Skip to main content

Advertisement

Log in

Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Carotenoids, chlorophylls, betalains and anthocyanins from natural sources have gained popularity due to the benefits to the health of consumers and their multiple uses in the food and other industries. Specifically in the food industry, these pigments are used or could be used as food colorants; however, their use could be affected by environmental factors endangering their stability. Microencapsulation by spray drying is a technique that helps to preserve pigments after incorporating a coating or carrier agent that protects and eases their integration to foods. This review describes the different steps (extraction, pretreatments of the extract, homogenization of the encapsulated agent, spray drying, and stability of the powder obtained) by which microencapsulated pigments can be obtained from different natural sources. In addition, mathematical methods are analyzed to explore how the different parameters affect the drying associated responses. The use of some common and uncommon encapsulating agents is also discussed. It is also mentioned the obtention of some pigments with the spray drying technic. Finally, a section about the uses of microencapsulated pigments in recent years is included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Clydesdale FM (1993) Color as a factor in food choice. Crit Rev Food Sci Nutr 33(1):83–101. https://doi.org/10.1080/10408399309527614

    Article  CAS  PubMed  Google Scholar 

  2. DuBOSE CN, Cardello AV, Maller O (1980) Effects of colorants and flavorants on identification, perceived flavor intensity, and hedonic quality of fruit-flavored beverages and cake. J Food Sci 45(5):1393–1399. https://doi.org/10.1111/j.1365-2621.1980.tb06562.x

    Article  Google Scholar 

  3. Gilbert AN, Martin R, Kemp SE (1996) Cross-modal correspondence between vision and olfaction: the color of smells. Am J Psychol 109(3):335. https://doi.org/10.2307/1423010

    Article  CAS  PubMed  Google Scholar 

  4. Kemp SE, Gilbert AN (1997) Odor intensity and color lightness are correlated sensory dimensions. Am J Psychol 110(1):35. https://doi.org/10.2307/1423699

    Article  CAS  PubMed  Google Scholar 

  5. Porcherot C, Delplanque S, Gaudreau N, Cayeux I (2013) Seeing, smelling, feeling! Is there an influence of color on subjective affective responses to perfumed fabric softeners? Food Qual Prefer 27(2):161–169. https://doi.org/10.1016/j.foodqual.2012.06.011

    Article  Google Scholar 

  6. Spence C, Levitan CA, Shankar MU, Zampini M (2010) Does food color influence taste and flavor perception in humans? Chemosens Percept 3(1):68–84. https://doi.org/10.1007/s12078-010-9067-z

    Article  Google Scholar 

  7. Gilbert AN, Fridlund AJ, Lucchina LA (2016) The color of emotion: a metric for implicit color associations. Food Qual Prefer 52:203–210. https://doi.org/10.1016/j.foodqual.2016.04.007

    Article  Google Scholar 

  8. Ling B, Tang J, Kong F, Mitcham EJ, Wang S (2015) Kinetics of food quality changes during thermal processing: a review. Food Bioprocess Technol 8(2):343–358. https://doi.org/10.1007/s11947-014-1398-3

    Article  CAS  Google Scholar 

  9. Scotter MJ (2011) Emerging and persistent issues with artificial food colours: natural colour additives as alternatives to synthetic colours in food and drink: emerging and persistent issues with artificial food colours. Quality Assurance and Safety of Crops & Foods 3(1):28–39. https://doi.org/10.1111/j.1757-837X.2010.00087.x

    Article  CAS  Google Scholar 

  10. Coultate T, Blackburn RS (2018) Food colorants: their past, present and future. Color Technol 134(3):165–186. https://doi.org/10.1111/cote.12334

    Article  CAS  Google Scholar 

  11. Miguel M (2018) Betalains in some species of the Amaranthaceae Family: a review. Antioxidants 7(4):53. https://doi.org/10.3390/antiox7040053

    Article  CAS  PubMed Central  Google Scholar 

  12. Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonnet E, Müller MJ, Oberritter H, Schulze M, Stehle P, Watzl B (2012) Critical review: vegetables and fruit in the prevention of chronic diseases. Eur J Nutr 51(6):637–663. https://doi.org/10.1007/s00394-012-0380-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He FJ, Nowson CA, Lucas M, MacGregor GA (2007) Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. J Hum Hypertens 21(9):717–728. https://doi.org/10.1038/sj.jhh.1002212

    Article  CAS  PubMed  Google Scholar 

  14. Kulczyński B, Gramza-Michałowska A, Kobus-Cisowska J, Kmiecik D (2017) The role of carotenoids in the prevention and treatment of cardiovascular disease – current state of knowledge. Journal of Functional Foods 38:45–65. https://doi.org/10.1016/j.jff.2017.09.001

    Article  CAS  Google Scholar 

  15. Leyva-Jimenez FJ, Lozano-Sanchez J, Borras-Linares I, de la Luz Cadiz-Gurrea M, Mahmoodi-Khaledi E (2019) Potential antimicrobial activity of honey phenolic compounds against Gram positive and Gram negative bacteria. LWT 101:236–245. https://doi.org/10.1016/j.lwt.2018.11.015

    Article  CAS  Google Scholar 

  16. Sarı A, Şahin H, Özsoy N, Özbek Çelik B (2019) Phenolic compounds and in vitro antioxidant, anti-inflammatory, antimicrobial activities of Scorzonera hieraciifolia Hayek roots. S Afr J Bot 125:116–119. https://doi.org/10.1016/j.sajb.2019.07.009

    Article  CAS  Google Scholar 

  17. Zhang Q, de Mejia Gonzalez E, Luna-Vital D, Tao T, Chandrasekaran S, Chatham L, Juvik J, Singh V, Kumar D (2019) Relationship of phenolic composition of selected purple maize (Zea mays L.) genotypes with their anti-inflammatory, anti-adipogenic and anti-diabetic potential. Food Chem 289:739–750. https://doi.org/10.1016/j.foodchem.2019.03.116

    Article  CAS  PubMed  Google Scholar 

  18. Bakry AM, Abbas S, Ali B, Majeed H, Abouelwafa MY, Mousa A, Liang L (2016) Microencapsulation of oils: a comprehensive review of benefits, techniques, and applications: encapsulation of marine, vegetable, essential oils. Comprehensive Reviews in Food Science and Food Safety 15(1):143–182. https://doi.org/10.1111/1541-4337.12179

    Article  CAS  PubMed  Google Scholar 

  19. Gharsallaoui A, Roudaut G, Chambin O, Voilley A, Saurel R (2007) Applications of spray-drying in microencapsulation of food ingredients: an overview. Food Res Int 40(9):1107–1121. https://doi.org/10.1016/j.foodres.2007.07.004

    Article  CAS  Google Scholar 

  20. Santos D, Maurício AC, Sencadas V, Santos JD, Fernandes MH, Gomes PS (2018) Spray drying: an overview. In: Pignatello R and Musumeci T (eds) Biomaterials—physics and chemistry—new edition. InTech. https://doi.org/10.5772/intechopen.72247

  21. Santana AA, Cano-Higuita DM, de Oliveira RA, Telis VRN (2016) Influence of different combinations of wall materials on the microencapsulation of jussara pulp (Euterpe edulis) by spray drying. Food Chem 212:1–9. https://doi.org/10.1016/j.foodchem.2016.05.148

    Article  CAS  PubMed  Google Scholar 

  22. Steiner BM, McClements DJ, Davidov-Pardo G (2018) Encapsulation systems for lutein: a review. Trends Food Sci Technol 82:71–81. https://doi.org/10.1016/j.tifs.2018.10.003

    Article  CAS  Google Scholar 

  23. de Boer FY, Imhof A, Velikov KP (2019) Encapsulation of colorants by natural polymers for food applications. Color Technol 135(3):183–194. https://doi.org/10.1111/cote.12393

    Article  CAS  Google Scholar 

  24. Janiszewska-Turak E (2017) Carotenoids microencapsulation by spray drying method and supercritical micronization. Food Res Int 99:891–901. https://doi.org/10.1016/j.foodres.2017.02.001

    Article  CAS  PubMed  Google Scholar 

  25. Özkan G, Ersus Bilek S (2014) Microencapsulation of natural food colourants. International Journal of Nutrition and Food Sciences 3(3):145. https://doi.org/10.11648/j.ijnfs.20140303.13

    Article  CAS  Google Scholar 

  26. Huang D (2011) Modeling of particle formation during spray drying. EuroDrying’ 2011, 1–3. Palma. Balearic Island, Spain

  27. Ngamwonglumlert L, Devahastin S, Chiewchan N (2017) Natural colorants: pigment stability and extraction yield enhancement via utilization of appropriate pretreatment and extraction methods. Crit Rev Food Sci Nutr 57(15):3243–3259. https://doi.org/10.1080/10408398.2015.1109498

    Article  CAS  PubMed  Google Scholar 

  28. Soquetta MB, de Marsillac Terra L, Bastos CP (2018) Green technologies for the extraction of bioactive compounds in fruits and vegetables. CyTA - Journal of Food 16(1):400–412. https://doi.org/10.1080/19476337.2017.1411978

    Article  CAS  Google Scholar 

  29. Ahmad M, Ashraf B, Gani A, Gani A (2017) Microencapsulation of saffron anthocyanins using β glucan and β cyclodextrin: microcapsule characterization, release behaviour & antioxidant potential during in-vitro digestion. Int J Biol Macromol 109:435–442. https://doi.org/10.1016/j.ijbiomac.2017.11.122

    Article  CAS  PubMed  Google Scholar 

  30. Akhavan Mahdavi S, Jafari SM, Assadpour E, Ghorbani M (2016) Storage stability of encapsulated barberry’s anthocyanin and its application in jelly formulation. J Food Eng 181:59–66. https://doi.org/10.1016/j.jfoodeng.2016.03.003

    Article  CAS  Google Scholar 

  31. Ochoa-Velasco CE, Salazar-González C, Cid-Ortega S, Guerrero-Beltrán JA (2017) Antioxidant characteristics of extracts of Hibiscus sabdariffa calyces encapsulated with mesquite gum. J Food Sci Technol 54(7):1747–1756. https://doi.org/10.1007/s13197-017-2564-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jimenez-Gonzalez O, Ruiz-Espinosa H, Luna-Guevara JJ, Ochoa-Velasco CE, Luna Vital D, Luna-Guevara ML (2018) A potential natural coloring agent with antioxidant properties: microencapsulates of Renealmia alpinia (Rottb.) Maas fruit pericarp. NFS Journal 13:1–9. https://doi.org/10.1016/j.nfs.2018.08.001

    Article  Google Scholar 

  33. Jafari SM, Ghalegi Ghalenoei M, Dehnad D (2017) Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technol 311:59–65. https://doi.org/10.1016/j.powtec.2017.01.070

    Article  CAS  Google Scholar 

  34. Bernstein A, Noreña CPZ (2015) Encapsulation of red cabbage (Brassica oleracea L. var. capitata L. f. Rubra) anthocyanins by spray drying using different encapsulating agents. Braz Arch Biol Technol 58(6):944–952. https://doi.org/10.1590/S1516-89132015060226

  35. Waterhouse GIN, Sun-Waterhouse D, Su G, Zhao H, Zhao M (2017) Spray-drying of antioxidant-rich blueberry waste extracts; interplay between waste pretreatments and spray-drying process. Food Bioprocess Technol 10(6):1074–1092. https://doi.org/10.1007/s11947-017-1880-9

    Article  CAS  Google Scholar 

  36. Rubio FTV, Haminiuk CWI, Martelli-Tosi M, da Silva MP, Makimori GYF, Favaro-Trindade CS (2020) Utilization of grape pomaces and brewery waste Saccharomyces cerevisiae for the production of bio-based microencapsulated pigments. Food Res Int 136:109470. https://doi.org/10.1016/j.foodres.2020.109470

    Article  CAS  PubMed  Google Scholar 

  37. Tatar Turan F, Cengiz A, Sandıkçı D, Dervisoglu M, Kahyaoglu T (2016) Influence of an ultrasonic nozzle in spray-drying and storage on the properties of blueberry powder and microcapsules: influence of ultrasonic nozzle in spray-drying and storage. J Sci Food Agric 96(12):4062–4076. https://doi.org/10.1002/jsfa.7605

    Article  CAS  PubMed  Google Scholar 

  38. Sobieralska M, Kurek MA (2019) Beta-glucan as wall material in encapsulation of elderberry (Sambucus nigra) extract. Plant Foods Hum Nutr 74(3):334–341. https://doi.org/10.1007/s11130-019-00741-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sarabandi K, Peighambardoust SH, Mahoonak AS, Samaei SP (2017) Effect of carrier types and compositions on the production yield, microstructure and physical characteristics of spray dried sour cherry juice concentrate. Journal of Food Measurement and Characterization 11(4):1602–1612. https://doi.org/10.1007/s11694-017-9540-3

    Article  Google Scholar 

  40. Ruiz Canizales J, Heredia JB, Avila JAD, Santana TJM, Ochoa MAV, Sánchez RMR, Aguilar GAG (2019) Microencapsulation of blue maize (Zea mays L.) polyphenols in two matrices: their stability during storage and in vitro digestion release. J Food Meas Charact 13(1):892–900. https://doi.org/10.1007/s11694-018-0003-2

  41. Martins DRDS, Sanjinez-Argandoña EJ, Ortega NDF, Garcia VADS, Oliveira VS, Cardoso CAL (2020) Production and characterization of Hibiscus sabdariffa by spray dryer using different sprinkler nozzles and carrier agents. J Food Process Preserv 44(7). https://doi.org/10.1111/jfpp.14493

  42. Archaina D, Vasile F, Jiménez‐Guzmán J, Alamilla‐Beltrán L, Schebor C (2019) Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin‐gum Arabic mixtures. J Food Process Preserv 43(9): 1–9. https://doi.org/10.1111/jfpp.14065

  43. Pereira DCDS, Beres C, Gomes FDS, Tonon RV, Cabral LMC (2020) Spray drying of juçara pulp aiming to obtain a “pure” powdered pulp without using carrier agents. Drying Technol 38(9):1175–1185. https://doi.org/10.1080/07373937.2019.1625363

    Article  CAS  Google Scholar 

  44. Yu Y, Lv Y (2019) Degradation kinetic of anthocyanins from rose (Rosa rugosa) as prepared by microencapsulation in freeze-drying and spray-drying. Int J Food Prop 22(1):2009–2021. https://doi.org/10.1080/10942912.2019.1701011

    Article  CAS  Google Scholar 

  45. Pieczykolan E, Kurek MA (2019) Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. Int J Biol Macromol 129:665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073

    Article  CAS  PubMed  Google Scholar 

  46. Ramakrishnan Y, Adzahan NM, Yusof YA, Muhammad K (2018) Effect of wall materials on the spray drying efficiency, powder properties and stability of bioactive compounds in tamarillo juice microencapsulation. Powder Technol 328:406–414. https://doi.org/10.1016/j.powtec.2017.12.018

    Article  CAS  Google Scholar 

  47. Antigo JLD, Bergamasco RDC, Madrona GS (2018) Effect of ph on the stability of red beet extract (Beta vulgaris L.) microcapsules produced by spray drying or freeze drying. Food Sci Technol 38(1):72–77. https://doi.org/10.1590/1678-457x.34316

  48. Bazaria B, Kumar P (2017) Effect of dextrose equivalency of maltodextrin together with Arabic gum on properties of encapsulated beetroot juice. Journal of Food Measurement and Characterization 11(1):156–163. https://doi.org/10.1007/s11694-016-9382-4

    Article  Google Scholar 

  49. Otálora MC, Carriazo JG, Osorio C, Nazareno MA (2018) Encapsulation of cactus (Opuntia megacantha) betaxanthins by ionic gelation and spray drying: a comparative study. Food Res Int 111:423–430. https://doi.org/10.1016/j.foodres.2018.05.058

    Article  CAS  PubMed  Google Scholar 

  50. Otálora MC, Carriazo JG, Iturriaga L, Nazareno MA, Osorio C (2015) Microencapsulation of betalains obtained from cactus fruit (Opuntia ficus-indica) by spray drying using cactus cladode mucilage and maltodextrin as encapsulating agents. Food Chem 187:174–181. https://doi.org/10.1016/j.foodchem.2015.04.090

    Article  CAS  PubMed  Google Scholar 

  51. García-Lucas KA, Méndez-Lagunas LL, Rodríguez-Ramírez J, Campanella OH, Patel BK, Barriada-Bernal LG (2017) Physical properties of spray dryed Stenocereus griseus pitaya juice powder. J Food Process Eng 40(3):e12470. https://doi.org/10.1111/jfpe.12470

    Article  CAS  Google Scholar 

  52. Vargas-Campos L, Valle-Guadarrama S, Martínez-Bustos F, Salinas-Moreno Y, Lobato-Calleros C, Calvo-López AD (2018) Encapsulation and pigmenting potential of betalains of pitaya (Stenocereus pruinosus) fruit. J Food Sci Technol 55(7):2436–2445. https://doi.org/10.1007/s13197-018-3161-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Delia SC, Chávez GM, León-Martínez Frank M, Araceli SGP, Irais AL, Franco AA (2019) Spray drying microencapsulation of betalain rich extracts from Escontria chiotilla and Stenocereus queretaroensis fruits using cactus mucilage. Food Chem 272:715–722. https://doi.org/10.1016/j.foodchem.2018.08.069

    Article  CAS  PubMed  Google Scholar 

  54. Antigo JLD, Stafussa AP, de Bergamasco RC, Madrona GS (2020) Chia seed mucilage as a potential encapsulating agent of a natural food dye. J Food Eng 285:110101. https://doi.org/10.1016/j.jfoodeng.2020.110101

    Article  CAS  Google Scholar 

  55. Kuhn F, Azevedo ES, Noreña CPZ (2020) Behavior of inulin, polydextrose, and egg albumin as carriers of Bougainvillea glabra bracts extract: rheological performance and powder characterization. J Food Process Preserv. https://doi.org/10.1111/jfpp.14834

    Article  Google Scholar 

  56. Hernández-Martínez AR, Torres D, Molina GA, Esparza R, Quintanilla F, Martínez-Bustos F, Estevez M (2017) Stability comparison between microencapsulated red-glycosidic pigments and commercial FD&C Red 40 dye for food coloring. J Mater Sci 52(9):5014–5026. https://doi.org/10.1007/s10853-016-0739-1

    Article  CAS  Google Scholar 

  57. Carmo EL, Teodoro RAR, Campelo PH, Figueiredo JDA, Botrel DA, Fernandes RVDB, Borges SV (2019) The use of different temperatures and inulin: whey protein isolate ratios in the spray drying of beetroot juice. J Food Process Preserv 43(10). https://doi.org/10.1111/jfpp.14113

  58. Čakarević J, Šeregelj V, Tumbas Šaponjac V, Ćetković G, Čanadanović Brunet J, Popović S, Kostić MH, Popović L (2020) Encapsulation of beetroot juice: a study on the application of pumpkin oil cake protein as new carrier agent. J Microencapsul 37(2):121–133. https://doi.org/10.1080/02652048.2019.1705408

    Article  CAS  PubMed  Google Scholar 

  59. Lee CG, Ahmed M, Jiang GH, Eun JB (2017) Color, bioactive compounds and morphological characteristics of encapsulated Asian pear juice powder during spray drying. J Food Sci Technol 54(9):2717–2727. https://doi.org/10.1007/s13197-017-2708-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Gomes WF, França FRM, Denadai M, Andrade JKS, Oliveira EMDS, de Brito ES, Rodrigues S, Narain N (2018) Effect of freeze- and spray-drying on physico-chemical characteristics, phenolic compounds and antioxidant activity of papaya pulp. J Food Sci Technol 55(6):2095–2102. https://doi.org/10.1007/s13197-018-3124-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Sun-Waterhouse D, Waterhouse GIN (2015) Spray-drying of green or gold kiwifruit juice–milk mixtures; novel formulations and processes to retain natural fruit colour and antioxidants. Food Bioprocess Technol 8(1):191–207. https://doi.org/10.1007/s11947-014-1397-4

    Article  CAS  Google Scholar 

  62. Zotarelli MF, da Silva VM, Durigon A, Hubinger MD, Laurindo JB (2017) Production of mango powder by spray drying and cast-tape drying. Powder Technol 305:447–454. https://doi.org/10.1016/j.powtec.2016.10.027

    Article  CAS  Google Scholar 

  63. Wong CW, Tan HH (2017) Production of spray-dried honey jackfruit (Artocarpus heterophyllus) powder from enzymatic liquefied puree. J Food Sci Technol 54(2):564–571. https://doi.org/10.1007/s13197-017-2501-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Tupuna DS, Paese K, Guterres SS, Jablonski A, Flôres SH, de Oliveira Rios A (2018) Encapsulation efficiency and thermal stability of norbixin microencapsulated by spray-drying using different combinations of wall materials. Ind Crops Prod 111:846–855. https://doi.org/10.1016/j.indcrop.2017.12.001

    Article  CAS  Google Scholar 

  65. Lee KC, Eun JB, Hwang SJ (2016) Physicochemical properties and sensory evaluation of mandarin (Citrus unshiu) beverage powder spray-dried at different inlet air temperatures with different amounts of a mixture of maltodextrin and corn syrup. Food Science and Biotechnology 25(5):1345–1351. https://doi.org/10.1007/s10068-016-0211-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Sidhu GK, Singh M, Kaur P (2019) Effect of operational parameters on physicochemical quality and recovery of spray‐dried tomato powder. J Food Process Preserv 43(10). https://doi.org/10.1111/jfpp.14120

  67. Islam MZ, Kitamura Y, Yamano Y, Kitamura M (2016) Effect of vacuum spray drying on the physicochemical properties, water sorption and glass transition phenomenon of orange juice powder. J Food Eng 169:131–140. https://doi.org/10.1016/j.jfoodeng.2015.08.024

    Article  CAS  Google Scholar 

  68. Palabiyik I, Durmaz Y, Öner B, Toker OS, Coksari G, Konar N, Tamtürk F (2018) Using spray-dried microalgae as a natural coloring agent in chewing gum: effects on color, sensory, and textural properties. J Appl Phycol 30(2):1031–1039. https://doi.org/10.1007/s10811-017-1324-y

    Article  CAS  Google Scholar 

  69. Kang YR, Lee YK, Kim YJ, Chang YH (2019) Characterization and storage stability of chlorophylls microencapsulated in different combination of gum Arabic and maltodextrin. Food Chem 272:337–346. https://doi.org/10.1016/j.foodchem.2018.08.063

    Article  CAS  PubMed  Google Scholar 

  70. Looi YF, Ong SP, Julkifle A, Alias MS (2019) Effects of pretreatment and spray drying on the physicochemical properties and probiotics viability of Moringa (Moringa oleifera Lam) leaf juice powder. J Food Process Preserv 43(4):e13915. https://doi.org/10.1111/jfpp.13915

    Article  CAS  Google Scholar 

  71. Femat-Castañeda C, Chávez-Rodríguez A, Chávez-Rodríguez AM, Flores-Martínez H, Farías-Cervantes VS, Andrade-González I (2019) Effect of agave fructans and maltodextrin on Zn2+ chlorophyll microencapsulation by spray drying. J Food Qual 2019:1–9. https://doi.org/10.1155/2019/6312584

    Article  CAS  Google Scholar 

  72. Venil CK, Khasim AR, Aruldass CA, Ahmad WA (2016) Microencapsulation of flexirubin-type pigment by spray drying: characterization and antioxidant activity. Int Biodeterior Biodegradation 113:350–356. https://doi.org/10.1016/j.ibiod.2016.01.014

    Article  CAS  Google Scholar 

  73. Tun Norbrillinda M, Mahanom H, Elyana NN, Farina SNI (2016) Optimization of spray drying process of Sargassum muticum color extract. Drying Technol 34(14):1735–1744. https://doi.org/10.1080/07373937.2016.1204550

    Article  CAS  Google Scholar 

  74. Hagerthey SE, Louda JW, Mongkronsri P (2006) Evaluation of pigment extraction methods and a recommended protocol for priphyton chlorophyll a determinatio and chemotaxonomic assessment. J Phycol 42(5):1125–1136. https://doi.org/10.1111/j.1529-8817.2006.00257.x

    Article  CAS  Google Scholar 

  75. Khaksar G, Assatarakul K, Sirikantaramas S (2019) Effect of cold-pressed and normal centrifugal juicing on quality attributes of fresh juices: do cold-pressed juices harbor a superior nutritional quality and antioxidant capacity? Heliyon 5(6):e01917. https://doi.org/10.1016/j.heliyon.2019.e01917

    Article  PubMed  PubMed Central  Google Scholar 

  76. Bazaria B, Kumar P (2016) Effect of whey protein concentrate as drying aid and drying parameters on physicochemical and functional properties of spray dried beetroot juice concentrate. Food Biosci 14:21–27. https://doi.org/10.1016/j.fbio.2015.11.002

    Article  CAS  Google Scholar 

  77. Kuvings (2020) Kuvings_HOME. Retrieved December, 2020 from Kuvings website: https://kuvings.com/

  78. Veggi PC, Martinez J, Meireles MAA (2012) Fundamentals of microwave extraction. In: Chemat F and Cravotto G (eds), Microwave-assisted extraction for bioactive compounds, Boston, MA: Springer US, pp 15–52. https://doi.org/10.1007/978-1-4614-4830-3_2

  79. Khonkarn R, Okonogi S, Ampasavate C, Anuchapreeda S (2010) Investigation of fruit peel extracts as sources for compounds with antioxidant and antiproliferative activities against human cell lines. Food Chem Toxicol 48(8–9):2122–2129. https://doi.org/10.1016/j.fct.2010.05.014

    Article  CAS  PubMed  Google Scholar 

  80. Soto-Sierra L, Wilken LR, Dixon CK (2020) Aqueous enzymatic protein and lipid release from the microalgae Chlamydomonas reinhardtii. Bioresources and Bioprocessing 7(1):46. https://doi.org/10.1186/s40643-020-00328-4

    Article  Google Scholar 

  81. Mäki-Arvela P, Hachemi I, Murzin DY (2014) Comparative study of the extraction methods for recovery of carotenoids from algae: extraction kinetics and effect of different extraction parameters: extraction of carotenoids from algae. J Chem Technol Biotechnol 89(11):1607–1626. https://doi.org/10.1002/jctb.4461

    Article  CAS  Google Scholar 

  82. Macias-Sanchez M, Mantell C, Rodriguez M, Martinez de la Ossa E, Lubian L, Montero O (2009) Comparison of supercritical fluid and ultrasound-assisted extraction of carotenoids and chlorophyll a from Dunaliella salina. Talanta 77(3):948–952. https://doi.org/10.1016/j.talanta.2008.07.032

    Article  CAS  PubMed  Google Scholar 

  83. Berk Z (2009) Mixing. Food process engineering and technology (pp. 175–194). Elsevier. https://doi.org/10.1016/B978-0-12-373660-4.00007-7

  84. Levy R, Okun Z, Shpigelman A (2020) High-pressure homogenization: principles and applications beyond microbial inactivation. Food Engineering Reviews. https://doi.org/10.1007/s12393-020-09239-8

    Article  Google Scholar 

  85. Patrignani F, Lanciotti R (2016) Applications of high and ultra high pressure homogenization for food safety. Front Microbiol 7. https://doi.org/10.3389/fmicb.2016.01132

  86. Dahmoune F, Spigno G, Moussi K, Remini H, Cherbal A, Madani K (2014) Pistacia lentiscus leaves as a source of phenolic compounds: microwave-assisted extraction optimized and compared with ultrasound-assisted and conventional solvent extraction. Ind Crops Prod 61:31–40. https://doi.org/10.1016/j.indcrop.2014.06.035

    Article  CAS  Google Scholar 

  87. Zou T, Wu H, Li H, Jia Q, Song G (2013) Comparison of microwave-assisted and conventional extraction of mangiferin from mango (Mangifera indica L.) leaves: other techniques. J Sep Sci 36:3457–3462. https://doi.org/10.1002/jssc.201300518

    Article  CAS  PubMed  Google Scholar 

  88. Li Y, Fabiano-Tixier AS, Vian MA, Chemat F (2013) Solvent-free microwave extraction of bioactive compounds provides a tool for green analytical chemistry. TrAC, Trends Anal Chem 47:1–11. https://doi.org/10.1016/j.trac.2013.02.007

    Article  CAS  Google Scholar 

  89. Singh A, Ganesapillai M, Gnanasundaram N (2017) Optimizaton of extraction of betalain pigments from beta vulgaris peels by microwave pretreatment. IOP Conference Series: Materials Science and Engineering 263:032004. https://doi.org/10.1088/1757-899X/263/3/032004

    Article  Google Scholar 

  90. Jaeschke DP, Rech R, Marczak LDF, Mercali GD (2017) Ultrasound as an alternative technology to extract carotenoids and lipids from Heterochlorella luteoviridis. Biores Technol 224:753–757. https://doi.org/10.1016/j.biortech.2016.11.107

    Article  CAS  Google Scholar 

  91. Peredo GI, Ruiz-López MA, Zamora Nátera JF, Álvarez Moya C, Barrientos Ramírez L, Reynoso Silva M, Rodriguez Macías R, García-Lopez PM, González Cruz R, Salcedo Pérez E, Vargas Radillo JJ (2020) Antioxidant capacity and antigenotoxic effect of Hibiscus sabdariffa L. extracts obtained with ultrasound-assisted extraction process. Appl Sci 10(2):560. https://doi.org/10.3390/app10020560

  92. Uquiche E, Antilaf I, Millao S (2016) Enhancement of pigment extraction from B. braunii pretreated using CO2 rapid depressurization. Braz J Microbiol 47(2):497–505. https://doi.org/10.1016/j.bjm.2016.01.020

  93. Garavand F, Rahaee S, Vahedikia N, Jafari SM (2019) Different techniques for extraction and micro/nanoencapsulation of saffron bioactive ingredients. Trends Food Sci Technol 89:26–44. https://doi.org/10.1016/j.tifs.2019.05.005

    Article  CAS  Google Scholar 

  94. Gagneten M, Corfield R, Mattson MG, Sozzi A, Leiva G, Salvatori D, Schebor C (2019) Spray-dried powders from berries extracts obtained upon several processing steps to improve the bioactive components content. Powder Technol 342:1008–1015. https://doi.org/10.1016/j.powtec.2018.09.048

    Article  CAS  Google Scholar 

  95. Arévalo-Villena M, Fernández M, López J, Briones A (2011) Pectinases yeast production using grape skin as carbon source. Adv Biosci Biotechnol 2(02):89–96. https://doi.org/10.4236/abb.2011.22014

    Article  CAS  Google Scholar 

  96. Fernández-González M, Úbeda JF, Vasudevan TG, Otero RRC, Briones AI (2004) Evaluation of polygalacturonase activity in Saccharomyces cerevisiae wine strains. FEMS Microbiol Lett 237(2):261–266. https://doi.org/10.1111/j.1574-6968.2004.tb09705.x

    Article  PubMed  Google Scholar 

  97. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40(9):2931–2944. https://doi.org/10.1016/j.procbio.2005.03.026

    Article  CAS  Google Scholar 

  98. Patidar MK, Nighojkar S, Kumar A, Nighojkar A (2018) Pectinolytic enzymes-solid state fermentation, assay methods and applications in fruit juice industries: a review. 3 Biotech 8(4):199. https://doi.org/10.1007/s13205-018-1220-4

  99. Krakowska-Sieprawska A, Rafińska K, Walczak-Skierska J, Buszewski B (2020) The influence of plant material enzymatic hydrolysis and extraction conditions on the polyphenolic profiles and antioxidant activity of extracts: a green and efficient approach. Molecules 25(9):2074. https://doi.org/10.3390/molecules25092074

    Article  CAS  PubMed Central  Google Scholar 

  100. Labrotovap (2019) What is a rotary evaporator? Retrieved October 3, 2020 from Lab Instrument Manufacturer website: https://www.labrotovap.com/what-is-a-rotary-evaporator/

  101. Büchi (2021) Soluciones de Evaporación Rotatoria. Retrieved January, 2021 from Büchi website: https://static1.buchi.com/sites/default/files/downloads/Laboratory_Evaporation_Solutions_es.pdf?2729609b7bf603de51174fbdd52d09477b8631d8

  102. Portmann C, Kleinhans S, Arpagaus C, Schönenberger G, Labortechnik B (2007) The laboratory assistant. Büchi Labortechnik AG, Flawil

    Google Scholar 

  103. Kaimainen M, Laaksonen O, Järvenpää E, Sandell M, Huopalahti R (2015) Consumer acceptance and stability of spray dried betanin in model juices. Food Chem 187:398–406. https://doi.org/10.1016/j.foodchem.2015.04.064

    Article  CAS  PubMed  Google Scholar 

  104. Castro-Enríquez DD, Montaño-Leyva B, Del Toro-Sánchez CL, Juaréz-Onofre JE, Carvajal-Millan E, Burruel-Ibarra SE, Tapia-Hernández JA, Barreras-Urbina CG, Rodríguez-Félix F (2020) Stabilization of betalains by encapsulation—a review. J Food Sci Technol 57:1587–1600. https://doi.org/10.1007/s13197-019-04120-x

    Article  PubMed  Google Scholar 

  105. Chaparro L, Dhuique-Mayer C, Castillo S, Vaillant F, Servent A, Dornier M (2016) Concentration and purification of lycopene from watermelon juice by integrated microfiltration-based processes. Innov Food Sci Emerg Technol 37:153–160. https://doi.org/10.1016/j.ifset.2016.08.001

    Article  CAS  Google Scholar 

  106. Cissé M, Vaillant F, Pallet D, Dornier M (2011) Selecting ultrafiltration and nanofiltration membranes to concentrate anthocyanins from roselle extract (Hibiscus sabdariffa L.). Food Res Int 44(9):2607–2614. https://doi.org/10.1016/j.foodres.2011.04.046

  107. Pap N, Mahosenaho M, Pongrácz E, Mikkonen H, Jaakkola M, Virtanen V, Myllykoski L, Horváth-Hovorka Z, Hodúr C, Vatai G, Keiski RL (2012) Effect of ultrafiltration on anthocyanin and flavonol content of black currant juice (Ribes nigrum L.). Food Bioproc Tech 5(3):921–928. https://doi.org/10.1007/s11947-010-0371-z

  108. Quirós AM, Acosta OG, Thompson E, Soto M (2019) Effect of ethanolic extraction, thermal vacuum concentration, ultrafiltration, and spray drying on polyphenolic compounds of tropical highland blackberry (Rubus adenotrichos Schltdl.) by - product. J Food Process Eng 42(4). https://doi.org/10.1111/jfpe.13051

  109. Beacham IR (1979) Periplasmic enzymes in gram-negative bacteria. Int J Biochem 10(11):877–883. https://doi.org/10.1016/0020-711X(79)90117-4

    Article  CAS  PubMed  Google Scholar 

  110. Sawicki T, Wiczkowski W (2018) The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chem 259:292–303. https://doi.org/10.1016/j.foodchem.2018.03.143

    Article  CAS  PubMed  Google Scholar 

  111. Chang LS, Tan YL, Pui LP (2020) Production of spray-dried enzyme-liquefied papaya (Carica papaya L.) powder. Braz J Food Technol 23:e2019181. https://doi.org/10.1590/1981-6723.18119

  112. Navarrete-Solis A, Hengl N, Ragazzo-Sánchez JA, Baup S, Calderón-Santoyo M, Pignon F, López-García UM, Ortiz-Basurto RI (2020) Rheological and physicochemical stability of hydrolyzed jackfruit juice (Artocarpus heterophyllus L.) processed by spray drying. J Food Sci Technol 57(2):663–672. https://doi.org/10.1007/s13197-019-04098-6

  113. Wong CW, Teoh CY, Putri CE (2018) Effect of enzymatic processing, inlet temperature, and maltodextrin concentration on the rheological and physicochemical properties of spray-dried banana (Musa acuminata) powder. J Food Process Preserv 42(2):e13451. https://doi.org/10.1111/jfpp.13451

    Article  CAS  Google Scholar 

  114. Poondla V, Yannam SK, Gummadi SN, Subramanyam R, Obulam VSR (2016) Enhanced production of pectinase by Saccharomyces cerevisiae isolate using fruit and agro-industrial wastes: its application in fruit and fiber processing. Biocatal Agric Biotechnol 6:40–50. https://doi.org/10.1016/j.bcab.2016.02.007

    Article  Google Scholar 

  115. Poondla V, Bandikari R, Subramanyam R, Obulam VSR (2015) Low temperature active pectinases production by Saccharomyces cerevisiae isolate and their characterization. Biocatal Agric Biotechnol 4(1):70–76. https://doi.org/10.1016/j.bcab.2014.09.008

    Article  Google Scholar 

  116. Bhandari BR, Senoussi A, Dumoulin ED, Lebert A (1993) Spray drying of concentrated fruit juices. Drying Technol 11(5):1081–1092. https://doi.org/10.1080/07373939308916884

    Article  CAS  Google Scholar 

  117. Kumar SS, Giridhar P (2017) Stabilization of bioactive betalain pigment from fruits of Basella rubra L. through maltodextrin encapsulation. Madridge Journal of Food Technology 2(1):73–77. https://doi.org/10.18689/mjft-1000111

  118. Sravan Kumar S, Manoj P, Giridhar P (2014) A method for red-violet pigments extraction from fruits of Malabar spinach (Basella rubra) with enhanced antioxidant potential under fermentation. J Food Sci Technol 52(5):3037–3043. https://doi.org/10.1007/s13197-014-1335-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Czyżowska A, Klewicka E, Libudzisz Z (2006) The influence of lactic acid fermentation process of red beet juice on the stability of biologically active colorants. Eur Food Res Technol 223(1):110–116. https://doi.org/10.1007/s00217-005-0159-y

    Article  CAS  Google Scholar 

  120. Martins RM, Siqueira S, Machado MO, Freitas LAP (2013) The effect of homogenization method on the properties of carbamazepine microparticles prepared by spray congealing. J Microencapsul 30(7):692–700. https://doi.org/10.3109/02652048.2013.778906

    Article  CAS  PubMed  Google Scholar 

  121. Loos M (2015) Processing of polymer matrix composites containing CNTs. In Carbon nanotube reinforced composites (pp. 171–188). Elsevier. https://doi.org/10.1016/B978-1-4557-3195-4.00006-0

  122. Janiszewska E, Jedlińska A, Witrowa-Rajchert D (2015) Effect of homogenization parameters on selected physical properties of lemon aroma powder. Food Bioprod Process 94:405–413. https://doi.org/10.1016/j.fbp.2014.05.006

    Article  CAS  Google Scholar 

  123. Ferreira S, Malacrida CR, Nicoletti VR (2019) Influence of emulsification methods and spray drying parameters on the microencapsulation of turmeric oleoresin. Emirates Journal of Food and Agriculture 31(7):491–500. https://doi.org/10.9755/ejfa.2019.v31.i7.1968

    Article  Google Scholar 

  124. Bhandari BR, Datta N, Howes T (1997) Problems associated with spray drying of sugar-rich foods. Drying Technol 15(2):671–684. https://doi.org/10.1080/07373939708917253

    Article  CAS  Google Scholar 

  125. Naik R, Arunsandeep G, Chandramohan VP (2017) Numerical simulation for freeze drying of skimmed milk with moving sublimation front using tri-diagonal matrix algorithm. Journal of Applied Fluid Mechanics 10(3):813–818. https://doi.org/10.18869/acadpub.jafm.73.240.27054

    Article  Google Scholar 

  126. Vernon-Carter EJ, Beristain CI, Pedroza-Islas R (2000) Mesquite gum (Prosopis gum). In: Developments in food science vol 41. Elsevier, pp 217–238. https://doi.org/10.1016/S0167-4501(00)80011-4

  127. López-Franco Y, Higuera-Ciapara I, Goycoolea FM, Wang W (2009) Other exudates: Tragancanth, karaya, mesquite gum and larchwood arabinogalactan. In Handbook of Hydrocolloids (pp. 495–534). Elsevier. https://doi.org/10.1533/9781845695873.495

  128. Jiménez-Aguilar DM, Ortega-Regules AE, Lozada-Ramírez JD, Pérez-Pérez MCI, Vernon-Carter EJ, Welti-Chanes J (2011) Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. J Food Compos Anal 24(6):889–894. https://doi.org/10.1016/j.jfca.2011.04.012

    Article  CAS  Google Scholar 

  129. Stick RV, Williams SJ (2009) Disaccharides, oligosaccharides and polysaccharides. In: Carbohydrates: the essential molecules of life, Elsevier, pp 321–341. https://doi.org/10.1016/B978-0-240-52118-3.00009-0

  130. Pathare PB, Opara UL, Al-Said FAJ (2013) Colour measurement and analysis in fresh and processed foods: a review. Food Bioprocess Technol 6(1):36–60. https://doi.org/10.1007/s11947-012-0867-9

    Article  CAS  Google Scholar 

  131. Baqueiro-Peña I, Guerrero-Beltrán JÁ (2017) Physicochemical and antioxidant characterization of Justicia spicigera. Food Chem 218:305–312. https://doi.org/10.1016/j.foodchem.2016.09.078

    Article  CAS  PubMed  Google Scholar 

  132. Tonon RV, Brabet C, Hubinger MD (2010) Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res Int 43(3):907–914. https://doi.org/10.1016/j.foodres.2009.12.013

  133. Ersus S, Yurdagel U (2007) Microencapsulation of anthocyanin pigments of black carrot (Daucus carota L.) by spray drier. J Food Eng 80(3):805–812. https://doi.org/10.1016/j.jfoodeng.2006.07.009

  134. Ferrari CC, Marconi Germer SP, Alvim ID, de Aguirre JM (2013) Storage stability of spray-dried blackberry powder produced with maltodextrin or gum arabic. Drying Technol 31(4):470–478. https://doi.org/10.1080/07373937.2012.742103

    Article  CAS  Google Scholar 

  135. Bicudo MOP, Jó J, de Oliveira GA, Chaimsohn FP, Sierakowski MR, de Freitas RA, Ribani RH (2015) Microencapsulation of juçara (Euterpe edulis M.) pulp by spray drying using different carriers and drying temperatures. Dry Technol 33(2):153–161. https://doi.org/10.1080/07373937.2014.937872

  136. Pavón-García LMA, Pérez-Alonso C, Orozco-Villafuerte J, Pimentel-González DJ, Rodríguez-Huezo ME, Vernon-Carter EJ (2011) Storage stability of the natural colourant from Justicia spicigera microencapsulated in protective colloids blends by spray-drying: colour storage stability. Int J Food Sci Technol 46(7):1428–1437. https://doi.org/10.1111/j.1365-2621.2011.02634.x

    Article  CAS  Google Scholar 

  137. Pascual-Pineda LA, Rascón MP, Quintanilla-Carvajal MX, Castillo-Morales M, Marín UR, Flores-Andrade E (2019) Effect of porous structure and spreading pressure on the storage stability of red onion microcapsules produced by spray freezing into liquid cryogenic and spray drying. J Food Eng 245:65–72. https://doi.org/10.1016/j.jfoodeng.2018.10.018

    Article  CAS  Google Scholar 

  138. de Souza VB, Fujita A, Thomazini M, da Silva ER, Lucon JF, Genovese MI, Favaro-Trindade CS (2014) Functional properties and stability of spray-dried pigments from Bordo grape (Vitis labrusca) winemaking pomace. Food Chem 164:380–386. https://doi.org/10.1016/j.foodchem.2014.05.049

    Article  CAS  PubMed  Google Scholar 

  139. Saénz C, Tapia S, Chavez J, Robert P (2009) Microencapsulation by spray drying of bioactive compounds from cactus pear (Opuntia ficus-indica). Food Chem 114(2):616–622. https://doi.org/10.1016/j.foodchem.2008.09.095

    Article  CAS  Google Scholar 

  140. Robert P, Torres V, García P, Vergara C, Sáenz C (2015) The encapsulation of purple cactus pear (Opuntia ficus-indica) pulp by using polysaccharide-proteins as encapsulating agents. LWT Food Sci Technol 60(2):1039–1045. https://doi.org/10.1016/j.lwt.2014.10.038

    Article  CAS  Google Scholar 

  141. Cai YZ, Corke H (2000) Production and properties of spray-dried amaranthus betacyanin pigments. J Food Sci 65(7):1248–1252. https://doi.org/10.1111/j.1365-2621.2000.tb10273.x

    Article  CAS  Google Scholar 

  142. Fernández-López JA, Roca MJ, Angosto JM, Obón JM (2018) Betaxanthin-rich extract from cactus pear fruits as yellow water-soluble colorant with potential application in foods. Plant Foods Hum Nutr 73(2):146–153. https://doi.org/10.1007/s11130-018-0664-3

    Article  CAS  PubMed  Google Scholar 

  143. Robert P, Carlsson RM, Romero N, Masson L (2003) Stability of spray-dried encapsulated carotenoid pigments from rosa mosqueta (Rosa rubiginosa) oleoresin. 80(11):1115–1120.

  144. García JM, Giuffrida D, Dugo P, Mondello L, Osorio C (2018) Development and characterisation of carotenoid-rich microencapsulates from tropical fruit by-products and yellow tamarillo (Solano betaceum Cav.). Powder Technol 339:702–709. https://doi.org/10.1016/j.powtec.2018.08.061

    Article  CAS  Google Scholar 

  145. Rascón MP, Beristain CI, García HS, Salgado MA (2011) Carotenoid retention and storage stability of spray-dried encapsulated paprika oleoresin using gum arabic and soy protein isolate as wall materials. LWT Food Sci Technol 44(2):549–557. https://doi.org/10.1016/j.lwt.2010.08.021

    Article  CAS  Google Scholar 

  146. Shaaruddin S, Mahmood Z, Ismail H, Mohd Ghazali H, Hamzah Mohd Y, Muhammad K (2019) Stability of β-carotene in carrot powder and sugar confection as affected by resistant maltodextrin and octenyl succinate anhydride (OSA) starches. J Food Sci Technol 56(7):3461–3470. https://doi.org/10.1007/s13197-019-03832-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Daza LD, Fujita A, Fávaro-Trindade CS, Rodrigues-Ract JN, Granato D, Genovese MI (2016) Effect of spray drying conditions on the physical properties of cagaita (Eugenia dysenterica DC.) fruit extracts. Food Bioprod Process 97:20–29. https://doi.org/10.1016/j.fbp.2015.10.001

    Article  CAS  Google Scholar 

  148. Tupuna-Yerovi DS, Paese K, Flôres SH, Guterres SS, Rios A (2019) Addition of norbixin microcapsules obtained by spray drying in an isotonic tangerine soft drink as a natural dye. J Food Sci Technol 57(3):1021–1031. https://doi.org/10.1007/s13197-019-04135-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Syamila M, Gedi MA, Briars R, Ayed C, Gray DA (2019) Effect of temperature, oxygen and light on the degradation of β-carotene, lutein and α-tocopherol in spray-dried spinach juice powder during storage. Food Chem 284:188–197. https://doi.org/10.1016/j.foodchem.2019.01.055

    Article  CAS  PubMed  Google Scholar 

  150. Çalışkan Koç G, Nur Dirim S (2017) Spray drying of spinach juice: characterization, chemical composition, and storage. J Food Sci 82(12):2873–2884. https://doi.org/10.1111/1750-3841.13970

    Article  CAS  PubMed  Google Scholar 

  151. Rodriguez-Amaya DB (2019) Update on natural food pigments—a mini-review on carotenoids, anthocyanins, and betalains. Food Res Int 124:200–205. https://doi.org/10.1016/j.foodres.2018.05.028

    Article  CAS  PubMed  Google Scholar 

  152. Rodriguez-Amaya DB (2019a) Natural food pigments and colorants. In: Mérillon JM, Ramawat K (eds) Bioactive molecules in food, Reference Series in Phytochemistry, Springer, Cham. https://doi.org/10.1007/978-3-319-78030-6_12

  153. Rodriguez-Amaya DB (2015) Isomerization and oxidation. In Rodriguez-Amaya DB Food carotenoids, Chichester, UK: John Wiley & Sons, Ltd., pp 174–198. https://doi.org/10.1002/9781118864364.ch7

  154. Pitalua E, Jimenez M, Vernon-Carter EJ, Beristain CI (2010) Antioxidative activity of microcapsules with beetroot juice using gum arabic as wall material. Food Bioprod Process 88(2–3):253–258. https://doi.org/10.1016/j.fbp.2010.01.002

    Article  CAS  Google Scholar 

  155. Sant’Anna V, Gurak PD, Ferreira Marczak LD, Tessaro IC (2013) Tracking bioactive compounds with colour changes in foods – a review. Dyes Pigm 98(3):601–608. https://doi.org/10.1016/j.dyepig.2013.04.011

    Article  CAS  Google Scholar 

  156. Abdullah R, Lee PM, Lee KH (2010) Multiple color and pH stability of floral anthocyanin extract: Clitoria ternatea. 2010 International Conference on Science and Social Research (CSSR 2010), 254–258. Kuala Lumpur, Malaysia: IEEE. https://doi.org/10.1109/CSSR.2010.5773778

  157. Tang B, He Y, Liu J, Zhang J, Li J, Zhou J, Ye Y, Wang J, Wang X (2019) Kinetic investigation into pH-dependent color of anthocyanin and its sensing performance. Dyes Pigm 170:107643. https://doi.org/10.1016/j.dyepig.2019.107643

    Article  CAS  Google Scholar 

  158. Yoshida K, Mori M, Kondo T (2009) Blue flower color development by anthocyanins: from chemical structure to cell physiology. Nat Prod Rep 26(7):884. https://doi.org/10.1039/b800165k

    Article  CAS  PubMed  Google Scholar 

  159. Wahyuningsih S, Ramelan AH, Wardani DK, Aini FN, Sari PL, Tamtama BPN, Kristiawan YR (2017) Indigo dye derived from Indigofera tinctoria as natural food colorant. IOP Conference Series: Materials Science and Engineering 193:012048. https://doi.org/10.1088/1757-899X/193/1/012048

    Article  Google Scholar 

  160. Freitas-Dörr BC, Machado CO, Pinheiro AC, Fernandes AB, Dörr FA, Pinto E, Lopes-Ferreira M, Abdellah M, Sá J, Russo LC, Forti FL, Gonçalves LCP, Bastos EL (2020) A metal-free blue chromophore derived from plant pigments. Sci Adv 6(14):eaaz0421. https://doi.org/10.1126/sciadv.aaz0421

  161. Gunaraj V, Murugan N (1999) Application of response surface methodology for predicting weld bead quality in submerged arc welding of pipes. J Mater Process Technol 88(1–3):266–275. https://doi.org/10.1016/S0924-0136(98)00405-1

    Article  Google Scholar 

  162. Pratama HB, Supijo MC, Sutopo (2020) Experimental design and response surface method in geothermal energy: a comprehensive study in probabilistic resource assessment. Geothermics 87:101869. https://doi.org/10.1016/j.geothermics.2020.101869

    Article  Google Scholar 

  163. Narenderan ST, Meyyanathan SN, Karri VVSR (2019) Experimental design in pesticide extraction methods: a review. Food Chem 289:384–395. https://doi.org/10.1016/j.foodchem.2019.03.045

    Article  CAS  PubMed  Google Scholar 

  164. Ortiz-Basurto RI, Rubio-Ibarra ME, Ragazzo-Sanchez JA, Beristain CI, Jiménez-Fernández M (2017) Microencapsulation of Eugenia uniflora L. juice by spray drying using fructans with different degrees of polymerisation. Carbohyd Polym 175:603–609. https://doi.org/10.1016/j.carbpol.2017.08.030

    Article  CAS  Google Scholar 

  165. Goula AM, Adamopoulos KG (2012) A new technique for spray-dried encapsulation of lycopene. Drying Technol 30(6):641–652. https://doi.org/10.1080/07373937.2012.655871

    Article  CAS  Google Scholar 

  166. Chong PH, Yusof YA, Aziz MG, Nazli NM, Chin NL, Muhammad SKS (2014) Effects of spray drying conditions of microencapsulation of Amaranthus gangeticus extract on drying behaviour. Agriculture and Agricultural Science Procedia 2:33–42. https://doi.org/10.1016/j.aaspro.2014.11.006

    Article  Google Scholar 

  167. Das AB, Goud VV, Das C (2019) Microencapsulation of anthocyanin extract from purple rice bran using modified rice starch and its effect on rice dough rheology. Int J Biol Macromol 124:573–581. https://doi.org/10.1016/j.ijbiomac.2018.11.247

    Article  CAS  PubMed  Google Scholar 

  168. Santana AA, Kurozawa LE, De OliveiraSantana, & Park, J. K. RA (2013) Influence of process conditions on the physicochemical properties of pequi powder produced by spray drying. Drying Technol 31:825–836. https://doi.org/10.1080/07373937.2013.766619

    Article  CAS  Google Scholar 

  169. Valente M da C d C, do Nascimento RA, Santana EB, Ribeiro NF d P, Costa CML, de Faria LJG (2019) Spray drying of extract from Euterpe oleracea Mart.: optimization of process and characterization of the açaí powder. J Food Process Eng 42(8):1–10. https://doi.org/10.1111/jfpe.13253

  170. Ferreira Nogueira G, Pereira Martin LG, Matta Fakhouri F, Augustus de Oliveira R (2018) Microencapsulation of blackberry pulp with arrowroot starch and gum arabic mixture by spray drying. J Microencapsul 35(5):482–493. https://doi.org/10.1080/02652048.2018.1538264

    Article  CAS  PubMed  Google Scholar 

  171. Nogueira GF, Soares CT, Martin LGP, Fakhouri FM, de Oliveira RA (2020) Influence of spray drying on bioactive compounds of blackberry pulp microencapsulated with arrowroot starch and gum arabic mixture. J Microencapsul 37(1):65–76. https://doi.org/10.1080/02652048.2019.1693646

    Article  CAS  PubMed  Google Scholar 

  172. Bezerra MA, Lemos VA, Novaes CG, de Jesus RM, Filho HRS, Araújo SA, Alves JPS (2020) Application of mixture design in analytical chemistry. Microchem J 152:104336. https://doi.org/10.1016/j.microc.2019.104336

    Article  CAS  Google Scholar 

  173. Mahdavee Khazaei K, Jafari SM, Ghorbani M, Hemmati Kakhki A (2014) Application of maltodextrin and gum Arabic in microencapsulation of saffron petal’s anthocyanins and evaluating their storage stability and color. Carbohyd Polym 105:57–62. https://doi.org/10.1016/j.carbpol.2014.01.042

    Article  CAS  Google Scholar 

  174. de Araujo Santiago MCP, Nogueira RI, Paim DRSF, Gouvêa ACMS, de Oliveira Godoy RL, Peixoto FM, Sidney P, Freitas SP (2016) Effects of encapsulating agents on anthocyanin retention in pomegranate powder obtained by the spray drying process. LWT Food Sci Technol 73:551–556. https://doi.org/10.1016/j.lwt.2016.06.059

    Article  CAS  Google Scholar 

  175. Souza ALR, Hidalgo-Chávez DW, Pontes SM, Gomes FS, Cabral LMC, Tonon RV (2018) Microencapsulation by spray drying of a lycopene-rich tomato concentrate: characterization and stability. LWT Food Sci Technol 91:286–292. https://doi.org/10.1016/j.lwt.2018.01.053

    Article  CAS  Google Scholar 

  176. Pal S, Bhattacharjee P (2018) Spray dried powder of lutein-rich supercritical carbon dioxide extract of gamma-irradiated marigold flowers: process optimization, characterization and food application. Powder Technol 327:512–523. https://doi.org/10.1016/j.powtec.2017.12.085

    Article  CAS  Google Scholar 

  177. Espinosa Alvarez CS, Contreras JL, Rodríguez DE, Rondón DJ, Muñoz WB, Mezquita PC (2019) Application of microencapsulated anthocyanin extracted from purple cabbage in fermented milk drinks. Acta Agronómica 68(2):134–141. https://doi.org/10.15446/acag.v68n2.79078

    Article  Google Scholar 

  178. Lima EMF, Madalão MCM, dos Santos WC, Bernardes PC, Saraiva SH, Silva PI (2019) Spray-dried microcapsules of anthocyanin-rich extracts from Euterpe edulis M. as an alternative for maintaining color and bioactive compounds in dairy beverages. J Food Sci Technol 56(9):4147–4157. https://doi.org/10.1007/s13197-019-03885-5

  179. Durmaz Y, Kilicli M, Toker OS, Konar N, Palabiyik I, Tamtürk F (2020) Using spray-dried microalgae in ice cream formulation as a natural colorant: effect on physicochemical and functional properties. Algal Res 47:101811. https://doi.org/10.1016/j.algal.2020.101811

    Article  Google Scholar 

  180. Tatar Turan F, Cengiz A, Kahyaoglu T (2015) Evaluation of ultrasonic nozzle with spray-drying as a novel method for the microencapsulation of blueberry’s bioactive compounds. Innov Food Sci Emerg Technol 32:136–145. https://doi.org/10.1016/j.ifset.2015.09.011

    Article  CAS  Google Scholar 

  181. Ab Rashid S, Tong WY, Leong CR, Ghazali NMA, Taher MA, Ahmad N, Tan WN, Teo SH (2020) Anthocyanin microcapsule from Clitoria ternatea: potential bio-preservative and blue colorant for baked food products. Arab J Sci Eng. https://doi.org/10.1007/s13369-020-04716-y

    Article  Google Scholar 

  182. Papillo VA, Locatelli M, Travaglia F, Bordiga M, Garino C, Arlorio M, Coïsson JD (2018) Spray-dried polyphenolic extract from Italian black rice (Oryza sativa L., var. Artemide) as new ingredient for bakery products. Food Chem 269:603–609. https://doi.org/10.1016/j.foodchem.2018.07.059

    Article  CAS  PubMed  Google Scholar 

  183. Rocha GA, Fávaro-Trindade CS, Grosso CRF (2012) Microencapsulation of lycopene by spray drying: characterization, stability and application of microcapsules. Food Bioprod Process 90(1):37–42. https://doi.org/10.1016/j.fbp.2011.01.001

    Article  CAS  Google Scholar 

  184. Roriz CL, Heleno SA, Carocho M, Rodrigues P, Pinela J, Dias MI, Fernandes IP, Barreiro MF, Morales P, Barros L, Ferreira ICFR (2020). Betacyanins from Gomphrena globosa L. flowers: incorporation in cookies as natural colouring agents. Food Chem 329:127–178. https://doi.org/10.1016/j.foodchem.2020.127178

  185. Augusto P, Vissotto F, Bolini H (2019) Sensory impact of three different conching times on white chocolates with spray-dried and freeze-dried açai (Euterpe oleracea). Food Sci Technol Int 25(6):480–490. https://doi.org/10.1177/1082013219833526

    Article  PubMed  Google Scholar 

  186. da Silva LB, Annetta FE, Alves AB, Queiroz MB, Fadini AL, da Silva MG, Efraim P (2016) Effect of differently processed açai (Euterpe oleracea Mart.) on the retention of phenolics and anthocyanins in chewy candies. Int J Food Sci Technol 51(12):2603–2612. https://doi.org/10.1111/ijfs.13245

  187. Baldin JC, Michelin EC, Polizer YJ, Rodrigues I, de Godoy SHS, Fregonesi RP, Pires MA, Carvalho LT, Fávaro-Trindade CS, de Lima CG, Fernandes AM, Trindade MA (2016) Microencapsulated jabuticaba (Myrciaria cauliflora) extract added to fresh sausage as natural dye with antioxidant and antimicrobial activity. Meat Sci 118:15–21. https://doi.org/10.1016/j.meatsci.2016.03.016

    Article  CAS  PubMed  Google Scholar 

  188. Ferreira Nogueira G, Fakhouri FM, de Oliveira RA (2019) Incorporation of spray dried and freeze dried blackberry particles in edible films: morphology, stability to pH, sterilization and biodegradation. Food Packag Shelf Life 20:100313. https://doi.org/10.1016/j.fpsl.2019.100313

    Article  Google Scholar 

  189. Garrido Makinistian F, Gallo L, Sette P, Salvatori D, Bucalá V (2020) Nutraceutical tablets from maqui berry (Aristotelia chilensis) spray-dried powders with high antioxidant levels. Drying Technol 38(9):1231–1242. https://doi.org/10.1080/07373937.2019.1629589

    Article  CAS  Google Scholar 

  190. Bernardes AL, Moreira JA, Tostes MDGV, Costa NMB, Silva PI, Costa AGV (2019) In vitro bioaccessibility of microencapsulated phenolic compounds of jussara (Euterpe edulis Martius) fruit and application in gelatine model-system. LWT 102:173–180. https://doi.org/10.1016/j.lwt.2018.12.009

    Article  CAS  Google Scholar 

  191. Azmin SNHM, Jaine NIM, Nor MSM (2020) Physicochemical and sensory evaluations of moisturising lip balm using natural pigment from Beta vulgaris. Cogent Engineering 7(1):1788297. https://doi.org/10.1080/23311916.2020.1788297

    Article  Google Scholar 

Download references

Funding

Author Jiménez-González received financial support for his PhD studies from Universidad de las Americas Puebla (UDLAP) and the National Council for Science and Technology (CONACyT) of Mexico.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Guerrero-Beltrán.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-González, O., Guerrero-Beltrán, J.Á. Extraction, Microencapsulation, Color Properties, and Experimental Design of Natural Pigments Obtained by Spray Drying. Food Eng Rev 13, 769–811 (2021). https://doi.org/10.1007/s12393-021-09288-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09288-7

Keywords

Navigation