Skip to main content
Log in

Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Recently, there has been a great deal of interest in implementing new nanotechnology-based approaches to improve the quality of food products. One of the relevant applications in this field is the use of nanoemulsions in the food packaging industry. In this research, the role of nanoemulsions in the food packaging industry and also the recent developments were discussed. Notably, numerous factors, including bacterial growth and oxidation reduce the quality and safety of foods, fruits, and vegetables. In this case, new food packaging systems need to be smart, programmable, and multifunctional. Nanoemulsion can be prepared as a delivery system in the form of an oil-in-water or water-in-oil system under different methods of preparation including low-energy and high-energy techniques. Nanoemulsion-based delivery systems may also contain dyes, flavorings, preservatives, disinfectants, or nutrients, depending on the purpose. This technology can prevent microorganism’s growth, changes in food color and appearance, loss of weight, moisture content reduction, undesirable flavor and taste, and also decrease the rate of oxidation and browning compared to the samples with the common packaging. Despite the great potential of nanoemulsions, some specific issues exist which need to be addressed. Using these promising nanotechnologies some food properties such as taste, texture, flavor, color, spoilage, and stability can be controlled. To ensure the commercial use of nanoemulsions, further studies are needed to discover the application of nanoemulsions, their suitable carriers, optimize consumption, and remove obstacles in production and processing.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Robertson GL (2014) Food Packaging. In: Van Alfen NK (ed) Encyclopedia of Agriculture and Food Systems. Press, Oxford, Academic, pp 232–249

    Chapter  Google Scholar 

  2. Kalateh Seifari F, Ahari H (2020) Active edible films and coatings with enhanced properties using nanoemulsion and nanocrystals. Food & Health 3(1):15–22

    Google Scholar 

  3. Berk Z (2009) Chapter 26 - Food packaging. In: Berk Z (ed) Food Process Engineering and Technology. Press, San Diego, Academic, pp 545–559

    Chapter  Google Scholar 

  4. Liu M, Wang F, Liang M, Si Y, Yu J, Ding B (2020) In situ green synthesis of rechargeable antibacterial N-halamine grafted poly(vinyl alcohol) nanofibrous membranes for food packaging applications. Composites Communications 17:147–153

    Article  Google Scholar 

  5. Janani N, Zare EN, Salimi F, Makvandi P (2020) Antibacterial tragacanth gum-based nanocomposite films carrying ascorbic acid antioxidant for bioactive food packaging. Carbohyd Polym 247:116678

    Article  CAS  Google Scholar 

  6. Rajeswari A, Christy EJS, Swathi E, Pius A (2020) Fabrication of improved cellulose acetate-based biodegradable films for food packaging applications. Environmental Chemistry and Ecotoxicology

  7. Priyadarshi R, Rhim J-W (2020) Chitosan-based biodegradable functional films for food packaging applications. Innov Food Sci Emerg Technol 62:102346

    Article  CAS  Google Scholar 

  8. Rukmanikrishnan B, Ramalingam S, Rajasekharan SK, Lee J, Lee J (2020) Binary and ternary sustainable composites of gellan gum, hydroxyethyl cellulose and lignin for food packaging applications: Biocompatibility, antioxidant activity, UV and water barrier properties. Int J Biol Macromol 153:55–62

    Article  CAS  PubMed  Google Scholar 

  9. Topuz F, Uyar T (2020) Antioxidant, antibacterial and antifungal electrospun nanofibers for food packaging applications. Food Res Int 130:108927

    Article  CAS  PubMed  Google Scholar 

  10. Acevedo-Fani A, Soliva-Fortuny R, Martín-Belloso O (2017) Nanoemulsions as edible coatings. Curr Opin Food Sci 15:43–49

    Article  Google Scholar 

  11. Goindi S, Kaur A, Kaur R, Kalra A, Chauhan P (2016) 19 - Nanoemulsions: an emerging technology in the food industry. Academic Press, Emulsions. A. M. Grumezescu, pp 651–688

    Google Scholar 

  12. Quintanilla-Carvajal MX, Camacho-Díaz BH, Meraz-Torres LS, Chanona-Pérez JJ, Alamilla-Beltrán L, Jimenéz-Aparicio A, Gutiérrez-López GF (2010) Nanoencapsulation: a new trend in food engineering processing. Food Engineering Reviews 2(1):39–50

    Article  Google Scholar 

  13. Harwansh RK, Deshmukh R, Rahman MA (2019) Nanoemulsion: promising nanocarrier system for delivery of herbal bioactives. Journal of Drug Delivery Science and Technology 51:224–233

    Article  CAS  Google Scholar 

  14. Al-Tayyar NA, Youssef AM, Al-Hindi RR (2020) Edible coatings and antimicrobial nanoemulsions for enhancing shelf life and reducing foodborne pathogens of fruits and vegetables: a review. Sustain Mater Technol 26:e00215

    CAS  Google Scholar 

  15. Borthakur P, Boruah PK, Sharma B, Das MR (2016) 5 - Nanoemulsion: preparation and its application in food industry. Academic Press, Emulsions. A. M. Grumezescu, pp 153–191

    Google Scholar 

  16. McClements DJ, Jafari SM (2018) Chapter 1 - General aspects of nanoemulsions and their formulation. Academic Press, Nanoemulsions. S. M. Jafari and D. J. McClements, pp 3–20

    Google Scholar 

  17. McClements D (2012) Advances in fabrication of emulsions with enhanced functionality using structural design principles. Curr Opin Colloid Interface Sci 17:235–245

    Article  CAS  Google Scholar 

  18. Prakash A, Baskaran R, Paramasivam N, Vadivel V (2018) Essential oil based nanoemulsions to improve the microbial quality of minimally processed fruits and vegetables: a review. Food Res Int 111:509–523

    Article  CAS  PubMed  Google Scholar 

  19. Foroughi SA, Dabbagh Moghaddam H, Ahari H, Akbarein A, Anvar M, Meshki N. Sagharlou (2001) A survey on the shelf life extension of foods with nanofilms. (Full Text in Persian and Abstract in English). 9

  20. Rehman A, Jafari SM, Aadil RM, Assadpour E, Randhawa MA, Mahmood S (2020) Development of active food packaging via incorporation of biopolymeric nanocarriers containing essential oils. Trends Food Sci Technol 101:106–121

    Article  CAS  Google Scholar 

  21. Frank K, Garcia CV, Shin GH, Kim JT (2018) Alginate biocomposite films incorporated with cinnamon essential oil nanoemulsions: physical, mechanical, and antibacterial properties. International Journal of Polymer Science 2018:1519407

    Article  CAS  Google Scholar 

  22. Mason TG, Wilking JN, Meleson K, Chang CB, Graves SM (2006) Nanoemulsions: formation, structure, and physical properties. J Phys: Condens Matter 18(41):R635

    CAS  Google Scholar 

  23. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Nanoemulsions: formation, properties and applications. Soft Matter 12(11):2826–2841

    Article  CAS  PubMed  Google Scholar 

  24. Robledo N, Vera P, López L, Yazdani-Pedram M, Tapia C, Abugoch L (2018) Thymol nanoemulsions incorporated in quinoa protein/chitosan edible films; antifungal effect in cherry tomatoes. Food Chem 246:211–219

    Article  CAS  PubMed  Google Scholar 

  25. Porras M, Solans C, González C, Martínez A, Guinart A, Gutiérrez JM (2004) Studies of formation of W/O nano-emulsions. Colloids Surf, A 249(1–3):115–118

    Article  CAS  Google Scholar 

  26. Porras M, Solans C, González C, Gutiérrez JM (2008) Properties of water-in-oil (W/O) nano-emulsions prepared by a low-energy emulsification method. Colloids Surf, A 324(1):181–188

    Article  CAS  Google Scholar 

  27. Alzorqi I, Ketabchi MR, Sudheer S, Manickam S (2016) Optimization of ultrasound induced emulsification on the formulation of palm-olein based nanoemulsions for the incorporation of antioxidant β-d-glucan polysaccharides. Ultrason Sonochem 31:71–84

    Article  CAS  PubMed  Google Scholar 

  28. Lawrence MJ (1996) Microemulsions as drug delivery vehicles. Curr Opin Colloid Interface Sci 1(6):826–832

    Article  CAS  Google Scholar 

  29. Zhang R, Zhang Z, McClements DJ (2020) Nanoemulsions: an emerging platform for increasing the efficacy of nutraceuticals in foods. Colloids Surf, B 194:111202

    Article  CAS  Google Scholar 

  30. Norcino LB, Mendes JF, Natarelli CVL, Manrich A, Oliveira JE, Mattoso LHC (2020) Pectin films loaded with copaiba oil nanoemulsions for potential use as bio-based active packaging. Food Hydrocolloids 106:105862

    Article  CAS  Google Scholar 

  31. Zhang J, Liu Z, Tao C, Lin X, Zhang M, Zeng L, Chen X, Song H (2020) Cationic nanoemulsions with prolonged retention time as promising carriers for ophthalmic delivery of tacrolimus. Eur J Pharm Sci 144:105229

    Article  PubMed  CAS  Google Scholar 

  32. Tadros T, Izquierdo P, Esquena J, Solans C (2004) Formation and stability of nano-emulsions. Adv Colloid Interface Sci 108–109:303–318

    Article  PubMed  CAS  Google Scholar 

  33. de Oca-Ávalos JMM, Candal RJ, Herrera ML (2017) Nanoemulsions: stability and physical properties. Curr Opin Food Sci 16:1–6

    Article  Google Scholar 

  34. Saffarionpour S (2019) Preparation of food flavor nanoemulsions by high- and low-energy emulsification approaches. Food Engineering Reviews 11(4):259–289

    Article  Google Scholar 

  35. Silva HD, Cerqueira MÂ, Vicente AA (2012) Nanoemulsions for food applications: development and characterization. Food Bioprocess Technol 5(3):854–867

    Article  CAS  Google Scholar 

  36. Raviadaran R, Chandran D, Shin LH, Manickam S (2018) Optimization of palm oil in water nano-emulsion with curcumin using microfluidizer and response surface methodology. LWT 96:58–65

    Article  CAS  Google Scholar 

  37. Parthasarathy S, Siah Ying T, Manickam S (2013) Generation and optimization of palm oil-based oil-in-water (O/W) submicron-emulsions and encapsulation of curcumin using a liquid whistle hydrodynamic cavitation reactor (LWHCR). Ind Eng Chem Res 52(34):11829–11837

    Article  CAS  Google Scholar 

  38. Mollet H, Grubenmann A (2008) Formulation technology: emulsions, suspensions, solid forms. John Wiley & Sons

    Google Scholar 

  39. Davies JT (1987) A physical interpretation of drop sizes in homogenizers and agitated tanks, including the dispersion of viscous oils. Chem Eng Sci 42(7):1671–1676

    Article  CAS  Google Scholar 

  40. Gupta A, Eral HB, Hatton TA, Doyle PS (2016) Controlling and predicting droplet size of nanoemulsions: scaling relations with experimental validation. Soft Matter 12(5):1452–1458

    Article  CAS  PubMed  Google Scholar 

  41. Rapp BE (2017) Chapter 9 - Fluids. In: Rapp BE (ed) Microfluidics: Modelling, Mechanics and Mathematics. Elsevier, Oxford, pp 243–263

    Chapter  Google Scholar 

  42. Gupta A, Narsimhan V, Hatton TA, Doyle PS (2016) Kinetics of the change in droplet size during nanoemulsion formation. Langmuir 32(44):11551–11559

    Article  CAS  PubMed  Google Scholar 

  43. Bahrami A, Delshadi R, Assadpour E, Jafari SM, Williams L (2020) Antimicrobial-loaded nanocarriers for food packaging applications. Adv Coll Interface Sci 278:102140

    Article  CAS  Google Scholar 

  44. Anton N, Vandamme TF (2009) The universality of low-energy nano-emulsification. Int J Pharm 377(1–2):142–147

    Article  CAS  PubMed  Google Scholar 

  45. Chang Y, McLandsborough L, McClements DJ (2013) Physicochemical properties and antimicrobial efficacy of carvacrol nanoemulsions formed by spontaneous emulsification. J Agric Food Chem 61(37):8906–8913

    Article  CAS  PubMed  Google Scholar 

  46. Izquierdo P, Esquena J, Tadros TF, Dederen C, Garcia MJ, Azemar N, Solans C (2002) Formation and stability of nano-emulsions prepared using the phase inversion temperature method. Langmuir 18(1):26–30

    Article  CAS  Google Scholar 

  47. Forgiarini A, Esquena J, Gonzalez C, Solans C (2001) Formation of nano-emulsions by low-energy emulsification methods at constant temperature. Langmuir 17(7):2076–2083

    Article  CAS  Google Scholar 

  48. Gothsch T, Finke JH, Beinert S, Lesche C, Schur J, Büttgenbach S, Müller-Goymann C, Kwade A (2011) Effect of microchannel geometry on high-pressure dispersion and emulsification. Chem Eng Technol 34(3):335–343

    Article  CAS  Google Scholar 

  49. García-Márquez E, Higuera-Ciapara I, Espinosa-Andrews H (2017) Design of fish oil-in-water nanoemulsion by microfluidization. Innov Food Sci Emerg Technol 40:87–91

    Article  CAS  Google Scholar 

  50. Meleson K, Graves S, Mason TG (2004) Formation of concentrated nanoemulsions by extreme shear. Soft Mater 2(2–3):109–123

    Article  CAS  Google Scholar 

  51. Mahdi Jafari S, He Y, Bhandari B (2006) Nano-emulsion production by sonication and microfluidization—a comparison. Int J Food Prop 9(3):475–485

    Article  CAS  Google Scholar 

  52. Gutiérrez J, González C, Maestro A, Solè I, Pey C, Nolla J (2008) Nano-emulsions: new applications and optimization of their preparation. Curr Opin Colloid Interface Sci 13(4):245–251

    Article  CAS  Google Scholar 

  53. Saint Ruth H, Attwood D, Ktistis G, Taylor C (1995) Phase studies and particle size analysis of oil-in-water phospholipid microemulsions. Int J Pharm 116(2):253–261

    Article  Google Scholar 

  54. Mudalige T, Qu H,  Van Haute D, Ansar SM, Paredes A Ingle T (2019) Chapter 11 - Characterization of nanomaterials: tools and challenges. Nanomaterials for food applications. López Rubio A, Fabra Rovira MJ, Martínez Sanz M, Gómez-Mascaraque LG, Elsevier: 313–353

  55. Ling T (2016) Development of parenteral nanoemulsion systems loaded with carbamazepine for efficient blood-brain barrier crossing in epilepsy treatment.

  56. Barea M, Jenkins M, Gaber M, Bridson R (2010) Evaluation of liposomes coated with a pH responsive polymer. Int J Pharm 402(1–2):89–94

    Article  CAS  PubMed  Google Scholar 

  57. Saka H (2003) Chapter 14 - Transmission Electron Microscopy. Carbon Alloys. E.-i. Yasuda, M. Inagaki, K. Kaneko et al. Oxford, Elsevier Science:223–238

  58. Samah NA, Williams N, Heard CM (2010) Nanogel particulates located within diffusion cell receptor phases following topical application demonstrates uptake into and migration across skin. Int J Pharm 401(1–2):72–78

    Article  CAS  PubMed  Google Scholar 

  59. Chuacharoen T, Prasongsuk S, Sabliov CM (2019) "Effect of surfactant concentrations on physicochemical properties and functionality of curcumin nanoemulsions under conditions relevant to commercial utilization." Molecules 24(15)

  60. Kumari S, Kumaraswamy RV, Choudhary RC, Sharma SS, Pal A, Raliya R, Saharan V (2018) Thymol nanoemulsion exhibits potential antibacterial activity against bacterial pustule disease and growth promotory effect on soybean. Sci Rep 8

  61. Agudelo-Cuartas C, Granda-Restrepo D, Sobral PJ, Hernandez H, Castro W (2020) Characterization of whey protein-based films incorporated with natamycin and nanoemulsion of α-tocopherol. Heliyon 6(4):e03809

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ahmad N, Ahmad R, Alam MA, Samim M, Iqbal Z, Ahmad F (2016) "Quantification and evaluation of thymoquinone loaded mucoadhesive nanoemulsion for treatment of cerebral ischemia." Int J Biol Macromol 88

  63. Wu H-R, Wang C-Q, Wang J-X, Chen J-F, Le Y (2020) Engineering of long-term stable transparent nanoemulsion using high-gravity rotating packed bed for oral drug delivery. Int J Nanomed 15:2391

    Article  CAS  Google Scholar 

  64. Mason TG, Graves SM, Wilking JN, Lin MY (2006) Extreme emulsification: formation and structure of nanoemulsions. Condensed Matter Physics

  65. Kumar N, Mandal A (2018) Surfactant stabilized oil-in-water nanoemulsion: stability, interfacial tension, and rheology study for enhanced oil recovery application. Energy Fuels 32(6):6452–6466

    Article  CAS  Google Scholar 

  66. Helgeson M (2016) Colloidal behavior of nanoemulsions: interactions, structure and rheology. Curr Opin Colloid Interface Sci 25

  67. Jose Chirayil C, Abraham J, Kumar Mishra R, George SC Thomas S (2017) Chapter 1 - Instrumental techniques for the characterization of nanoparticles. Thermal and rheological measurement techniques for nanomaterials characterization. Thomas S, Thomas R, Zachariah AK Mishra RK Elsevier: 1–36

  68. Das S, Chaudhury A (2011) Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery. AAPS PharmSciTech 12(1):62–76

    Article  CAS  PubMed  Google Scholar 

  69. Heurtault B, Saulnier P, Pech B, Proust JE, Benoit JP (2003) Physico-chemical stability of colloidal lipid particles. Biomaterials 24(23):4283–4300

    Article  CAS  PubMed  Google Scholar 

  70. Sis H, Birinci M (2009) Effect of nonionic and ionic surfactants on zeta potential and dispersion properties of carbon black powders. Colloids Surf, A 341(1):60–67

    Article  CAS  Google Scholar 

  71. Pinheiro AC, António AV, Manuel AC (2016) In vitro behaviour of curcumin nanoemulsions stabilized by biopolymer emulsifiers – Effect of interfacial composition. Food Hydrocolloids 52:460–467

    Article  CAS  Google Scholar 

  72. Mohamadi Saani S, Abdolalizadeh J, Zeinali Heris S (2019) Ultrasonic/sonochemical synthesis and evaluation of nanostructured oil in water emulsions for topical delivery of protein drugs. Ultrason Sonochem 55:86–95

    Article  CAS  PubMed  Google Scholar 

  73. Zhou H, Yue Y, Liu G, Li Y, Zhang J, Gong Q, Yan Z, Duan M (2009) Preparation and characterization of a lecithin nanoemulsion as a topical delivery system. Nanoscale Res Lett 5(1):224

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Piacentini E (2016) Droplet Size. In: Drioli E, Giorno L (eds) Encyclopedia of Membranes. Berlin, Heidelberg, Springer, Berlin, Heidelberg, pp 591–592

    Chapter  Google Scholar 

  75. Xiong Y, Li S, Warner RD, Fang Z (2020) Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control 114:107226

    Article  CAS  Google Scholar 

  76. McClements DJ, Rao J (2011) Food-grade nanoemulsions: formulation, fabrication, properties, performance, biological fate, and potential toxicity. Crit Rev Food Sci Nutr 51(4):285–330

    Article  CAS  PubMed  Google Scholar 

  77. Zhang R, Zhang Z, Kumosani T, Khoja S, Abualnaja KO, McClements DJ (2016) Encapsulation of β-carotene in nanoemulsion-based delivery systems formed by spontaneous emulsification: influence of lipid composition on stability and bioaccessibility. Food Biophys 11(2):154–164

    Article  Google Scholar 

  78. Davidov-Pardo G, McClements DJ (2015) Nutraceutical delivery systems: Resveratrol encapsulation in grape seed oil nanoemulsions formed by spontaneous emulsification. Food Chem 167:205–212

    Article  CAS  PubMed  Google Scholar 

  79. Delmas T, Piraux H, Couffin AC, Texier I, Vinet F, Poulin P, Cates ME, Bibette J (2011) How to prepare and stabilize very small nanoemulsions. Langmuir 27(5):1683–1692

    Article  CAS  PubMed  Google Scholar 

  80. Gundewadi G, Rudra SG, Sarkar DJ, Singh D (2018) Nanoemulsion based alginate organic coating for shelf life extension of okra. Food Packag Shelf Life 18:1–12

    Article  Google Scholar 

  81. Sivakumar M, Tang SY, Tan KW (2014) Cavitation technology - a greener processing technique for the generation of pharmaceutical nanoemulsions. Ultrason Sonochem 21(6):2069–2083

    Article  CAS  PubMed  Google Scholar 

  82. Lu W-C, Huang D-W, Wang C-CR, Yeh C-H, Tsai J-C, Huang Y-T, Li P-H (2018) Preparation, characterization, and antimicrobial activity of nanoemulsions incorporating citral essential oil. J Food Drug Anal 26(1):82–89

    Article  CAS  PubMed  Google Scholar 

  83. Kenar J (2005) Food emulsions: principles, practices, and techniques. Rev Article 12:760

    Google Scholar 

  84. Qian C, McClements DJ (2011) Formation of nanoemulsions stabilized by model food-grade emulsifiers using high-pressure homogenization: Factors affecting particle size. Food Hydrocolloids 25(5):1000–1008

    Article  CAS  Google Scholar 

  85. Donsì F, Ferrari G (2016) Essential oil nanoemulsions as antimicrobial agents in food. J Biotechnol 233:106–120

    Article  PubMed  CAS  Google Scholar 

  86. Wooster TJ, Golding M, Sanguansri P (2008) Impact of oil type on nanoemulsion formation and ostwald ripening stability. Langmuir 24(22):12758–12765

    Article  CAS  PubMed  Google Scholar 

  87. Baldan A (2002) Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. J Mater Sci 37(11):2171–2202

    Article  CAS  Google Scholar 

  88. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50

    Article  Google Scholar 

  89. Robles-García MA, Rodríguez-Félix F, Márquez-Ríos E, Aguilar JA, Barrera-Rodríguez A, Aguilar J, Ruiz-Cruz S, Del-Toro-Sánchez CL (2016) Applications of nanotechnology in the agriculture, food, and pharmaceuticals. J Nanosci Nanotechnol 16(8):8188–8207

    Article  CAS  Google Scholar 

  90. Bahrami F, Ahari H, Yousefi SS (2019) The effect of efficient bioactive nano-emulsion formulation based on Polylophium involucratum on improving quality features of green tiger pawn fridge storage. Ann Mil Health Sci Res 17(1):e89422

    Google Scholar 

  91. Ghaderi-Ghahfarokhi M, Barzegar M, Sahari MA, Ahmadi Gavlighi H, Gardini F (2017) Chitosan-cinnamon essential oil nano-formulation: application as a novel additive for controlled release and shelf life extension of beef patties. Int J Biol Macromol 102:19–28

    Article  CAS  PubMed  Google Scholar 

  92. Falguera V, Quintero JP, Jiménez A, Muñoz JA, Ibarz A (2011) Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Technol 22(6):292–303

    Article  CAS  Google Scholar 

  93. Korley Kortei N, Tawia Odamtten G, Obodai M, Appiah V, Toah Akonor P (2015) Determination of color parameters of gamma irradiated fresh and dried mushrooms during storage. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam 10(1–2):66–71

    Google Scholar 

  94. Noori S, Zeynali F, Almasi H (2018) Antimicrobial and antioxidant efficiency of nanoemulsion-based edible coating containing ginger (Zingiber officinale) essential oil and its effect on safety and quality attributes of chicken breast fillets. Food Control 84:312–320

    Article  CAS  Google Scholar 

  95. Li X, Yang X, Deng H, Guo Y, Xue J (2020) Gelatin films incorporated with thymol nanoemulsions: physical properties and antimicrobial activities. Int J Biol Macromol 150:161–168

    Article  CAS  PubMed  Google Scholar 

  96. Ghadetaj A, Almasi H, Mehryar L (2018) Development and characterization of whey protein isolate active films containing nanoemulsions of Grammosciadium ptrocarpum Bioss. essential oil. Food Packag Shelf Life 16:31–40

    Article  Google Scholar 

  97. Nawab A, Alam F, Hasnain A (2017) Mango kernel starch as a novel edible coating for enhancing shelf-life of tomato (Solanum lycopersicum) fruit. Int J Biol Macromol 103:581–586

    Article  CAS  PubMed  Google Scholar 

  98. Saberi B, Golding JB, Marques JR, Pristijono P, Chockchaisawasdee S, Scarlett CJ, Stathopoulos CE (2018) Application of biocomposite edible coatings based on pea starch and guar gum on quality, storability and shelf life of ‘Valencia’oranges. Postharvest Biol Technol 137:9–20

    Article  CAS  Google Scholar 

  99. Cenobio-Galindo ADJ, Ocampo-López J, Reyes-Munguía A, Carrillo-Inungaray ML, Cawood M, Medina-Pérez G,  Campos-Montiel RG (2019) Influence of bioactive compounds incorporated in a nanoemulsion as coating on avocado fruits (Persea americana) during postharvest storage: Antioxidant activity, physicochemical changes and structural evaluation. Antioxidants (Basel, Switzerland) 8(10):500

  100. Neira LM, Martucci JF, Stejskal N, Ruseckaite RA (2019) Time-dependent evolution of properties of fish gelatin edible films enriched with carvacrol during storage. Food Hydrocolloids 94:304–310

    Article  CAS  Google Scholar 

  101. Pérez-Córdoba LJ, Norton IT, Batchelor HK, Gkatzionis K, Spyropoulos F, Sobral PJ (2018) Physico-chemical, antimicrobial and antioxidant properties of gelatin-chitosan based films loaded with nanoemulsions encapsulating active compounds. Food Hydrocolloids 79:544–559

    Article  CAS  Google Scholar 

  102. Alexandre EMC, Lourenço RV, Bittante AMQB, Moraes ICF, P. J. d. A. Sobral, (2016) Gelatin-based films reinforced with montmorillonite and activated with nanoemulsion of ginger essential oil for food packaging applications. Food Packag Shelf Life 10:87–96

    Article  Google Scholar 

  103. Umaraw P, Munekata PES, Verma AK, Barba FJ, Singh VP, Kumar P, Lorenzo JM (2020) Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci Technol 98:10–24

    Article  CAS  Google Scholar 

  104. Hu Y, Topolkaraev V, Hiltner A, Baer E (2001) Measurement of water vapor transmission rate in highly permeable films. J Appl Polym Sci 81(7):1624–1633

    Article  CAS  Google Scholar 

  105. Moreira Gonçalves S, Gomes Motta JF, Ribeiro-Santos R, Hidalgo Chávez DW, Ramos de Melo N (2020) Functional and antimicrobial properties of cellulose acetate films incorporated with sweet fennel essential oil and plasticizers. Current Research in Food Science 3:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  106. Velickova E, Winkelhausen E, Kuzmanova S, Alves VD, Moldão-Martins M (2013) Impact of chitosan-beeswax edible coatings on the quality of fresh strawberries (Fragaria ananassa cv Camarosa) under commercial storage conditions. LWT-Food Science and Technology 52(2):80–92

    Article  CAS  Google Scholar 

  107. Velickova E, Winkelhausen E, Kuzmanova S, Moldao-Martins M, Alves VD (2015) Characterization of multilayered and composite edible films from chitosan and beeswax. Food Sci Technol Int 21(2):83–93

    Article  CAS  PubMed  Google Scholar 

  108. Chen H, Hu X, Chen E, Wu S, McClements DJ, Liu S, Li B, Li Y (2016) Preparation, characterization, and properties of chitosan films with cinnamaldehyde nanoemulsions. Food Hydrocolloids 61:662–671

    Article  CAS  Google Scholar 

  109. Almasi H, Azizi S, Amjadi S (2020) Development and characterization of pectin films activated by nanoemulsion and Pickering emulsion stabilized marjoram (Origanum majorana L.) essential oil. Food Hydrocoll 99:105338

  110. Rovera C, Ghaani M, Farris S (2020) Nano-inspired oxygen barrier coatings for food packaging applications: an overview. Trends Food Sci Technol 97:210–220

    Article  CAS  Google Scholar 

  111. Bao Y, Puolanne E, Ertbjerg P (2016) Effect of oxygen concentration in modified atmosphere packaging on color and texture of beef patties cooked to different temperatures. Meat Sci 121:189–195

    Article  CAS  PubMed  Google Scholar 

  112. Hirsch A (1991) Why is an oxygen barrier required? In: Hirsch A (ed) Flexible food packaging: questions and answers. Boston, MA, Springer, US, pp 14–19

    Chapter  Google Scholar 

  113. Dey A, Neogi S (2019) Oxygen scavengers for food packaging applications: a review. Trends Food Sci Technol 90:26–34

    Article  CAS  Google Scholar 

  114. Ayranci E, Tunc S (2003) A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem 80(3):423–431

    Article  CAS  Google Scholar 

  115. Otoni CG, Avena-Bustillos RJ, Olsen CW, Bilbao-Sáinz C, McHugh TH (2016) Mechanical and water barrier properties of isolated soy protein composite edible films as affected by carvacrol and cinnamaldehyde micro and nanoemulsions. Food Hydrocolloids 57:72–79

    Article  CAS  Google Scholar 

  116. Bifani V, Ramírez C, Ihl M, Rubilar M, García A, Zaritzky N (2007) Effects of murta (Ugni molinae Turcz) extract on gas and water vapor permeability of carboxymethylcellulose-based edible films. LWT-Food Science and Technology 40(8):1473–1481

    Article  CAS  Google Scholar 

  117. Imran M, Revol-Junelles A-M, René N, Jamshidian M, Akhtar MJ, Arab-Tehrany E, Jacquot M, Desobry S (2012) Microstructure and physico-chemical evaluation of nano-emulsion-based antimicrobial peptides embedded in bioactive packaging films. Food Hydrocolloids 29(2):407–419

    Article  CAS  Google Scholar 

  118. Dhall RK (2013) Advances in edible coatings for fresh fruits and vegetables: a review. Crit Rev Food Sci Nutr 53(5):435–450

    Article  CAS  PubMed  Google Scholar 

  119. Huang T, Lin J, Fang Z, Yu W, Li Z, Xu D, Yang W, Zhang J (2020) Preparation and characterization of irradiated kafirin-quercetin film for packaging cod (Gadus morhua) during cold storage at 4 °C. Food Bioprocess Technol 13(3):522–532

    Article  CAS  Google Scholar 

  120. Ji M, Wu J, Sun X, Guo X, Zhu W, Li Q, Shi X, Tian Y, Wang S (2021) Physical properties and bioactivities of fish gelatin films incorporated with cinnamaldehyde-loaded nanoemulsions and vitamin C. LWT 135:110103

    Article  CAS  Google Scholar 

  121. Chu Y, Cheng W, Feng X, Gao C, Wu D, Meng L, Zhang Y, Tang X (2020) Fabrication, structure and properties of pullulan-based active films incorporated with ultrasound-assisted cinnamon essential oil nanoemulsions. Food Packag Shelf Life 25:100547

    Article  Google Scholar 

  122. Abdou ES, Galhoum GF, Mohamed EN (2018) Curcumin loaded nanoemulsions/pectin coatings for refrigerated chicken fillets. Food Hydrocolloids 83:445–453

    Article  CAS  Google Scholar 

  123. Andrés-Bello A, Barreto-Palacios V, García-Segovia P, Mir-Bel J, Martínez-Monzó J (2013) Effect of pH on color and texture of food products. Food Engineering Reviews 5(3):158–170

    Article  CAS  Google Scholar 

  124. Moraes-Lovison Ml, Andrezza MF, Isabela FM, Luís FPM, Marina SP, Marluci G, Rodney AFR, Samantha C P (2017) Nanoemulsions encapsulating oregano essential oil: Production, stability, antibacterial activity and incorporation in chicken pâté. Lebensmittel-Wissenschaft + [i.e. und] Technologie. Food science + technology. Science + technologie alimentaire 77:233–240

  125. Bernardi DS, Pereira TA, Maciel NR, Bortoloto J, Viera GS, Oliveira GC, Rocha-Filho PA (2011) Formation and stability of oil-in-water nanoemulsions containing rice bran oil: in vitro and in vivo assessments. Journal of nanobiotechnology 9(1):1–9

    Article  CAS  Google Scholar 

  126. Das AK, Nanda PK, Das A, Biswas S (2019) Chapter 6 - Hazards and safety issues of meat and meat products. Academic Press, Food Safety and Human Health. R. L. Singh and S. Mondal, pp 145–168

    Google Scholar 

  127. Das AK (2020) A comprehensive review on antioxidant dietary fibre enriched meat-based functional foods. Trends Food Sci Tech 99:323–336

  128. Jimenez-Escobar MP, Pascual-Mathey LI, Beristain CI, Flores-Andrade E, Jiménez M, Pascual-Pineda LA (2020) In vitro and In vivo antioxidant properties of paprika carotenoids nanoemulsions. LWT 118:108694

    Article  CAS  Google Scholar 

  129. Rehman A, Jafari SM, Tong Q, Karim A, Mahdi AA, Iqbal MW, Aadil RM, Ali A, Manzoor MF (2020) Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. Int J Biol Macromol 153:697–707

    Article  CAS  PubMed  Google Scholar 

  130. Qiu C, Chang R, Yang J, Ge S, Xiong L, Zhao M, Li M, Sun Q (2017) Preparation and characterization of essential oil-loaded starch nanoparticles formed by short glucan chains. Food Chem 221:1426–1433

    Article  CAS  PubMed  Google Scholar 

  131. Vilela C, Kurek M, Hayouka Z, Röcker B, Yildirim S, Antunes MDC, Nilsen-Nygaard J, Pettersen MK, Freire CS (2018) A concise guide to active agents for active food packaging. Trends Food Sci Technol 80:212–222

    Article  CAS  Google Scholar 

  132. Moxon M, Strupp C, Aggarwal M, Odum J, Lewis R, Zedet S, Mehta J (2020) An analysis of the setting of the acute reference dose (ARfD) for pesticides in Europe. Regul Toxicol Pharmacol 113:104638

    Article  CAS  PubMed  Google Scholar 

  133. Azam SMR, Ma H, Xu B, Devi S, Siddique MAB, Stanley SL, Bhandari B, Zhu J (2020) Efficacy of ultrasound treatment in the removal of pesticide residues from fresh vegetables: a review. Trends Food Sci Technol 97:417–432

    Article  CAS  Google Scholar 

  134. Ribeiro-Santos R, Sanches-Silva A, Motta JFG, Andrade M, I. d. A. Neves, R. F. Teófilo, M. G. d. Carvalho and N. R. d. Melo, (2017) Combined use of essential oils applied to protein base active food packaging: study in vitro and in a food simulant. Eur Polymer J 93:75–86

    Article  CAS  Google Scholar 

  135. Xu JG, Liu T, Hu QP, Cao XM (2016) Chemical composition, antibacterial properties and mechanism of action of essential oil from clove buds against Staphylococcus aureus. Molecules 21(9)

  136. Shao P, Yan Z, Chen H, Xiao J (2018) Electrospun poly (vinyl alcohol)/permutite fibrous film loaded with cinnamaldehyde for active food packaging. J Appl Polym Sci 135(16):46117

    Article  CAS  Google Scholar 

  137. Rieger KA, Schiffman JD (2014) Electrospinning an essential oil: Cinnamaldehyde enhances the antimicrobial efficacy of chitosan/poly (ethylene oxide) nanofibers. Carbohyd Polym 113:561–568

    Article  CAS  Google Scholar 

  138. Siemann U (2005) Solvent cast technology – a versatile tool for thin film production. In: Stribeck N, Smarsly B (eds) Scattering Methods and the Properties of Polymer Materials. Berlin, Heidelberg, Springer, Berlin, Heidelberg, pp 1–14

    Google Scholar 

  139. Jose Varghese REH, Sakho M, Parani S, Thomas S, Oluwafemi OS, Wu J (2019). Chapter 3 - Introduction to nanomaterials: synthesis and applications. Nanomaterials for Solar Cell Applications. Thomas S, Sakho EHM, Kalarikkal N, Oluwafemi SO, Wu J Elsevier: 75–95

  140. Kayaci F, Uyar T (2012) Encapsulation of vanillin/cyclodextrin inclusion complex in electrospun polyvinyl alcohol (PVA) nanowebs: prolonged shelf-life and high temperature stability of vanillin. Food Chem 133(3):641–649

    Article  CAS  Google Scholar 

  141. Tatlisu NB, Yilmaz MT, Arici M (2019) Fabrication and characterization of thymol-loaded nanofiber mats as a novel antimould surface material for coating cheese surface. Food Packag Shelf Life 21:100347

    Article  Google Scholar 

  142. Hoque ME, Nuge T, Yeow TK Nordin N (2019) Chapter 5 - Electrospun matrices from natural polymers for skin regeneration. Nanostructured Polymer Composites for Biomedical Applications. Swain SK, Jawaid M Elsevier: 87–104

  143. Bhushani JA, Anandharamakrishnan C (2014) Electrospinning and electrospraying techniques: Potential food based applications. Trends Food Sci Technol 38(1):21–33

    Article  CAS  Google Scholar 

  144. Wen P, Zhu D-H, Wu H, Zong M-H, Jing Y-R, Han S-Y (2016) Encapsulation of cinnamon essential oil in electrospun nanofibrous film for active food packaging. Food Control 59:366–376

    Article  CAS  Google Scholar 

  145. Munteanu BS, Sacarescu L, Vasiliu A-L, Hitruc GE, Pricope GM, Sivertsvik M, Rosnes JT, Vasile C (2018) Antioxidant/antibacterial electrospun nanocoatings applied onto PLA films. Materials 11(10):1973

    Article  PubMed Central  CAS  Google Scholar 

  146. Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21(4):369

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Koh KJ, Pearce AL, Marshman G, Finlay-Jones JJ, Hart PH (2002) Tea tree oil reduces histamine-induced skin inflammation. Br J Dermatol 147(6):1212–1217

    Article  CAS  PubMed  Google Scholar 

  148. Ibrahim NA, El-Sakhawy FS, Mohammed MM, Farid MA, Abdel-Wahed NA, Deabes DA (2015) Chemical composition, antimicrobial and antifungal activities of essential oils of the leaves of Aegle marmelos (L.) Correa growing in Egypt. Journal of Applied Pharmaceutical Science 5(2):001–005

    Article  CAS  Google Scholar 

  149. Swamy MK, Akhtar MS, Sinniah UR (2016) Antimicrobial properties of plant essential oils against human pathogens and their mode of action: an updated review. Evidence-based complementary and alternative medicine : eCAM 2016:3012462–3012462

    Article  Google Scholar 

  150. Shoaib A, Saeed G, Ahmad S (2014) Antimicrobial activity and chemical analysis of some edible oils (clove, kalonji and taramira). Afr J Biotech 13:4347–4354

    Google Scholar 

  151. Ribeiro-Santos R, Andrade M, N. R. d. Melo and A. Sanches-Silva, (2017) Use of essential oils in active food packaging: recent advances and future trends. Trends Food Sci Technol 61:132–140

    Article  CAS  Google Scholar 

  152. Rezaei A, Fathi M, Jafari SM (2019) Nanoencapsulation of hydrophobic and low-soluble food bioactive compounds within different nanocarriers. Food Hydrocolloids 88:146–162

    Article  CAS  Google Scholar 

  153. Anderson RA, Zhan Z, Luo R, Guo X, Guo Q, Zhou J, Kong J, Davis PA, Stoecker BJ (2016) Cinnamon extract lowers glucose, insulin and cholesterol in people with elevated serum glucose. J Tradit Complement Med 6(4):332–336

    Article  PubMed  Google Scholar 

  154. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86(6):985–990

    Article  CAS  PubMed  Google Scholar 

  155. Ozogul Y, Kuley Boğa E, Akyol I, Durmus M, Ucar Y, Regenstein JM, Köşker AR (2020) Antimicrobial activity of thyme essential oil nanoemulsions on spoilage bacteria of fish and food-borne pathogens. Food Biosci 36:100635

    Article  CAS  Google Scholar 

  156. Ziani K, Chang Y, McLandsborough L, McClements DJ (2011) Influence of surfactant charge on antimicrobial efficacy of surfactant-stabilized thyme oil nanoemulsions. J Agric Food Chem 59(11):6247–6255

    Article  CAS  PubMed  Google Scholar 

  157. Batista RA, Espitia PJP, Quintans JDSS, Freitas MM, Cerqueira MÂ, Teixeira JA, Cardoso JC (2019) Hydrogel as an alternative structure for food packaging systems. Carbohyd Polym 205:106–116

  158. Wang Y, Xia Y, Zhang P, Ye L, Wu L, He S (2016) Physical characterization and pork packaging application of chitosan films incorporated with combined essential oils of  cinnamon and ginger. Food Bioproc Tech 10

  159. Riveros CG, Nepote V, Grosso NR (2016) Thyme and basil essential oils included in edible coatings as a natural preserving method of oilseed kernels. J Sci Food Agric 96(1):183–191

    Article  CAS  PubMed  Google Scholar 

  160. Rashed MMA, Tong Q, Nagi A, Li J, Khan NU, Chen L, Rotail A, Bakry AM (2017) Isolation of essential oil from Lavandula angustifolia by using ultrasonic-microwave assisted method preceded by enzymolysis treatment, and assessment of its biological activities. Ind Crops Prod 100:236–245

    Article  CAS  Google Scholar 

  161. Esmaeili A, Asgari A (2015) In vitro release and biological activities of Carum copticum essential oil (CEO) loaded chitosan nanoparticles. Int J Biol Macromol 81:283–290

    Article  CAS  PubMed  Google Scholar 

  162. Chaudhary S, Kumar S, Kumar V, Sharma R (2020) Chitosan nanoemulsions as advanced edible coatings for fruits and vegetables: Composition, fabrication and developments in last decade. Int J Biol Macromol 152:154–170

    Article  CAS  PubMed  Google Scholar 

  163. Mishra PK, Singh P, Prakash B, Kedia A, Dubey NK, Chanotiya CS (2013) Assessing essential oil components as plant-based preservatives against fungi that deteriorate herbal raw materials. Int Biodeterior Biodegradation 80:16–21

    Article  CAS  Google Scholar 

  164. Manso S, Pezo D, Gómez-Lus R, Nerín C (2014) Diminution of aflatoxin B1 production caused by an active packaging containing cinnamon essential oil. Food Control 45:101–108

    Article  CAS  Google Scholar 

  165. Khan MSA, Ahmad I (2011) In vitro antifungal, anti-elastase and anti-keratinase activity of essential oils of Cinnamomum-, Syzygium- and Cymbopogon-species against Aspergillus fumigatus and Trichophyton rubrum. Phytomedicine 19(1):48–55

    Article  CAS  PubMed  Google Scholar 

  166. Loi M, Paciolla C, Logrieco AF, Mulè G (2020) Plant bioactive compounds in pre- and postharvest management for aflatoxins reduction. Front Microbiol 11:243–243

    Article  PubMed  PubMed Central  Google Scholar 

  167. Mousavi Khaneghah A, Hashemi SMB, Limbo S (2018) Antimicrobial agents and packaging systems in antimicrobial active food packaging: an overview of approaches and interactions. Food Bioprod Process 111:1–19

    Article  CAS  Google Scholar 

  168. Ju J, Xie Y, Guo Y, Cheng Y, Qian H, Yao W (2019) Application of edible coating with essential oil in food preservation. Crit Rev Food Sci Nutr 59(15):2467–2480

    Article  CAS  PubMed  Google Scholar 

  169. Ju J, Chen X, Xie Y, Yu H, Guo Y, Cheng Y, Qian H, Yao W (2019) Application of essential oil as a sustained release preparation in food packaging. Trends Food Sci Technol 92:22–32

    Article  CAS  Google Scholar 

  170. Pabast M, Shariatifar N, Beikzadeh S, Jahed G (2018) Effects of chitosan coatings incorporating with free or nano-encapsulated Satureja plant essential oil on quality characteristics of lamb meat. Food Control 91:185–192

    Article  CAS  Google Scholar 

  171. Noh M, Mustafa M (2014) Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packaging and shelf-life 3:56–61

    Google Scholar 

  172. Sessa M, Ferrari G, Donsì F (2015) Novel edible coating containing essential oil nanoemulsions to prolong the shelf life of vegetable products. 43:55–60

  173. Fernández-Pan I, Carrión-Granda X, Maté JI (2014) Antimicrobial efficiency of edible coatings on the preservation of chicken breast fillets. Food Control 36(1):69–75

    Article  CAS  Google Scholar 

  174. Zinoviadou KG, Koutsoumanis KP, Biliaderis CG (2009) Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci 82(3):338–345

    Article  CAS  PubMed  Google Scholar 

  175. Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M (2007) Antimicrobial effects of alginate-based films containing essential oils on Listeria monocytogenes and Salmonella typhimurium present in bologna and ham. J Food Prot 70(4):901–908

    Article  CAS  PubMed  Google Scholar 

  176. Oussalah M, Caillet S, Salmiéri S, Saucier L, Lacroix M (2006) Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J Food Prot 69(10):2364–2369

    Article  CAS  PubMed  Google Scholar 

  177. Chaudhari AK, Singh VK, Das S, Prasad J, Dwivedy AK, Dubey NK (2020) Improvement of in vitro and in situ antifungal, AFB1 inhibitory and antioxidant activity of Origanum majorana L. essential oil through nanoemulsion and recommending as novel food preservative. Food Chem Toxicol 143:111536

  178. Xu T, Gao C, Feng X, Huang M, Yang Y, Shen X, Tang X (2019) Cinnamon and clove essential oils to improve physical, thermal and antimicrobial properties of chitosan-gum arabic polyelectrolyte complexed films. Carbohyd Polym 217:116–125

    Article  CAS  Google Scholar 

  179. Severino R, Vu KD, Donsì F, Salmieri S, Ferrari G, Lacroix M (2014) Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against Listeria innocua in green beans. Int J Food Microbiol 191:82–88

    Article  CAS  PubMed  Google Scholar 

  180. Niknam R, Ghanbarzadeh B, Ayaseh A, Hamishehkar H (2019) Plantago major seed gum based biodegradable films: effects of various plant oils on microstructure and physicochemical properties of emulsified films. Polym Testing 77:105868

    Article  CAS  Google Scholar 

  181. Balta I, Brinzan L, Stratakos AC, Linton M, Kelly C, Pinkerton L, Corcionivoschi N (2017) Geraniol and linalool loaded nanoemulsions and their antimicrobial activity. 74(2):5

  182. Almaráz-Buendia I, Hernández-Escalona A, González-Tenorio R, Santos-Ordoñez N, Espino-García JJ, Martínez-Juárez V, Meza-Nieto MA, Campos Montiel RG (2019) Producing an emulsified meat system by partially substituting pig fat with nanoemulsions that contain antioxidant compounds: the effect on oxidative stability, nutritional contribution, and texture profile. Foods 8(9):357

    Article  PubMed Central  CAS  Google Scholar 

  183. Li Y-Q, Chuan-gui X, De-xin K, Hong W, Hui-ling L, Rong-shao H (2013) Variations in essential oil yields and compositions of Cinnamomum cassia leaves at different developmental stages. Ind Crops Prod 47:92–101

    Article  CAS  Google Scholar 

  184. Negi PS (2012) Plant extracts for the control of bacterial growth: efficacy, stability and safety issues for food application. Int J Food Microbiol 156(1):7–17

    Article  PubMed  Google Scholar 

  185. Fisher K, Phillips CA (2006) The effect of lemon, orange and bergamot essential oils and their components on the survival of Campylobacter jejuni, Escherichia coli O157, Listeria monocytogenes, Bacillus cereus and Staphylococcus aureus in vitro and in food systems. J Appl Microbiol 101(6):1232–1240

    Article  CAS  PubMed  Google Scholar 

  186. Hilbig J, Ma Q, Davidson PM, Weiss J, Zhong Q (2016) Physical and antimicrobial properties of cinnamon bark oil co-nanoemulsified by lauric arginate and Tween 80. Int J Food Microbiol 233:52–59

    Article  CAS  PubMed  Google Scholar 

  187. Helgeson ME, Moran SE, An HZ, Doyle PS (2012) Mesoporous organohydrogels from thermogelling photocrosslinkable nanoemulsions. Nat Mater 11(4):344–352

    Article  CAS  PubMed  Google Scholar 

  188. Jeya Jeevahan J, Chandrasekaran M, Venkatesan SP, Sriram V, Britto Joseph G, Mageshwaran G, Durairaj RB (2020) Scaling up difficulties and commercial aspects of edible films for food packaging: a review. Trends Food Sci Technol 100:210–222

    Article  CAS  Google Scholar 

  189. Cui H, Yuan L, Li W, Lin L (2017) Antioxidant property of SiO2-eugenol liposome loaded nanofibrous membranes on beef. Food Packag Shelf Life 11:49–57

    Article  Google Scholar 

  190. Khoshbouy Lahidjani L, Ahari H, Sharifan A (2020) Influence of curcumin-loaded nanoemulsion fabricated through emulsion phase inversion on the shelf life of Oncorhynchus mykiss stored at 4°C. J Food Process Preserv 44(8):e14592

    Article  CAS  Google Scholar 

  191. Durmuş M, Ozogul Y, Köşker AR, Ucar Y, Boğa EK, Ceylan Z, Ozogul F (2020) The function of nanoemulsion on preservation of rainbow trout fillet. J Food Sci Technol 57(3):895–904

    Article  PubMed  Google Scholar 

  192. Feng X, Tjia JYY, Zhou Y, Liu Q, Fu C, Yang H (2020) Effects of tocopherol nanoemulsion addition on fish sausage properties and fatty acid oxidation. LWT 118:108737

    Article  CAS  Google Scholar 

  193. Chu Y, Gao C, Liu X, Zhang N, Xu T, Feng X, Yang Y, Shen X, Tang X (2020) Improvement of storage quality of strawberries by pullulan coatings incorporated with cinnamon essential oil nanoemulsion. LWT 122:109054

    Article  CAS  Google Scholar 

  194. Das S, Vishakha K, Banerjee S, Mondal S, Ganguli A (2020) Sodium alginate-based edible coating containing nanoemulsion of Citrus sinensis essential oil eradicates planktonic and sessile cells of food-borne pathogens and increased quality attributes of tomatoes. Int J Biol Macromol 162:1770–1779

    Article  CAS  PubMed  Google Scholar 

  195. Aithal G, Nayak U, Narayan R, Gopalkrishna P, Pandiyan S, Garg S (2018) Localized in situ nanoemulgel drug delivery system of quercetin for periodontitis: development and computational simulations. Molecules 23:1363

    Article  PubMed Central  CAS  Google Scholar 

  196. Ashraf FS, Hoda JM, Navideh A Yahya N (2019) Preparation of ginger oil in water nanoemulsion using phase inversion composition technique: effects of stirring and water addition rates on their physico-chemical properties and stability. Zeitschrift für Physikalische Chemie (0): 20191427

  197. Skocibusić M, Bezić N, Dunkić V, Radonić A (2004) Antibacterial activity of Achillea clavennae essential oil against respiratory tract pathogens. Fitoterapia 75(7–8):733–736

    Article  PubMed  CAS  Google Scholar 

  198. Maggi F, Bramucci M, Cecchini C, Coman MM, Cresci A, Cristalli G, Lupidi G, Papa F, Quassinti L, Sagratini G, Vittori S (2009) Composition and biological activity of essential oil of Achillea ligustica All. (Asteraceae) naturalized in central Italy: ideal candidate for anti-cariogenic formulations. Fitoterapia 80(6):313–319

    Article  CAS  PubMed  Google Scholar 

  199. dos Santos Caetano K, Almeida Lopes N, Haas Costa TM, Brandelli A, Rodrigues E, Hickmann Flôres S, Cladera-Olivera F (2018) Characterization of active biodegradable films based on cassava starch and natural compounds. Food Packag Shelf Life 16:138–147

    Article  Google Scholar 

  200. de Souza AG, Dos Santos NMA, da Silva Torin RF, dos Santos Rosa, D (2020) Synergic antimicrobial properties of Carvacrol essential oil and montmorillonite in biodegradable starch films. Int J Biol Macromol

  201. Masek A, Latos M, Piotrowska M, Zaborski M (2018) The potential of quercetin as an effective natural antioxidant and indicator for packaging materials. Food Packag Shelf Life 16:51–58

    Article  Google Scholar 

  202. Wu C, Li Y, Wang L, Hu Y, Chen J, Liu D, Ye X (2016) Efficacy of chitosan-gallic acid coating on shelf life extension of refrigerated pacific mackerel fillets. Food Bioprocess Technol 9(4):675–685

    Article  CAS  Google Scholar 

  203. Frazão, G. and A. Blank (2017). Optimisation of edible chitosan coatings formulations incorporating Myrcia ovata Cambessedes essential oil with antimicrobial potential against foodborne bacteria and natural microflora of mangaba fruits. LWT - Food Sci Technol 79

  204. Moradi F, Emamifar A, Ghaderi N (2019) Effect of basil seed gum based edible coating enriched with echinacea extract on the postharvest shelf life of fresh strawberries. Journal of Food Measurement and Characterization 13(3):1852–1863

    Article  Google Scholar 

  205. Yi F (2019) Influence of molecular distillation on antioxidant and antimicrobial activities of rose essential oils. Lebensmittel-Wissenschaft + [i.e. und] Technologie v. 102: pp. 310–316–2019 v.2102

  206. Rostaei M, Fallah S, Lorigooini Z, Surki AA (2018) Crop productivity and chemical compositions of black cumin essential oil in sole crop and intercropped with soybean under contrasting fertilization. Ind Crops Prod 125:622–629

    Article  CAS  Google Scholar 

  207. Nazem V, Sabzalian M, Saeidi G, Rahimmalek M (2019) Essential oil yield and composition and secondary metabolites in self- and open-pollinated populations of mint (Mentha spp.). Ind Crops Prod 130:332–340

    Article  CAS  Google Scholar 

  208. Teixeira B, Marques A, Ramos C, Neng NR, Nogueira JMF, Saraiva JA, Nunes ML (2013) Chemical composition and antibacterial and antioxidant properties of commercial essential oils. Ind Crops Prod 43:587–595

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Ahari.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahari, H., Naeimabadi, M. Employing Nanoemulsions in Food Packaging: Shelf Life Enhancement. Food Eng Rev 13, 858–883 (2021). https://doi.org/10.1007/s12393-021-09282-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-021-09282-z

Keywords

Navigation