Skip to main content
Log in

Mathematical Modeling Used to Evaluate the Effect of UV-C Light Treatment on Microorganisms in Liquid Foods

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Ultraviolet-C light is a novel technology widely used for disinfecting water and surfaces. However, today, it is used for the pasteurization of food product since it was approved by the FDA as a fruit juice pasteurization method. Juices, nectars, beverages, milk, and even liquid egg products are fluid foods demanded by consumers as a source of biomolecules such as proteins and health-promoting compounds required for a well-balanced diet. These products have been processed with UV-C light to inactivate native, spoilage, and pathogenic microorganisms. Mathematical modeling is an invaluable tool to understand the effect of different factors on the inactivation of microorganisms by UV-C light. In this sense, linear and non-linear models have been used for fitting survival curves since they provide an idea of how efficiently UV-C light inactivates microorganisms. Thus, this review offers an updated overview of the main factors that affect the microbial inactivation by UV-C light in liquid foods, the mathematical models used for evaluating the UV-C light effect on such products, the different mathematical approaches used until now for describing microbial inactivation by UV-C light, and some outlook for future research about UV-C light processing on liquid food products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. De Ridder D, Kroese F, Evers C, Adriaanse M, Gillebaart M (2017) Healthy diet: health impact, prevalence, correlates, and interventions. Psychol Health 32:907–941

    PubMed  Google Scholar 

  2. Beristain-Bauza SC, Hernández-Carranza P, Cid-Pérez TS, Ávila-Sosa R, Ruiz-López II, Ochoa-Velasco CE (2019) Antimicrobial activity of ginger (Zingiber Officinale) and its application in food products. Food Rev Int 35:407–426

    CAS  Google Scholar 

  3. Nicklas TA, O’Neil CE, Fulgoni VL (2015) Consumption of various forms of apples is associated with a better nutrient intake and improved nutrient adequacy in diets of children: National Health and Nutrition Examination Survey. Food Nutr Res 59:25948

    PubMed  Google Scholar 

  4. Miranda JM, Anton X, Redondo-Valbuena C, Roca-Saavedra P, Rodriguez JA, Lamas A, Franco CM, Cepeda A (2015) Egg and egg-derived foods: effects on human health and use as functional foods. Nutrients 7:706–729

    PubMed  PubMed Central  Google Scholar 

  5. Rozenberg S, Body J-J, Bruyerè O, Bergmann P, Brandi ML, Cooper C, Devogelaer J-P, Gielen E, Goemaere S, Kaufman J-M, Rizzoli R, Reginster JY (2016) Effects of dairy products consumption on health: benefits and beliefs—a commentary from the Belgian bone club and the European society for clinical and economic aspects of osteoporosis, osteoarthritis and musculoskeletal diseases. Calcif Tissue Int 98:1–17

    CAS  PubMed  Google Scholar 

  6. Welti-Chanes J, Ochoa-Velasco CE, Guerrero-Beltrán JÁ (2009) High-pressure homogenization of orange juice to inactivate pectinmethylesterase. Innov Food Sci Emerg 10:457–462

    CAS  Google Scholar 

  7. Ganessingh V, Sahibdeen R, Maharaj R (2018) Chapter 12- an evaluation of the impact of novel processing technologies on the phytochemical composition of fruits and vegetables. In: Phytochemicals-Source of Antioxidants and Role in Disease Prevention, pp 189–207

    Google Scholar 

  8. Pereira RV, Bicalho ML, Machado VS, Lima S, Teixeira AG, Warnick LD, Bicalho RC (2014) Evaluation of the effects of ultraviolet light on bacterial contaminants inoculated into whole milk and colostrum, and on colostrum immunoglobulin G. J Dairy Sci 97:2866–2875

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Barba FJ, Esteve MJ, Frígola A (2012) High pressure treatment effect on physicochemical and nutritional properties of fluid foods during storage: a review. Compr Rev Food Sci Food Saf 11:307–322

    CAS  Google Scholar 

  10. Cassani L, Tomadoni B, Ponce A, Agüero MV, Moreira MR (2017) Combined use of ultrasound and vanillin to improve quality parameters and safety of strawberry juice enriched with prebiotic fibers. Food Bioprocess Technol 10:1454–1465

    CAS  Google Scholar 

  11. Ochoa-Velasco CE, Salcedo-Pedraza C, Hernández-Carranza P, Guerrero-Beltrán JA (2018) Use of microbial models to evaluate the effect of UV-C light and trans-cinnamaldehyde on the native microbial load of grapefruit (Citrus x paradisi) juice. Int J Food Microbiol 282:35–41

    CAS  PubMed  Google Scholar 

  12. Ochoa-Velasco CE, Guerrero-Beltrán JA (2012) Ultraviolet-C light effect on pitaya (Stenocereus griseus) juice. J Food Res 1:60–70

    CAS  Google Scholar 

  13. Koutchma T, Popović V, Ros-Polski V, Popielarz A (2016) Effects of ultraviolet light and high-pressure processing on quality and health-related constituents of fresh juice products. Compr Rev Food Sci Food Saf 15:844–866

    CAS  Google Scholar 

  14. FDA (2001) Hazard Analysis and Critical Point (HACCP); Procedures for the safe and sanitary processing and importing of juice. Final Rule. Fed. Regist 66:6137–6202

  15. Alzamora SM (2018) The hurdle concept in fruit processing. In: Rosenthal A, Deliza R, Welti-Chanes J, Barbosa-Cánovas GV (eds) Fruit preservation. Springer Editorial, pp 93–126 Chapter 5

  16. National Advisory Committee on Microbiological Criteria for Foods (2006) Requisite scientific parameters for establishing the equivalence of alternative methods of pasteurization. J Food Prot 69:1190–1216

    Google Scholar 

  17. Crook JA, Rossitto PV, Parko J, Koutchma T, Cullor JS (2015) Efficacy of ultraviolet (UV-C) light in a thin-film turbulent flow for the reduction of milkborne pathogens. Foodborne Pathog Dis 12:506–513

    PubMed  Google Scholar 

  18. De Souza P, Müller A, Fernández A, Stahl M (2014) Microbiological efficacy in liquid egg products of a UV-C treatment in a coiled reactor. Innov Food Sci Emerg 21:90–98

    Google Scholar 

  19. Álvarez I, Virto R, Raso J, Condón S (2003) Comparing predicting models for the Escherichia coli inactivation by pulsed electric field. Innov Food Sci Emerg 4:195–202

    Google Scholar 

  20. Chen H, Hoover DG (2003) Modeling the combined effect of high hydrostatic pressure and mild heat on the inactivation kinetics of Listeria monocytogenes Scott A in whole milk. Innov Food Sci Emerg 4:25–34

    Google Scholar 

  21. Guan D, Chen H, Hoover DG (2005) Inactivation of Salmonella typhimurium DT 104 in UHT whole milk by high hydrostatic pressure. Int J Food Microbiol 104:145–153

    PubMed  Google Scholar 

  22. San Martín MF, Sepúlveda DR, Altunakar B, Góngora-Nieto MM, Swanson BG, Barbosa-Cánovas GV (2007) Evaluation of selected mathematical models to predict the inactivation of Listeria innocua by pulsed electric fields. LWT-Food Sci Technol 40:1271–1279

    Google Scholar 

  23. Hernández-Carranza P, Ruiz-López II, Pacheco-Aguirre FM, Guerrero-Beltrán JA, Ávila-Sosa R, Ochoa-Velasco CE (2016) Ultraviolet-C light effect on physicochemical, bioactive, microbiological, and sensorial characteristics of carrot (Daucus carota) beverages. Food Sci Technol Int 22:536–546

    PubMed  Google Scholar 

  24. Xiong R, Xie G, Edmondson AE, Sheard MA (1999) A mathematical model for bacterial inactivation. Int J Food Microbiol 46:45–55

    CAS  PubMed  Google Scholar 

  25. Rossitto PV, Cullor JS, Crook J, Parko J, Sechi P, Cenci-Goga BT (2012) Effects of UV irradiation in a continuous turbulent flow UV reactor on microbiological and sensory characteristics of cow’s milk. J Food Prot 75:2197–2207

    CAS  PubMed  Google Scholar 

  26. Gabriel AA, Marquez GGF (2017) Inactivation behaviors of selected bacteria in ultraviolet-C-treated human breast milk. Innov Food Sci Emerg 41:216–223

    CAS  Google Scholar 

  27. Brandt K, Haraldsdottir J, Christensen LP, Hansen-Moller J, Hansen SL, Jespersen L, Purup S, Kharazmi A, Barkholt V, Frokiaer H, Kobaek-larsen M (2004) Health promoting compounds in vegetables and fruits: A systematic approach for identifying plant components with impact on human health. Trends Food Sci Technol 15:384–393

    CAS  Google Scholar 

  28. Abd El-Salam MH, El-Shibiny S (2013) Bioactive peptides of buffalo, camel, goat, sheep, mare, and yak milks and milk products. Food Rev Int 29:1–23

    CAS  Google Scholar 

  29. Sunwoo HH, Gujral N (2015) Chapter 12-chemical composition of eggs and egg products. In: Handbook of Food Chemistry, pp 331–363

    Google Scholar 

  30. Petruzzi L, Campaniello D, Speranza B, Corbo MR, Sinigaglia M, Bevilacqua A (2017) Thermal treatments for fruit and vegetables juices and beverages: a literature overview. Compr Rev Food Sci Food Saf 2017:668–691

    Google Scholar 

  31. Altic LC, Rowe MT, Grant IR (2007) UV light inactivation of Mycobacterium avium subsp. paratuberculosis in milk as assessed by FASTPlaqueTB phage assay and culture. Appl Environ Microbiol 73:3728–3733

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Hu G, Zheng Y, Wang D, Zha B, Liu Z, Deng Y (2015) Comparison of microbiological loads and physicochemical properties of raw milk treated with single-/multiple-cycle high hydrostatic pressure and ultraviolet-C light. High Pressure Res 35:330–338

    CAS  Google Scholar 

  33. Gabriel AA, Vera DD, Lazo OMY, Azarcon VB, De Ocampo CG, Marasigan JC, Sandel GT (2017) Ultraviolet-C inactivation of Escherichia coli O157:H7, Listeria monocytogenes, Pseudomonas aeruginosa, and Salmonella enterica in liquid egg white. Food Control 73:1303–1309

    CAS  Google Scholar 

  34. Koutchma T (2008) UV light for processing foods. Ozone Sci Eng 30:93–98

    CAS  Google Scholar 

  35. Guerrero-Beltrán JA, Barbosa-Cánovas GV (2004) Review: advantages and limitations on processing foods by UV light. Food Sci Technol Int 10:137–147

    Google Scholar 

  36. Choudhary R, Bandla S (2012) Ultraviolet pasteurization for food industry. International Journal of Food Science and Nutrition Engineering 2:12–15

    Google Scholar 

  37. Geveke DJ, Boyd G, Zhang HQ (2011) UV penetration depth in liquid egg white and liquid whole egg. J Food Process Preserv 35:754–757

    CAS  Google Scholar 

  38. Shama G (1999) Ultraviolet light. In: Robinson RK, Batt C, Patel P (eds) Encyclopedia of food Microbiology-3. Academic Press, London, pp 2208–2214

    Google Scholar 

  39. Unluturk S, Atilgan MR, Baysal AH, Tari C (2008) Use of UV-C radiation as a non-thermal process for liquid egg products (LEP). J Food Eng 85:561–568

    Google Scholar 

  40. Koutchma T (2009) Advances in ultraviolet light technology for non-thermal processing of liquid foods. Food Bioprocess Technol 2:138–155

    CAS  Google Scholar 

  41. Gabriel AA, Colambo JCR (2016) Comparative resistances of selected spoilage and pathogenic bacteria in ultraviolet-C-treated, turbulent-flowing young coconut liquid endosperm. Food Control 69:134–140

    CAS  Google Scholar 

  42. Bintsis T, Litopoulou-Tzanetaki E, Robinson RK (2000) Existing and potential applications of ultraviolet light in the food industry – a critical review. J Sci Food Agric 80:637–645

    CAS  PubMed  Google Scholar 

  43. Morgan R (1989) UV ‘green’ light disinfection. Dairy Ind Int 54:33–35

    Google Scholar 

  44. Sizer CE, Balasubramaniam VM (1999) New intervention processes for minimally processed juices. Food Technol Chicago 53:64–67

    Google Scholar 

  45. Torkamani AE, Niakousari M (2011) Impact of UV-C light on orange juice quality and shelf life. Int Food Res J 18:1265–1268

    CAS  Google Scholar 

  46. Rowan NJ, Mac Gregor SJ, Anderson JG, Fouracre RA, McIlvaney L, Farish O (1999) Pulsed-light inactivation of food-related microorganisms. Appl Environ Microbiol 65:1312–1315

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Williams PD, Eichstadt SL, Kokjohn TA, Martin EL (2007) Effects of ultraviolet radiation on the gram-positive marine bacterium Microbacterium maritypicum. Curr Microbiol 55:1–7

    CAS  PubMed  Google Scholar 

  48. Gabriel AA, Ostonal JM, Cristobal JO, Pagal GA, Armada JVE (2018) Individual and combined efficacies of mild heat and ultraviolet-c radiation against Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes in coconut liquid endosperm. Int J Food Microbiol 277:64–73

    CAS  PubMed  Google Scholar 

  49. Ochoa-Velasco CE, Díaz-Lima MC, Ávila-Sosa R, Ruiz-López II, Corona-Jiménez E, Hernández-Carranza P, López-Malo A, Guerrero-Beltrán JA (2018) Effect of UV-C light on Lactobacillus rhamnosus, Salmonella typhimurium, and Saccharomyces cerevisiae kinetics in inoculated coconut water: survival and residual effect. J Food Eng 223:255–261

    CAS  Google Scholar 

  50. Gabriel AA (2012) Inactivation of Escherichia coli O157:H7 and spoilage yeasts in germicidal UV-C-irradiated and heat-treated clear apple juice. Food Control 25:425–432

    CAS  Google Scholar 

  51. Gabriel AA (2015) Previous physicochemical stress exposures influence subsequent resistance of Escherichia coli O157:H7, Salmonella enterica, and Listeria monocytogenes to ultraviolet-C in coconut liquid endosperm beverage. Int J Food Microbiol 201:7–16

    CAS  PubMed  Google Scholar 

  52. Shama G (1992) Ultraviolet irradiation apparatus for disinfecting liquids of high ultraviolet absorptivities. Lett Appl Microbiol 15:69–72

    Google Scholar 

  53. Tran MTT, Farid M (2004) Ultraviolet treatment of orange juice. Innov Food Sci Emerg 5:495–502

    CAS  Google Scholar 

  54. Koutchma T, Parisi B, Patazca E (2007) Validation of UV coiled tube reactor for fresh juices. J Environ Eng Sci 6:319–328

    CAS  Google Scholar 

  55. Wright JR, Sumner SS, Hackney CR, Pierson MD, Zoecklein BW (2000) Efficacy of ultraviolet light for reducing Escherichia coli O157:H7 in unpasteurized apple cider. J Food Prot 63:563–567

    CAS  PubMed  Google Scholar 

  56. Cilliers FP, Adriaanse C, Gouws PA, Swart P, Koutchma T, Engelbrecht Y (2014) A microbiological, biochemical and sensory characterisation of bovine milk treated by heat and ultraviolet (UV) light for manufacturing Cheddar cheeses. Innov Food Sci Emerg 23:94–106

    CAS  Google Scholar 

  57. Antonio-Gutiérrez O, López-Malo A, Palou E, Ramírez-Corona N (2017) Enhancement of UVC-light treatment of tangerine and grapefruit juices through ultrasonic atomization. Innov Food Sci Emerg 39:7–12

    Google Scholar 

  58. Geveke DJ (2008) UV inactivation of E. coli in liquid egg white. Food Bioprocess Technol 1:201–206

    Google Scholar 

  59. Geveke DJ, Torres D (2012) Pasteurization of grapefruit juice using a centrifugal ultraviolet light irradiator. J Food Eng 111:241–246

    CAS  Google Scholar 

  60. Choudhary R, Bandla S, Watson DG, Haddock J, Abughazaleh A, Bhattacharya B (2011) Performance of coiled tube ultraviolet reactors to inactivate Escherichia coli W1485 and Bacillus cereus endospores in raw cow milk and commercially processed skimmed cow milk. J Food Eng 107:14–20

    CAS  Google Scholar 

  61. Ochoa-Velasco CE, Guerrero-Beltrán JÁ (2013) Short-wave ultraviolet-C light effect on pitaya (Stenocereus griseus) juice inoculated with Zygosaccharomyces bailii. J Food Eng 117:34–41

    CAS  Google Scholar 

  62. Müller A, Stahl MR, Graef V, Franz CMAP, Huch M (2011) UV-C treatment of juices to inactivate microorganisms using dean vortex technology. J Food Eng 107:268–275

    Google Scholar 

  63. Anonymous (1999) UV light provides alternative to heat pasteurization of juices. Food Technol-Chicago 53:144

    Google Scholar 

  64. Keyser M, Müller IA, Cilliers FP, Nel W, Gouws PA (2008) Ultraviolet radiation as a non-thermal treatment for the inactivation of microorganisms in fruit juice. Innov Food Sci Emerg 9:348–354

    CAS  Google Scholar 

  65. Rahn RO (1997a) Erratum: potassium iodide as a chemical actinometer for 254nm radiation: use of iodate as an electron scavenger. Photochem Photobiol 66:885

    CAS  Google Scholar 

  66. Rahn RO (1997b) Potassium iodide as a chemical actinometer for 254nm radiation: use of iodate as an electron scavenger. Photochem Photobiol 66:450–455

    CAS  Google Scholar 

  67. Marks BP (2008) Status of microbial modeling in food process models. Compr Rev Food Sci Food Saf 7:137–143

    Google Scholar 

  68. Lemus-Mondaca RA, Vega-Gálvez A, Moraga NO (2011) Computational simulation and developments applied to food thermal processing. Food Eng Rev 3:121–135

    Google Scholar 

  69. Serment-Moreno V, Barbosa-Cánovas G, Torres JA, Welti-Chanes J (2014) High-pressure processing: kinetic models for microbial and enzyme inactivation. Food Eng Rev 6:56–88

    CAS  Google Scholar 

  70. Baysal AH, Molva C, Unluturk S (2013) UV-C light inactivation and modeling kinetics of Alicyclobacillus acidoterrestris spores in white grape and apple juice. Int J Food Microbiol 166:494–498

    CAS  PubMed  Google Scholar 

  71. Gouma M, Álvarez I, Condón S, Gayán E (2015a) Modelling microbial inactivation kinetics of combined UV-H treatments in apple juice. Innovative Food Sci Emerg Technol 27:111–120

    CAS  Google Scholar 

  72. Gouma M, Gayán E, Raso J, Condón S, Álvarez I (2015b) Inactivation of spoilage yeasts in apple juice by UV-C light and in combination with mild heat. Innov Food Sci Emerg 32:146–155

    CAS  Google Scholar 

  73. Tremarin A, Brandão TRS, Silva CLM (2017) Inactivation kinetics of Alicyclobacillus acidoterrestris in apple juice submitted to ultraviolet radiation. Food Control 73:18–23

    CAS  Google Scholar 

  74. Bhullar MS, Patras A, Kilanzo-Nthenge A, Pokharel B, Yannam SK, Rakariyatham K, Pan C, Xiao H, Sasges M (2018) Microbial inactivation and cytotoxicity evaluation of UV irradiated coconut water in a novel continuous flow spiral reactor. Food Res Int 103:59–67

    CAS  PubMed  Google Scholar 

  75. La Cava E, Sgroppo S (2018) Inactivation of Escherichia coli ATCC 25922 and Saccharomyces cerevisiae IMR-R-L 962 in grapefruit [Citrus paradisi (Macf.)] juice by UV-C light: changes in bioactive compounds and quality characteristics. Int Food Res J 25:580–588

    CAS  Google Scholar 

  76. Gayán E, Serrano MJ, Monfort S, Álvarez I, Condon S (2012) Combining ultraviolet light and mild temperatures for the inactivation of Escherichia coli in orange juice. J Food Eng 113:598–605

    Google Scholar 

  77. García CM, Ferrario M, Guerrero S (2018) Effectiveness of UV-C light assisted by mild heat on Saccharomyces cerevisiae KE 162 inactivation in carrot-orange juice blend studied by flow cytometry and transmission electron microscopy. Food Microbiol 73:1–10

    Google Scholar 

  78. Gabriel AA, Manalo MR, Feliciano RJ, García NKA, Dollete UGM, Acanto CN, Paler JCB (2018) A Candida parapsilosis inactivation-based UV-C process for calamansi (Citrus microcarpa) juice drink. LWT-Food Sci Technol 90:157–163

    CAS  Google Scholar 

  79. Gopisetty VVS, Patras A, Kilonzo-Nthenge A, Yannam S, Bansode RR, Sasges M, Burns SM, Vergne MJ, Pan C, Xiao H (2018) Impact of UV-C irradiation on the quality, safety, and cytotoxicity of cranberry-flavored water using a novel continuous flow UV system. LWT-Food Sci Technol 95:230–239

    CAS  Google Scholar 

  80. Gunter-Ward DM, Patras A, Bhullar MS, Kilonzo-Nthenge A, Pokharel B, Sasges M (2017) Efficacy of ultraviolet (UV-C) light in reducing foodborne pathogens and model viruses in skim milk. J Food Process Preserv 42:1–12

    Google Scholar 

  81. Unluturk S, Atilgan MR, Baysal AH, Unluturk MS (2010) Modeling inactivation kinetics of liquid egg white exposed to UV-C irradiation. Int J Food Microbiol 142:341–347

    PubMed  Google Scholar 

  82. Chick H (1908) An investigation of the laws of disinfection. J Hyg Lond 8:92–158

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Watson HE (1908) A note on the variation of the rate of disinfection with change in the concentration of the disinfectant. J Hyg Lond 8:536–542

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Peleg M, Cole MB (1998) Reinterpretation of microbial survival curves. Crit Rev Food Sci Nutr 38:353–380

    CAS  PubMed  Google Scholar 

  85. Peleg M (2006) Advanced quantitative microbiology for foods and biosystems: models for predicting growth and inactivation. CRC Press, Boca Raton

    Google Scholar 

  86. Linton RH, Carter WH, Pierson MD, Hackney CR (1995) Use of a modified Gompertz equation to model nonlinear survival curves for Listeria monocytogenes Scott A. J Food Prot 58:946–954

    CAS  PubMed  Google Scholar 

  87. Cole MB, Davies KW, Munro G, Holyoak CD, Kilsby DC (1993) A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. J Ind Microbiol 12:232–239

    Google Scholar 

  88. Chen H (2007) Use of linear, Weibull, and log-logistic functions to model pressure inactivation of seven foodborne pathogens in milk. Food Microbiol 24:197–204

    PubMed  Google Scholar 

  89. Geeraerd AH, Herremans CH, Van Impe JF (2000) Structural model requirements to describe microbial inactivation during a mild heat treatment. Int J Food Microbiol 59:185–209

    CAS  PubMed  Google Scholar 

  90. Baranyi J, Roberts TA (1994) A dynamic approach to predicting bacterial growth in foods. Int J Food Microbiol 23:277–294

    CAS  PubMed  Google Scholar 

  91. Lambert RJ, Johnston MD (2000) Disinfection kinetics: a new hypothesis and model for the tailing of log-survivor/time curves. J Appl Microbiol 88:907–913

    CAS  PubMed  Google Scholar 

  92. Hom LW (1972) Kinetics of chlorine disinfection in an ecosystem. J Environ Eng Div 98:183–194

    Google Scholar 

  93. Yin X, Goudriaan J, Lantinga EA, Vos J, Spiertz HJ (2003) A flexible sigmoid function of determinate growth. Ann Bot 91:361–371

    PubMed  PubMed Central  Google Scholar 

  94. Buzrul S (2010) On the modeling of inactivation kinetics by UV irradiation. Int J Food Microbiol 143:256–257

    PubMed  Google Scholar 

  95. Tighe-Neira R, Alberdi M, Arce-Johnson P, Romero-Romero JL, Reyes-Díaz M, Inostroza-Blancheteau C (2017) Food with functional properties and their potential uses in human health. Chapter 9. Superfood and functional food - an overview of their processing and utilization. Intech 185–219

  96. Côté J, Caillet S, Doyon G, Sylvain J-F, Lacroix M (2010) Analyzing cranberry bioactive compounds. Crit Rev Food Sci Nutr 50:872–888

    PubMed  Google Scholar 

  97. Guzel-Seydim ZB, Kok-Tas T, Greene AK, Seydim AC (2011) Review: functional properties of kefir. Crit Rev Food Sci Nutr 51:261–268

    CAS  PubMed  Google Scholar 

  98. Garcés-Rimón M, Sandoval HM, Molina E, López-Fandiño R, Migue M (2016) Egg protein hydrolysates: new culinary textures. Int J Gastron Food Sci 3:17–22

  99. Barba FJ, Mariutti LRB, Bragagnolo N, Mercadante AZ, Barbosa-Cánovas GV, Orlien V (2017) Bioaccessibility of bioactive compounds from fruits and vegetables after thermal and nonthermal processing. Trends Food Sci Technol 67:195–206

    CAS  Google Scholar 

  100. Shah NNAK, Shamsudin R, Rahman RA, Adzahan NM (2016) Fruits juice production using ultraviolet pasteurization: a review. Beverages 2:2–20

    Google Scholar 

  101. Donahue DW, Canitez N, Bushway AA (2004) UV inactivation of E. coli O157:H7 in apple cider: quality, sensory and shelf-life analysis. J Food Process Preserv 28:368–387

    Google Scholar 

  102. Basaran N, Quintero-Ramos A, Maoke MM, Churey JJ, Worobo RW (2004) Influence of apple cultivars on inactivation of different strains of Escherichia coli O157:H7 in apple cider by UV-C irradiation. Appl Environ Microbiol 70:6061–6065

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Koutchma T, Parisi B (2004) Biodosimetry of E. coli UV inactivation in model juices with regard to dose distribution in annular UV reactor. J Food Sci 69:14–22

    Google Scholar 

  104. Lu G, Li C, Liu P, Cui H, Xia Y, Wang J (2010) Inactivation of microorganisms in apple juice using an ultraviolet silica-fiber optical device. J Photochem Photobiol B 100:167–172

    CAS  PubMed  Google Scholar 

  105. Caminiti IM, Palgan I, Muñoz A, Noci F, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2012) The effect of ultraviolet light on microbial inactivation and quality attributes of apple juice. Food Bioprocess Technol 5:680–686

    CAS  Google Scholar 

  106. López-Malo A, Guerrero SN, Santiesteban A, Alzamora SM (2005) Inactivation kinetics of Saccharomyces cerevisiae and Listeria monocytogenes in apple juice processed by novel technologies. Proceedings of the 2nd Mercosur Congress on Chemical Engineering and 4th Mercosur Congress on Process Systems Engineering. Costa Verde, RJ, Brasil

  107. Palgan I, Caminiti IM, Muñoz A, Noci F, Whyte P, Morgan DJ, Cronin DA, Lyng JG (2011) Combine effect of selected non-thermal technologies on Escherichia coli and Pichia fermentans inactivation in an apple and cranberry juice blend and on product. Int J Food Microbiol 151:1–6

    CAS  PubMed  Google Scholar 

  108. Fredericks IN, du Toit M, Krügel M (2011) Efficacy of ultraviolet radiation as an alternative technology to inactivate microorganisms in grape juices and wines. Food Microbiol 28:510–517

    CAS  PubMed  Google Scholar 

  109. Unluturk S, Atilgan MR (2015) Microbial safety and shelf life of UV-C treated freshly squeezed white grape juice. J Food Sci 80:M1831–M1841

    CAS  PubMed  Google Scholar 

  110. Ramesh T, Yaparatne S, Tripp CP, Nayak B, Amirbahman A (2018) Ultraviolet light-assisted photocatalytic disinfection of Escherichia coli and its effects on the quality attributes of white grape juice. Food Bioprocess Technol 11:2242–2252

    CAS  Google Scholar 

  111. Kaya Z, Semanur Y, Ünlütürk S (2015) Effect of UV-C irradiation and heat treatment on the shelf life stability of a lemon-melon juice blend: multivariate statistical approach. Innov Food Sci Emerg 29:230–239

    CAS  Google Scholar 

  112. Oteiza JM, Giannuzzi L, Zaritzky N (2010) Ultraviolet treatment of orange juice to inactivate E. coli O157:H7 as affected by native microflora. Food Bioprocess Technol 3:603–614

    Google Scholar 

  113. Pala ÇU, Toklucu AK (2013) Microbial, physicochemical and sensory properties of UV-C processed orange juice and its microbial stability during refrigerated storage. LWT Food Sci Technol 50:426–431

    CAS  Google Scholar 

  114. Pala ÇU, Toklucu AK (2011) Effect of UV-C light on anthocyanin content and other quality parameters of pomegranate juice. J Food Compos Anal 24:790–795

    CAS  Google Scholar 

  115. Bandla S, Choudhary R, Watson DG, Haddock J (2012) UV-C treatment of soymilk in coiled tube UV reactors for inactivation of Escherichia coli W1485 and Bacillus cereus endospores. LWT-Food Sci Technol 46:71–76

    CAS  Google Scholar 

  116. Flores-Cervantes DX, López-Malo A, Palou E (2013) Efficacy of individual and combined UVC light and food antimicrobial treatments to inactivate Aspergillus flavus or A. niger spores in peach nectar. Innov Food Sci Emerg 20:244–252

    CAS  Google Scholar 

  117. Ochoa-Velasco CE, Cruz-González M, Guerrero-Beltrán JÁ (2014) Ultraviolet-C light inactivation of Escherichia coli and Salmonella typhimurium in coconut (Cocos nucifera L.) milk. Innov Food Sci Emerg 26:199–204

    CAS  Google Scholar 

  118. Taze BH, Unluturk S, Burzul S, Alpas H (2015) The impact of UV-C irradiation on spoilage microorganisms and colour of orange juice. J Food Sci Technol 52:1000–1007

    Google Scholar 

  119. Gabriel AA, Estilo EEC, Isnit NCC, Membrebe BNQ (2016) Suboptimal growth conditions induce heterologous ultraviolet-C adaptation in Salmonella enterica in orange juice. Food Control 62:110–116

    CAS  Google Scholar 

  120. Gabriel AA, Ancog MML (2019) Effects of suboptimal growth conditions on the subsequent UV-C resistance of Listeria monocytogenes in coconut liquid endosperm and apple juice. LWT-Food Sci Technol 99:460–467

    CAS  Google Scholar 

  121. Feliciano RJ, Estilo EEC, Nakano H, Gabriel AA (2019) Decimal reduction energies of UV-C-irradiated spoilage yeasts in coconut liquid endosperm. Int J Food Microbiol 290:170–179

    CAS  PubMed  Google Scholar 

  122. Gabriel AA, Nakano H (2009) Inactivation of Salmonella, E coli and Listeria monocytogenes in phosphate-buffered saline and apple juice by ultraviolet and heat treatments. Food Control 20:443–446

    CAS  Google Scholar 

  123. Orlowska M, Koutchma T, Kostrzynska M, Tang J, Defelice C (2014) Evaluation of mixing flow conditions to inactivate Escherichia coli in opaque liquids using pilot-scale Taylor-Couette UV unit. J Food Eng 120:100–109

    CAS  Google Scholar 

  124. Estilo EEC, Gabriel AA (2017) Previous stress exposures influence subsequent UV-C resistance of Salmonella enterica in coconut liquid endosperm. LWT-Food Sci Technol 86:139–147

    CAS  Google Scholar 

  125. Donsingha S, Assatarakul K (2018) Kinetics model of microbial degradation by UV radiation and shelf life of coconut water. Food Control 92:162–168

    CAS  Google Scholar 

  126. Kaya Z, Unluturk S (2016) Processing of clear and turbid grape juice by a continuous flow UV system. Innov Food Sci Emerg 33:282–288

    CAS  Google Scholar 

  127. Alberini F, Simmons MJH, Parker DJ, Koutchma T (2015) Validation of hydrodynamic and microbial inactivation models for UV-C treatment of milk in a swirl-tube ‘SurePure Turbulator™. J Food Eng 162:63–69

    CAS  Google Scholar 

  128. Matak KE, Churey JJ, Worobo RW, Sumner SS, Hovingh E, Hackney CR, Pierson MD (2005) Efficacy of UV light for the reduction of Listeria monocytogenes in goat’s milk. J Food Prot 68:2212–2216

    CAS  PubMed  Google Scholar 

  129. Reinemann DJ, Gouws P, Cilliers T, Houck K, Bishop JR (2006) New methods for UV treatment of milk for improved food safety and product quality. American Society of Agricultural and Biological Engineers. 066088 An ASABE Meeting Presentation

  130. Donaghy J, Keyser M, Johnston J, Cilliers FP, Gouws PA, Rowe MT (2009) Inactivation of Mycobacterium avium ssp. Paratuberculosis in milk by UV treatment. Lett Appl Microbiol 49:217–221

    CAS  PubMed  Google Scholar 

  131. Christen L, Lai CT, Hartmann B, Hartmann PE, Geddes DT (2013) Ultraviolet-C Irradiation: a novel pasteurization method for donor human milk. PLoS One 8:e68120

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Martínez-García M, Sauceda-Gálvez JN, Codina-Torrella I, Hernández-Herrero MM, Gervilla R, Roig-Sagués AX (2019) Evaluation of continuous UVC treatments and its combination with UHPH on spores of Bacillus subtilis in whole and skim milk. Foods 8:2–17

    Google Scholar 

  133. De Souza PM, Fernández A (2012) Consumer acceptance of UV-C treated liquid egg products and preparations with UV-C treated eggs. Innov Food Sci Emerg 14:107–114

    Google Scholar 

  134. De Souza PM, Beniaich A, Müller A, Fernández A, Mayer-Miebach E, Oehlke K, Stahl M, Greiner R (2015) Functional properties and nutritional composition of liquid egg products treated in a coiled tube UV-C reactor. Innov Food Sci Emerg 32:156–164

    Google Scholar 

  135. De Souza PM, Fernández A (2013) Rheological properties and protein quality of UV-C processed liquid egg products. Food Hydrocoll 31:127–134

    Google Scholar 

  136. Ngadi MO, Smith JP, Cayouette B (2003) Kinetics of ultraviolet light inactivation of Escherichia coli O157:H7 in liquid foods. J Sci Food Agric 83:1551–1555

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Carlos Enrique Ochoa-Velasco or José Ángel Guerrero-Beltrán.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ochoa-Velasco, C.E., Ávila-Sosa, R., Hernández-Carranza, P. et al. Mathematical Modeling Used to Evaluate the Effect of UV-C Light Treatment on Microorganisms in Liquid Foods. Food Eng Rev 12, 290–308 (2020). https://doi.org/10.1007/s12393-020-09219-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-020-09219-y

Keywords

Navigation