. https://doi.org/10.1080/07373937.2016.1256890

    Article  CAS  Google Scholar 

  78. Méndez EK, Orrego CE, Manrique DL et al (2015) Power ultrasound application on convective drying of banana ( Musa paradisiaca ), mango ( Mangifera indica L.) and guava ( Psidium guajava L.). Int J Biol Biomol Agric Food Biotechnol Eng 9:973–978

    Google Scholar 

  79. Do Nascimento EMGC, Mulet A, Ascheri JLR et al (2015) Effects of high-intensity ultrasound on drying kinetics and antioxidant properties of passion fruit peel. J Food Eng 170:108–118. https://doi.org/10.1016/j.jfoodeng.2015.09.015

    Article  CAS  Google Scholar 

  80. Kroehnke J, Szadzińska J, Stasiak M et al (2018) Ultrasound- and microwave-assisted convective drying of carrots – process kinetics and product’s quality analysis. Ultrason Sonochem 48:249–258. https://doi.org/10.1016/j.ultsonch.2018.05.040

    Article  CAS  PubMed  Google Scholar 

  81. Tao Y, Zhang J, Jiang S et al (2018) Contacting ultrasound enhanced hot-air convective drying of garlic slices: mass transfer modeling and quality evaluation. J Food Eng 235:79–88. https://doi.org/10.1016/j.jfoodeng.2018.04.028

    Article  Google Scholar 

  82. Santacatalina JV, Contreras M, Simal S et al (2016) Impact of applied ultrasonic power on the low temperature drying of apple. Ultrason Sonochem 28:100–109. https://doi.org/10.1016/j.ultsonch.2015.06.027

    Article  CAS  PubMed  Google Scholar 

  83. Xi H, Liu Y, Guo L, Hu R (2020) Effect of ultrasonic power on drying process and quality properties of far-infrared radiation drying on potato slices. Food Sci Biotechnol 29:93–101. https://doi.org/10.1007/s10068-019-00645-1

    Article  CAS  PubMed  Google Scholar 

  84. Mierzwa D, Szadzińska J, Pawłowski A et al (2019) Nonstationary convective drying of raspberries, assisted by microwaves and ultrasound. Dry Technol 37:988–1001. https://doi.org/10.1080/07373937.2018.1481087

    Article  CAS  Google Scholar 

  85. Szadzińska J, Mierzwa D, Pawłowski A et al (2020) Ultrasound- and microwave-assisted intermittent drying of red beetroot. Dry Technol 38:93–107. https://doi.org/10.1080/07373937.2019.1624565

    Article  CAS  Google Scholar 

  86. Salehi F (2020) Physico-chemical properties of fruit and vegetable juices as affected by pulsed electric field: a review. Int J Food Prop 23:1036–1050. https://doi.org/10.1080/10942912.2020.1775250

    Article  CAS  Google Scholar 

  87. Fauster T, Giancaterino M, Pittia P, Jaeger H (2020) Effect of pulsed electric field pretreatment on shrinkage, rehydration capacity and texture of freeze-dried plant materials. Lwt 121:108937. https://doi.org/10.1016/j.lwt.2019.108937

    Article  CAS  Google Scholar 

  88. Ranjha MMAN, Kanwal R, Shafique B et al (2021) A critical review on pulsed electric field: a novel technology for the extraction of phytoconstituents. Molecules 26:1–23. https://doi.org/10.3390/molecules26164893

    Article  CAS  Google Scholar 

  89. Wiktor A, Iwaniuk M, Śledź M et al (2013) Drying kinetics of apple tissue treated by pulsed electric field. Dry Technol 31:112–119. https://doi.org/10.1080/07373937.2012.724128

    Article  Google Scholar 

  90. Won YC, Min SC, Lee DU (2015) Accelerated drying and improved color properties of red pepper by pretreatment of pulsed electric fields. Dry Technol 33:926–932. https://doi.org/10.1080/07373937.2014.999371

    Article  Google Scholar 

  91. Fratianni A, Niro S, Messia MC et al (2019) Evaluation of carotenoids and furosine content in air dried carrots and parsnips pre-treated with pulsed electric field (PEF). Eur Food Res Technol 245:2529–2537. https://doi.org/10.1007/s00217-019-03367-0

    Article  CAS  Google Scholar 

  92. Yu Y, Jin TZ, Xiao G (2017) Effects of pulsed electric fields pretreatment and drying method on drying characteristics and nutritive quality of blueberries. J Food Process Preserv. https://doi.org/10.1111/jfpp.13303

    Article  Google Scholar 

  93. Huang W, Feng Z, Aila R et al (2019) Effect of pulsed electric fields (PEF) on physico-chemical properties, β-carotene and antioxidant activity of air-dried apricots. Food Chem 291:253–262. https://doi.org/10.1016/j.foodchem.2019.04.021

    Article  CAS  PubMed  Google Scholar 

  94. Alam MR, Lyng JG, Frontuto D et al (2018) Effect of pulsed electric field pretreatment on drying kinetics, color, and texture of parsnip and carrot. J Food Sci 83:2159–2166. https://doi.org/10.1111/1750-3841.14216

    Article  CAS  PubMed  Google Scholar 

  95. Ostermeier R, Giersemehl P, Siemer C et al (2018) Influence of pulsed electric field (PEF) pre-treatment on the convective drying kinetics of onions. J Food Eng 237:110–117. https://doi.org/10.1016/j.jfoodeng.2018.05.010

    Article  CAS  Google Scholar 

  96. Wu Y, Zhang D (2019) Pulsed electric field enhanced freeze-drying of apple tissue. Czech J Food Sci 37:432–438. https://doi.org/10.17221/230/2018-CJFS

  97. Liu C, Pirozzi A, Ferrari G et al (2020) Impact of pulsed electric fields on vacuum drying kinetics and physicochemical properties of carrot. Food Res Int 137:109658. https://doi.org/10.1016/j.foodres.2020.109658

    Article  CAS  PubMed  Google Scholar 

  98. Liu C, Grimi N, Lebovka N, Vorobiev E (2020) Impacts of preliminary vacuum drying and pulsed electric field treatment on characteristics of fried potatoes. J Food Eng 276:109898. https://doi.org/10.1016/j.jfoodeng.2019.109898

    Article  CAS  Google Scholar 

  99. Lammerskitten A, Wiktor A, Siemer C et al (2019) The effects of pulsed electric fields on the quality parameters of freeze-dried apples. J Food Eng 252:36–43. https://doi.org/10.1016/j.jfoodeng.2019.02.006

    Article  CAS  Google Scholar 

  100. Lammerskitten A, Mykhailyk V, Wiktor A et al (2019) Impact of pulsed electric fields on physical properties of freeze-dried apple tissue. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.102211

    Article  Google Scholar 

  101. Liu Z, Song Y, Guo Y et al (2017) Influence of pulsed electric field pretreatment on vacuum freeze-dried apples and process parameter optimization. Adv J Food Sci Technol 13:224–235. https://doi.org/10.19026/ajfst.13.5160

  102. Wiktor A, Witrowa-Rajchert D (2020) Drying kinetics and quality of carrots subjected to microwave-assisted drying preceded by combined pulsed electric field and ultrasound treatment. Dry Technol 38:176–188. https://doi.org/10.1080/07373937.2019.1642347

    Article  CAS  Google Scholar 

  103. Nowacka M, Wiktor A, Anuszewska A et al (2019) The application of unconventional technologies as pulsed electric field, ultrasound and microwave-vacuum drying in the production of dried cranberry snacks. Ultrason Sonochem 56:1–13. https://doi.org/10.1016/j.ultsonch.2019.03.023

    Article  CAS  PubMed  Google Scholar 

  104. Ammelt D, Lammerskitten A, Wiktor A et al (2021) The impact of pulsed electric fields on quality parameters of freeze-dried red beets and pineapples

  105. Pataro G, Ferrari G (2020) Limitations of pulsed electric field utilization in food industry. Pulsed Electr Fields to Obtain Heal Sustain Food Tomorrow. https://doi.org/10.1016/B978-0-12-816402-0.00013-6

    Article  Google Scholar 

  106. Balakrishna AK, Abdul Wazed M, Farid M (2020) A review on the effect of high pressure processing (HPP) on gelatinization and infusion of nutrients. Molecules 25:1–19. https://doi.org/10.3390/molecules25102369

    Article  CAS  Google Scholar 

  107. Balasubramaniam VMB, Martínez-Monteagudo SI, Gupta R (2015) Principles and application of high pressure-based technologies in the food industry. Annu Rev Food Sci Technol 6:435–462. https://doi.org/10.1146/annurev-food-022814-015539

    Article  CAS  PubMed  Google Scholar 

  108. Barbhuiya RI, Singha P, Singh SK (2021) A comprehensive review on impact of non-thermal processing on the structural changes of food components. Food Res Int 149:110647. https://doi.org/10.1016/j.foodres.2021.110647

    Article  CAS  PubMed  Google Scholar 

  109. Janowicz M, Ciurzyńska A, Lenart A (2021) Effect of osmotic pretreatment combined with vacuum impregnation or high pressure on the water diffusion coefficients of convection drying: Case study on apples. Foods. https://doi.org/10.3390/foods10112605

  110. Ueno S, Shigematsu T, Karo M et al (2015) Effects of high hydrostatic pressure on water absorption of adzuki beans. Foods 4:148–158. https://doi.org/10.3390/foods4020148

    Article  PubMed  PubMed Central  Google Scholar 

  111. Verma D, Kaushik N, Rao PS (2014) Application of high hydrostatic pressure as a pretreatment for osmotic dehydration of banana slices (Musa cavendishii) finish-dried by dehumidified air drying. Food Bioprocess Technol 7:1281–1297. https://doi.org/10.1007/s11947-013-1124-6

    Article  CAS  Google Scholar 

  112. Yucel U, Alpas H, Bayindirli A (2010) Evaluation of high pressure pretreatment for enhancing the drying rates of carrot, apple, and green bean. J Food Eng 98:266–272. https://doi.org/10.1016/j.jfoodeng.2010.01.006

    Article  Google Scholar 

  113. Vega-Gálvez A, Uribe E, Perez M et al (2011) Effect of high hydrostatic pressure pretreatment on drying kinetics, antioxidant activity, firmness and microstructure of Aloe vera (Aloe barbadensis Miller) gel. LWT - Food Sci Technol 44:384–391. https://doi.org/10.1016/j.lwt.2010.08.004

    Article  CAS  Google Scholar 

  114. Rastogi NK, Nguyen LT, Balasubramaniam VM (2008) Effect of pretreatments on carrot texture after thermal and pressure-assisted thermal processing. J Food Eng 88:541–547. https://doi.org/10.1016/j.jfoodeng.2008.03.016

    Article  CAS  Google Scholar 

  115. Zhang L, Qiao Y, Wang C et al (2020) Influence of high hydrostatic pressure pretreatment on properties of vacuum-freeze dried strawberry slices. Food Chem 331:127203. https://doi.org/10.1016/j.foodchem.2020.127203

    Article  CAS  PubMed  Google Scholar 

  116. Yang F, Zhang M, Mujumdar AS et al (2018) Enhancing drying efficiency and product quality using advanced pretreatments and analytical tools—an overview. Dry Technol 36:1824–1838. https://doi.org/10.1080/07373937.2018.1431658

    Article  Google Scholar 

  117. Nuñez-Mancilla Y, Pérez-Won M, Uribe E et al (2013) Osmotic dehydration under high hydrostatic pressure: effects on antioxidant activity, total phenolics compounds, vitamin C and colour of strawberry (Fragaria vesca). LWT - Food Sci Technol 52:151–156. https://doi.org/10.1016/j.lwt.2012.02.027

    Article  CAS  Google Scholar 

  118. Belmiro RH, Tribst AAL, Cristianini M (2018) Impact of high pressure processing in hydration and drying curves of common beans (Phaseolus vulgaris L.). Innov Food Sci Emerg Technol 47:279–285. https://doi.org/10.1016/j.ifset.2018.03.013

    Article  CAS  Google Scholar 

  119. George JM, Sowbhagya HB, Rastogi NK (2018) Effect of high pressure pretreatment on drying kinetics and oleoresin extraction from ginger. Dry Technol 36:1107–1116. https://doi.org/10.1080/07373937.2017.1382505

    Article  CAS  Google Scholar 

  120. Swami Hulle NR, Rao PS (2016) Effect of high pressure pretreatments on structural and dehydration characteristics of aloe vera (Aloe barbadensis Miller) cubes. Dry Technol 34:105–118. https://doi.org/10.1080/07373937.2015.1037887

    Article  CAS  Google Scholar 

  121. Kocira A, Kozłowicz K, Panasiewicz K et al (2021) Polysaccharides as edible films and coatings: characteristics and influence on fruit and vegetable quality—a review

  122. Jose A, Pareek S, Radhakrishnan E (2020) Advances in edible fruit coating materials. In: Sharma T., Deshmukh R, Sonah H (eds) Advances in Agri-Food Biotechnology., 1st ed. Springer Singapore

  123. Bhagath YB, Manjula K (2019) Influence of composite edible coating systems on preservation of fresh meat cuts and products: a brief review on their trends and applications. Int Food Res J 26:377–392

    CAS  Google Scholar 

  124. Santagata G, Mallardo S, Fasulo G et al (2018) Pectin-honey coating as novel dehydrating bioactive agent for cut fruit: enhancement of the functional properties of coated dried fruits. Food Chem 258:104–110. https://doi.org/10.1016/j.foodchem.2018.03.064

    Article  CAS  PubMed  Google Scholar 

  125. Farahmandfar R, Mohseni M, Asnaashari M (2017) Effects of quince seed, almond, and tragacanth gum coating on the banana slices properties during the process of hot air drying. Food Sci Nutr 5:1057–1064. https://doi.org/10.1002/fsn3.489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Escamilla-García M, Rodríguez-Hernández MJ, Hernández-Hernández HM et al (2018) Effect of an edible coating based on chitosan and oxidized starch on shelf life of Carica papaya L., and its physicochemical and antimicrobial properties. Coatings 8. https://doi.org/10.3390/COATINGS8090318

  127. Islam MZ, Saha T, Monalisa K, Hoque MM (2019) Effect of starch edible coating on drying characteristics and antioxidant properties of papaya. J Food Meas Charact 13:2951–2960. https://doi.org/10.1007/s11694-019-00215-3

    Article  Google Scholar 

  128. Gamboa-Santos J, Campañone LA (2019) Application of osmotic dehydration and microwave drying to strawberries coated with edible films. Dry Technol 37:1002–1012. https://doi.org/10.1080/07373937.2018.1481426

    Article  CAS  Google Scholar 

  129. Todisco KM, Janzantti NS, Santos AB et al (2018) Effects of temperature and pectin edible coatings with guava by-products on the drying kinetics and quality of dried red guava. J Food Sci Technol 55:4735–4746. https://doi.org/10.1007/s13197-018-3369-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Molina Filho L, Frascareli EC, Mauro MA (2016) Effect of an Edible pectin coating and blanching pretreatments on the air-drying kinetics of pumpkin (Cucurbita moschata). Food Bioprocess Technol 9:859–871. https://doi.org/10.1007/s11947-016-1674-5

    Article  CAS  Google Scholar 

  131. Chottanom P, Amornsin A, Yodthava N, Wunnapong S (2020) Effect of edible coating on antioxidants and certain properties of dried jerusalem artichoke. Pakistan J Biol Sci 23:271–277. https://doi.org/10.3923/pjbs.2020.271.277

    Article  CAS  Google Scholar 

  132. Adiamo OQ, Eltoum YAI, Babiker EE (2019) Effects of gum Arabic edible coatings and sun-drying on the storage life and quality of raw and blanched tomato slices. J Culin Sci Technol 17:45–58. https://doi.org/10.1080/15428052.2017.1404535

    Article  Google Scholar 

  133. Song J, Wang X, Li D et al (2018) Effect of starch osmo-coating on carotenoids, colour and microstructure of dehydrated pumpkin slices. J Food Sci Technol 55:3249–3256. https://doi.org/10.1007/s13197-018-3258-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Galus S, Kibar EAA, Gniewosz M, Kraśniewska K (2020) Novel materials in the preparation of edible films and coatings-a review. Coatings 10:1–14. https://doi.org/10.3390/coatings10070674

    Article  CAS  Google Scholar 

  135. Seifari FK, Ahari H (2020) Active edible films and coatings with enhanced properties using nanoemulsion and nanocrystals. Food Heal 3:15–22

    Google Scholar 

  136. Roy K, Thory R, Sinhmar A et al (2020) Development and characterization of nano starch-based composite films from mung bean (Vigna radiata). Int J Biol Macromol 144:242–251. https://doi.org/10.1016/j.ijbiomac.2019.12.113

    Article  CAS  PubMed  Google Scholar 

  137. Dzah CS, Duan Y, Zhang H et al (2020) The effects of ultrasound assisted extraction on yield, antioxidant, anticancer and antimicrobial activity of polyphenol extracts: a review. Food Biosci 35:100547. https://doi.org/10.1016/j.fbio.2020.100547

    Article  CAS  Google Scholar 

  138. Patidar A, Vishwakarma S, Meena D (2021) Traditional and recent development of pretreatment and drying process of grapes during raisin production: a review of novel pretreatment and drying methods of grapes. Food Front 2:46–61. https://doi.org/10.1002/fft2.64

    Article  CAS  Google Scholar 

  139. Adiletta G, Russo P, Senadeera W, Di Matteo M (2016) Drying characteristics and quality of grape under physical pretreatment. J Food Eng 172:9–18. https://doi.org/10.1016/j.jfoodeng.2015.06.031

    Article  CAS  Google Scholar 

  140. Geng Z, Huang X, Wang J et al (2022) Pulsed vacuum drying of pepper (Capsicum annuum L.): effect of high-humidity hot air impingement blanching pretreatment on drying kinetics and quality attributes. Foods 11:318. https://doi.org/10.3390/foods11030318

  141. Wang J, Yang XH, Mujumdar AS et al (2017) Effects of various blanching methods on weight loss, enzymes inactivation, phytochemical contents, antioxidant capacity, ultrastructure and drying kinetics of red bell pepper (Capsicum annuum L.). Lwt 77:337–347. https://doi.org/10.1016/j.lwt.2016.11.070

    Article  CAS  Google Scholar 

  142. Wang J, Fang XM, Mujumdar AS et al (2017) Effect of high-humidity hot air impingement blanching (HHAIB) on drying and quality of red pepper (Capsicum annuum L.). Food Chem 220:145–152. https://doi.org/10.1016/j.foodchem.2016.09.200

    Article  CAS  PubMed  Google Scholar 

  143. Xiao HW, Pan Z, Deng LZ et al (2017) Recent developments and trends in thermal blanching – a comprehensive review. Inf Process Agric 4:101–127. https://doi.org/10.1016/j.inpa.2017.02.001

    Article  Google Scholar 

  144. Wang H, Zhang Q, Mujumdar AS et al (2020) High-humidity hot air impingement blanching (HHAIB) efficiently inactivates enzymes, enhances extraction of phytochemicals and mitigates brown actions of chili pepper. Food Control 111:107050. https://doi.org/10.1016/j.foodcont.2019.107050

    Article  CAS  Google Scholar 

  145. Yu XL, Ju HY, Mujumdar AS et al (2019) Experimental and simulation studies of heat transfer in high-humidity hot air impingement blanching (HHAIB) of carrot. Food Bioprod Process 114:196–204. https://doi.org/10.1016/j.fbp.2019.01.001

    Article  Google Scholar 

  146. Liu ZL, Bai JW, Yang WX et al (2019) Effect of high-humidity hot air impingement blanching (HHAIB) and drying parameters on drying characteristics and quality of broccoli florets. Dry Technol 37:1251–1264. https://doi.org/10.1080/07373937.2018.1494185

    Article  CAS  Google Scholar 

  147. Wang J, Mujumdar AS, Deng LZ et al (2018) High-humidity hot air impingement blanching alters texture, cell-wall polysaccharides, water status and distribution of seedless grape. Carbohydr Polym 194:9–17. https://doi.org/10.1016/j.carbpol.2018.04.023

    Article  CAS  PubMed  Google Scholar 

  148. Deng LZ, Pan Z, Mujumdar AS et al (2019) High-humidity hot air impingement blanching (HHAIB) enhances drying quality of apricots by inactivating the enzymes, reducing drying time and altering cellular structure. Food Control 96:104–111. https://doi.org/10.1016/j.foodcont.2018.09.008

    Article  CAS  Google Scholar 

  149. Deng LZ, Mujumdar AS, Yang XH et al (2018) High humidity hot air impingement blanching (HHAIB) enhances drying rate and softens texture of apricot via cell wall pectin polysaccharides degradation and ultrastructure modification. Food Chem 261:292–300. https://doi.org/10.1016/j.foodchem.2018.04.062

    Article  CAS  PubMed  Google Scholar 

  150. Wang J, Xiao HW, Fang XM et al (2020) Effect of high-humidity hot air impingement blanching and pulsed vacuum drying on phytochemicals content, antioxidant capacity, rehydration kinetics and ultrastructure of Thompson seedless grape. Dry Technol 0:1–14. https://doi.org/10.1080/07373937.2020.1845721

  151. Dai J-W, Wang J, Yang S-L et al (2020) High humidity air-impingement blanching (HHAIB) improves drying characteristics and quality of ground-cover chrysanthemum heads. Int J Food Eng. https://doi.org/10.1515/ijfe-2020-0121

  152. Bai JW, Sun DW, Xiao HW et al (2013) Novel high-humidity hot air impingement blanching (HHAIB) pretreatment enhances drying kinetics and color attributes of seedless grapes. Innov Food Sci Emerg Technol 20:230–237. https://doi.org/10.1016/j.ifset.2013.08.011

    Article  CAS  Google Scholar 

  153. Shewale SR, Rajoriya D, Hebbar HU (2019) Low humidity air drying of apple slices: effect of EMR pretreatment on mass transfer parameters, energy efficiency and quality. Innov Food Sci Emerg Technol 55:1–10. https://doi.org/10.1016/j.ifset.2019.05.006

    Article  CAS  Google Scholar 

  154. Mothibe KJ, Zhang M, Mujumdar AS et al (2014) Effects of ultrasound and microwave pretreatments of apple before spouted bed drying on rate of dehydration and physical properties. Dry Technol 32:1848–1856. https://doi.org/10.1080/07373937.2014.952381

    Article  CAS  Google Scholar 

  155. Okonkwo CE, Moses OI, Nwonuma C et al (2022) Infrared and microwave as a dry blanching tool for Irish potato: product quality, cell integrity, and artificial neural networks (ANNs) modeling of enzyme inactivation kinetic. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2022.103010

    Article  Google Scholar 

  156. Chen J, Venkitasamy C, Shen Q et al (2018) Development of healthy crispy carrot snacks using sequential infrared blanching and hot air drying method. Lwt 97:469–475. https://doi.org/10.1016/j.lwt.2018.07.026

    Article  CAS  Google Scholar 

  157. Feng Y, Wu B, Yu X et al (2018) Effect of catalytic infrared dry-blanching on the processing and quality characteristics of garlic slices. Food Chem 266:309–316. https://doi.org/10.1016/j.foodchem.2018.06.012

    Article  CAS  PubMed  Google Scholar 

  158. Wu B, Guo Y, Wang J et al (2018) Effect of thickness on non-fried potato chips subjected to infrared radiation blanching and drying. J Food Eng 237:249–255. https://doi.org/10.1016/j.jfoodeng.2018.05.030

    Article  CAS  Google Scholar 

  159. Guiamba IRF, Svanberg U, Ahrné L (2015) Effect of infrared blanching on enzyme activity and retention of β-carotene and vitamin C in dried mango. J Food Sci 80:E1235–E1242. https://doi.org/10.1111/1750-3841.12866

    Article  CAS  PubMed  Google Scholar 

  160. Nalawade SA, Sinha A, Hebbar HU (2018) Infrared based dry blanching and hybrid drying of bitter gourd slices: process efficiency evaluation. J Food Process Eng. https://doi.org/10.1111/jfpe.12672

    Article  Google Scholar 

  161. Lao Y, Zhang M, Chitrakar B et al (2019) Efficient plant foods processing based on infrared heating. Food Rev Int 35:640–663. https://doi.org/10.1080/87559129.2019.1600537

    Article  CAS  Google Scholar 

  162. Zielinska M, Zielinska D, Markowski M (2018) The effect of microwave-vacuum pretreatment on the drying kinetics, color and the content of bioactive compounds in osmo-microwave-vacuum dried cranberries (Vaccinium macrocarpon). Food Bioprocess Technol 11:585–602. https://doi.org/10.1007/s11947-017-2034-9

    Article  CAS  Google Scholar 

  163. Srimagal A, Mishra S, Pradhan RC (2017) Effects of ethyl oleate and microwave blanching on drying kinetics of bitter gourd. J Food Sci Technol 54:1192–1198. https://doi.org/10.1007/s13197-017-2518-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Delfiya A, Mohapatra D, Kotwaliwale N, Mishra AK (2018) Effect of microwave blanching and brine solution pretreatment on the quality of carrots dried in solar-biomass hybrid dryer. J Food Process Preserv 42:1–14. https://doi.org/10.1111/jfpp.13510

    Article  CAS  Google Scholar 

  165. Abano E (2020) Microwave and blanching pretreatments for hot air drying of orange-fleshed sweet potato slices (ipomoea batatas). Int J Food Sci. https://doi.org/10.1155/2020/8872429

    Article  PubMed  PubMed Central  Google Scholar 

  166. Liu P, Mujumdar AS, Zhang M, Jiang H (2015) Comparison of three blanching treatments on the color and anthocyanin level of the microwave-assisted spouted bed drying of purple flesh sweet potato. Dry Technol 33:66–71. https://doi.org/10.1080/07373937.2014.936558

    Article  CAS  Google Scholar 

  167. Rana R, Islam A, Sabuz AA et al (2020) Effect of blanching pretreatments on the physicochemical and drying characteristics of Chui Jhal ( Piper chaba H.) stem. Int J Food Sci Agric 4:482–491. https://doi.org/10.26855/ijfsa.2020.12.017

  168. Su D, Lv W, Wang Y et al (2020) Influence of microwave hot-air flow rolling dry-blanching on microstructure, water migration and quality of pleurotus eryngii during hot-air drying. Food Control 114:107228. https://doi.org/10.1016/j.foodcont.2020.107228

    Article  CAS  Google Scholar 

  169. Koskiniemi CB, Den TV, Simunovic J, McFeeters RF (2011) Improvement of heating uniformity in packaged acidified vegetables pasteurized with a 915 MHz continuous microwave system. J Food Eng 105:149–160. https://doi.org/10.1016/j.jfoodeng.2011.02.019

    Article  Google Scholar 

  170. Onwude DI, Iranshahi K, Rubinetti D et al (2021) Scaling-up electrohydrodynamic drying for energy-efficient food drying via physics-based simulations. J Clean Prod 329:129690. https://doi.org/10.1016/j.jclepro.2021.129690

    Article  Google Scholar 

  171. Defraeye T, Martynenko A (2018) Electrohydrodynamic drying of food: new insights from conjugate modeling. J Clean Prod 198:269–284. https://doi.org/10.1016/j.jclepro.2018.06.250

    Article  Google Scholar 

  172. Tamarit-Pino Y, Batías-Montes JM, Segura-Ponce LA et al (2020) Effect of electrohydrodynamic pretreatment on drying rate and rehydration properties of Chilean sea cucumber (Athyonidium chilensis). Food Bioprod Process 123:284–295. https://doi.org/10.1016/j.fbp.2020.07.012

    Article  CAS  Google Scholar 

  173. Chen Y, Martynenko A (2018) Combination of hydrothermodynamic (HTD) processing and different drying methods for natural blueberry leather. Lwt 87:470–477. https://doi.org/10.1016/j.lwt.2017.09.030

    Article  CAS  Google Scholar 

  174. Defraeye T, Martynenko A (2018) Future perspectives for electrohydrodynamic drying of biomaterials. Dry Technol 36:1–10. https://doi.org/10.1080/07373937.2017.1326130

    Article  Google Scholar 

  175. Anukiruthika T, Moses JA, Anandharamakrishnan C (2021) Electrohydrodynamic drying of foods: principle, applications, and prospects. J Food Eng 295:110449. https://doi.org/10.1016/j.jfoodeng.2020.110449

    Article  Google Scholar 

  176. Amiri A, Mousakhani-Ganjeh A, Shafiekhani S et al (2019) Effect of high voltage electrostatic field thawing on the functional and physicochemical properties of myofibrillar proteins. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2019.102191

    Article  Google Scholar 

  177. Polat A, Izli N (2022) Determination of drying kinetics and quality parameters for drying apricot cubes with electrohydrodynamic, hot air and combined electrohydrodynamic-hot air drying methods. Dry Technol 40:527–542. https://doi.org/10.1080/07373937.2020.1812633

    Article  CAS  Google Scholar 

  178. Ni J, Ding C, Zhang Y et al (2020) Effect of electrohydrodynamic partially combined with oven drying on Chinese wolfberry. Int J Appl Electromagn Mech 63:465–482. https://doi.org/10.3233/JAE-190066

    Article  Google Scholar 

  179. Nadery Dehsheikh F, Taghian Dinani S (2020) Influence of coating pretreatment with carboxymethyl cellulose in an electrohydrodynamic system on convective drying of banana slices. J Food Process Eng 43:1–16. https://doi.org/10.1111/jfpe.13308

    Article  Google Scholar 

  180. Polat A, Izli N (2022) Drying characteristics and quality evaluation of ‘Ankara’ pear dried by electrohydrodynamic-hot air (EHD) method. Food Control. https://doi.org/10.1016/j.foodcont.2021.108774

    Article  Google Scholar 

  181. Darvishi H, Hosainpour A, Nargesi F, Fadavi A (2015) Exergy and energy analyses of liquid food in an Ohmic heating process: a case study of tomato production. Innov Food Sci Emerg Technol 31:73–82. https://doi.org/10.1016/j.ifset.2015.06.012

    Article  Google Scholar 

  182. Shao L, Zhao Y, Zou B et al (2021) Ohmic heating in fruit and vegetable processing: quality characteristics, enzyme inactivation, challenges and prospective. Trends Food Sci Technol 118:601–616. https://doi.org/10.1016/j.tifs.2021.10.009

    Article  CAS  Google Scholar 

  183. Bhat S, Saini CS, Sharma HK (2017) Changes in total phenolic content and color of bottle gourd (Lagenaria siceraria) juice upon conventional and ohmic blanching. Food Sci Biotechnol 26:29–36. https://doi.org/10.1007/s10068-017-0004-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Cappato LP, Ferreira MVS, Guimaraes JT et al (2017) Ohmic heating in dairy processing: relevant aspects for safety and quality. Trends Food Sci Technol 62:104–112. https://doi.org/10.1016/j.tifs.2017.01.010

    Article  CAS  Google Scholar 

  185. Gavahian M, Sastry S, Farhoosh R, Farahnaky A (2020) Ohmic heating as a promising technique for extraction of herbal essential oils: understanding mechanisms, recent findings, and associated challenges. Adv Food Nutr Res 91:227–273. https://doi.org/10.1016/BS.AFNR.2019.09.001

    Article  CAS  PubMed  Google Scholar 

  186. Garcia CC, Caetano LC, de Souza SK, Mauro MA (2014) Influence of edible coating on the drying and quality of papaya (Carica papaya). Food Bioprocess Technol 7:2828–2839. https://doi.org/10.1007/s11947-014-1350-6

    Article  Google Scholar 

  187. Kutlu N (2022) Optimization of ohmic heating-assisted osmotic dehydration as a pretreatment for microwave drying of quince. Food Sci Technol Int 28:60–71. https://doi.org/10.1177/1082013221991613

    Article  CAS  PubMed  Google Scholar 

  188. Kutlu N, Yilmaz MS, Arslan H et al (2018) The effect of ohmic heating pretreatment on drying of apple. 21st Int Dry Symp

  189. Turgut SS, Küçüköner E, Feyissa AH, Karacabey E (2021) A novel drying system – simultaneous use of ohmic heating with convectional air drying: system design and detailed examination using CFD. Innov Food Sci Emerg Technol. https://doi.org/10.1016/j.ifset.2021.102727

    Article  Google Scholar 

  190. İncedayi B (2020) Assessment of pretreatments on drying kinetics and quality characteristics of thin-layer dried red pepper. Turkish J Agric For 44:543–556. https://doi.org/10.3906/tar-2001-62

    Article  CAS  Google Scholar 

  191. Poojitha P, Athmaselvi KA (2020) Effect of ohmic blanching on drying kinetics, physicochemical and functional properties of garlic powder. J Food Sci Technol. https://doi.org/10.1007/s13197-020-04676-z

    Article  Google Scholar 

  192. Ceclu L, Nistor O-V, Andronoiu DG et al (2020) Novel hybrid drying methods, preceded by different pretreatments, used to obtain pumpkin powder. INCREaSE 2019:198–212. https://doi.org/10.1007/978-3-030-30938-1_16

    Article  Google Scholar 

  193. Soghani BN, Azadbakht M, Darvishi H (2018) Ohmic blanching of white mushroom and its pretreatment during microwave drying. Heat Mass Transf und Stoffuebertragung 54:3715–3725. https://doi.org/10.1007/s00231-018-2393-4

    Article  Google Scholar 

  194. Samaranayake CP, Sastry SK (2005) Electrode and pH effects on electrochemical reactions during ohmic heating. J Electroanal Chem 577:125–135. https://doi.org/10.1016/j.jelechem.2004.11.026

    Article  CAS  Google Scholar 

  195. Mercali GD, Schwartz S, Marczak LDF et al (2014) Ascorbic acid degradation and color changes in acerola pulp during ohmic heating: effect of electric field frequency. J Food Eng 123:1–7. https://doi.org/10.1016/j.jfoodeng.2013.09.011

    Article  CAS  Google Scholar 

  196. Barimah AO, Chen P, Yin L et al (2022) SERS nanosensor of 3-aminobenzeneboronic acid labeled Ag for detecting total arsenic in black tea combined with chemometric algorithms. J Food Compos Anal 110:104588. https://doi.org/10.1016/j.jfca.2022.104588

    Article  CAS  Google Scholar 

  197. European Parliament, European Council (2006) Directive No. 2006/25/EC, of 5 April 2006, on the minimum health and safety requirements regarding the exposure of workers to risks arising from physical agents (artificial optical radiation). Off J Eur Union 114/38–114/59

  198. Ziuzina D, Misra NN, Han L et al (2020) Investigation of a large gap cold plasma reactor for continuous in-package decontamination of fresh strawberries and spinach. Innov Food Sci Emerg Technol 59:102229. https://doi.org/10.1016/j.ifset.2019.102229

    Article  CAS  Google Scholar 

  199. European Commission (2006) Commission Regulation (EC) No 1881/2006 setting maximum levels for certain contaminants in foodstuffs. Off J Eur Union 5–24

  200. European Commission (1998) Drinking water legislation - Environment. https://ec.europa.eu/environment/water/water-drink/legislation_en.html. Accessed 16 Sep 2022

  201. Böger BR, Salviato A, Valezi DF et al (2018) Optimization of ultrasound-assisted extraction of grape-seed oil to enhance process yield and minimize free radical formation. J Sci Food Agric 98:5019–5026. https://doi.org/10.1002/jsfa.9036

    Article  CAS  PubMed  Google Scholar 

  202. Bizymis AP, Tzia C (2021) Edible films and coatings: properties for the selection of the components, evolution through composites and nanomaterials, and safety issues. Crit Rev Food Sci Nutr 0:1–16. https://doi.org/10.1080/10408398.2021.1934652

  203. Malakar A, Kanel SR, Ray C et al (2021) Nanomaterials in the environment, human exposure pathway, and health effects: a review. Sci Total Environ 759:143470. https://doi.org/10.1016/j.scitotenv.2020.143470

    Article  CAS  PubMed  Google Scholar 

  204. European Commission (2012) Commission Staff Working Paper: types and uses of nanomaterials, indcluding safety aspects

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isaac Duah Boateng.

Ethics declarations

Conflict of Interest

The author declares no competing interests.

Dedication

I dedicate this article to my late father George Kofi Boateng. This month is exactly 20 years that he died of stroke. May his soul rest in perfect peace and God be with him until we meet again.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Nonthermal and thermal assisted drying of fruits and vegetables in the last 5 years were reviewed.

• A critical review of their potential and drawbacks in the physicochemical properties was provided.

• Safety aspects of various emerging pretreatment of fruits and vegetables were discussed.

• Future studies on the improvement of these technologies were provided.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boateng, I.D. Thermal and Nonthermal Assisted Drying of Fruits and Vegetables. Underlying Principles and Role in Physicochemical Properties and Product Quality. Food Eng Rev 15, 113–155 (2023). https://doi.org/10.1007/s12393-022-09326-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-022-09326-y

Keywords

Navigation