Foaming Characteristics of Beverages and Its Relevance to Food Processing


Aeration in beverages, which is manifested as foam or bubbles, increases the sensory preference among consumers. They are either entrapped within the beverage or float at the surface. It is a unique feature that allows the product to garner considerable consumer attention and has been appreciated in hot as well as cold beverages. Recent studies have focused on diverse foam or bubble creation protocols, their mechanism of action, stabilization techniques, and application domains in various beverages. The role of surface-active components in foam formation and its stability are important in food processing. This exposition discusses the important findings on this subject, including methods of creation, sustenance, as well as analysis of foaming or aeration in liquid foods, and attempts to showcase their various dimensions. Recent developments on the various aspects of foam formation in liquid foods are reviewed and presented to aid in future research.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. 1.

    Adhikari BM, Truong T, Bansal N, Bhandari B (2017) Use of gases in dairy manufacturing: a review. Crit Rev Food Sci Nutr 8398(June).

  2. 2.

    Agbo F, Mori K, Goto T, Cale KW, Stubblefield TL, Dal Monte AC (1998) U.S. Patent No. 5,780,092. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  3. 3.

    Aguilera JM (2008) Aerated food gels: fabrication and potential applications, 19.

  4. 4.

    Van Aken GA (2001) Aeration of emulsions by whipping. Colloids Surf A Physicochem Eng Asp 190:333–354

    Google Scholar 

  5. 5.

    Anderson M, Brooker BE (1988) Dairy foams. Advances in Food Emulsions and Foams/Edited by Eric Dickinson and George Stainsby

  6. 6.

    Arboleya J, García-quiroga M, Lasa D, Oliva O (2014) Effect of highly aerated food on expected satiety. Int J Gastronomy Food Sci:1–8.

  7. 7.

    Arii Y, Nishizawa K (2017) Espresso coffee foam delays cooling of the liquid phase. Biosci Biotechnol Biochem 8451(January):1–4.

    CAS  Article  Google Scholar 

  8. 8.

    Asano K, Hashimoto N (1980) Isolation and characterization of foaming proteins of beer. J Am Soc Brew Chem 38(4):129–137

    CAS  Google Scholar 

  9. 9.

    Asghari AK, Norton I, Mills T, Sadd P, Spyropoulos F (2016) Food hydrocolloids interfacial and foaming characterisation of mixed protein-starch particle systems for food-foam applications. Food Hydrocoll 53:311–319.

    CAS  Article  Google Scholar 

  10. 10.

    Asokapandian S, Venkatachalam S, Swamy GJ, Kuppusamy K (2015) Optimization of foaming properties and foam mat drying of muskmelon using soy protein. J Food Process Eng 39(6):692–701.

    CAS  Article  Google Scholar 

  11. 11.

    Bamforth BCW (1985) The foaming properties of beer. J Inst Brew 91(6):370–383

    CAS  Google Scholar 

  12. 12.

    Bisperink CGJ, Roateltap AD, Prins A (1992) Bubble-size distributions in foams. Adv Colloid Interf Sci 38:13–32

    CAS  Google Scholar 

  13. 13.

    Bisperink C, Ufheil G, Vuataz G, Schoonman AJE (2004) Foaming ingredient and powders containing it. In: U.S. Patent No. 6,713,113. U.S. Patent and Trademark Office, Washington, DC

    Google Scholar 

  14. 14.

    Bos MA, Vliet T Van (2001) Interfacial rheological properties of adsorbed protein layers and surfactants : a review, pp 437–471

  15. 15.

    Brandt MJ, Ledford RA (1982) Influence of milk aeration on growth of psychrotrophic pseudomonads. J Food Prot 45(2):132–134

    CAS  PubMed  Google Scholar 

  16. 16.

    Brey SE, De Costa S, Rogers PJ, Bryce JH, Morris PC, Mitchell WJ, Stewart GG (2003) The effect of proteinase A on foam-active polypeptides during high and low gravity fermentation. J Inst Brew 109(3):1944–1202

    Google Scholar 

  17. 17.

    Briceño-Ahumada Z, Langevin D (2017) On the influence of surfactant on the coarsening of aqueous foams. Adv Colloid Interf Sci 244:124–131

    Google Scholar 

  18. 18.

    Brissonnet F, Maujean A (1991) Identification of some foam-active compounds in champagne base wines. Am J Enol Vitic 42(2):97–102

    CAS  Google Scholar 

  19. 19.

    Campbell GM, Mougeot E (1999) Creation and characterisation of aerated food products. Trends Food Sci Technol 10(9):283–296

    CAS  Google Scholar 

  20. 20.

    Campbell GM (2003) Aerated foods. In: Encyclopedia of food science and nutrition. Academic Press, Cambridge

    Google Scholar 

  21. 21.

    Campbell GM (2008) A history of aerated foods. In: Bubbles in food, vol 2. AACC International, Inc., St. Paul, pp 1–21

    Google Scholar 

  22. 22.

    Cantat I, Cohen-Addad S, Elias F, Graner F, Hohler R, Pitois O et al (2013) Foams: structure and dynamics. OUP, Oxford

    Google Scholar 

  23. 23.

    Chen M, Feijen S, Sala G, Meinders MBJ, Valenberg HJF, van Hooijdonk ACM, van der Linden E (2018) Foam stabilized by large casein micelle aggregates: the effect of aggregate number in foam lamella. Food Hydrocoll 74:342–348.

    CAS  Article  Google Scholar 

  24. 24.

    Chen YF, Yang CH, Chang MS, Ciou YP, Huang YC (2010) Foam properties and detergent abilities of the saponins from Camellia oleifera. Int J Mol Sci 11(11):4417–4425.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Choi SJ, Decker EA, Henson L, Popplewell LM, Xiao H, McClements DJ (2011) Formulation and properties of model beverage emulsions stabilized by sucrose monopalmitate: influence of pH and lyso-lecithin addition. Food Res Int 44(9):3006–3012.

    CAS  Article  Google Scholar 

  26. 26.

    Chung C, Sher A, Rousset P, McClements DJ (2017a) Influence of homogenization on physical properties of model coffee creamers stabilized by quillaja saponin. Food Res Int 99:770–777.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Chung C, Sher A, Rousset P, McClements DJ (2017b) Use of natural emulsifiers in model coffee creamers: physical properties of quillaja saponin-stabilized emulsions. Food Hydrocoll 67:111–119.

    CAS  Article  Google Scholar 

  28. 28.

    Chung C, Sher A, Rousset P, McClements DJ (2018) Impact of oil droplet concentration on the optical, rheological, and stability characteristics of O/W emulsions stabilized with plant-based surfactant: potential application as non-dairy creamers. Food Res Int 105:913–919.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Cilindre C, Liger-Belair G, Villaume S, Jeandet P, Marchal R (2010) Foaming properties of various Champagne wines depending on several parameters: Grape variety , aging, protein and CO2 content. Anal Chim Acta 660:164–170.

    CAS  Article  PubMed  Google Scholar 

  30. 30.

    Condé BC, Bouchard E, Culbert JA, Wilkinson KL, Fuentes S, Howell KS (2017) Soluble protein and amino acid content affects the foam quality of sparkling wine. J Agric Food Chem 65(41):9110–9119.

    CAS  Article  PubMed  Google Scholar 

  31. 31.

    Culbert JA, McRae JM, Condé BC, Schmidtke LM, Nicholson EL, Smith PA et al (2017) Influence of production method on the chemical composition, foaming properties, and quality of Australian carbonated and sparkling white wines. J Agric Food Chem 65(7):1378–1386.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Dabestani M, Yeganehzad S, Krzan M, Miller R (2019) Characterisation of egg white adsorption layers under equilibrium and dynamic conditions. Colloids Surf A 568(January):29–35.

    CAS  Article  Google Scholar 

  33. 33.

    Dai L, Yang S, Wei Y, Sun C, Mcclements DJ, Mao L, Gao Y (2018) Development of stable high internal phase emulsions by pickering stabilization : utilization of Zein-propylene glycol alginate-Rhamnolipid complex particles as colloidal emulsifiers Beijing advanced innovation Center for Food Nutrition and Human Health. Food Chem.

  34. 34.

    Davis JP, Foegeding EA (2007) Comparisons of the foaming and interfacial properties of whey protein isolate and egg white proteins. Colloids Surf B: Biointerfaces 54(2):200–210.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    De Gennes PG, Brochard-Wyart F, Quéré D (2013) Capillarity and wetting phenomena: drops, bubbles, pearls, waves. Springer Science & Business Media, Berlin

    Google Scholar 

  36. 36.

    Delahaije RJ, Lech FJ, Wierenga PA (2019) Investigating the effect of temperature on the formation and stabilization of ovalbumin foams. Food Hydrocoll 91:263–274.

    CAS  Article  Google Scholar 

  37. 37.

    Deotale S, Dutta S, Moses JA, Anandharamakrishnan C (2019) Coffee oil as a natural surfactant. Food Chem 295:180–188.

  38. 38.

    Desportes C, Charpentier M, Duteurtre B, Maujean A, Duchiron F (2001) Isolation, identification, and organoleptic characterization of low-molecular-weight peptides from white wine. Am J Enol Vitic 52(4):376–380

    CAS  Google Scholar 

  39. 39.

    Dold S, Lindinger C, Kolodziejczyk E, Pollien P, Ali S, Germain JC et al (2011) Influence of foam structure on the release kinetics of volatiles from espresso coffee prior to consumption. Agric Food Chem 59:11196–11203

    CAS  Google Scholar 

  40. 40.

    Dombrowski J, Johler F, Warncke M, Kulozik U (2016) Correlation between bulk characteristics of aggregated β-lactoglobulin and its surface and foaming properties. Food Hydrocoll 61:318–328.

    CAS  Article  Google Scholar 

  41. 41.

    Donadini G, Fumi MD, De Faveri MD (2011) How foam appearance influences the italian consumer’s beer perception and preference. J Inst Brew 117(4):523–533

    Google Scholar 

  42. 42.

    Douma AC, Mocking-Bode HCM, Kooijman M, Stolzenbach E, Orsel R, Bekkers A, Angelino S (1997) Identification of foam-stabilizing proteins under conditions of normal beer dispense and their biochemical and physico-chemical properties. Proceedings of Congress-European Brewery Convention 26:671–680

    Google Scholar 

  43. 43.

    Drenckhan W, Hutzler S (2015) Structure and energy of liquid foams. Adv Colloid Interf Sci 224:1–16

    CAS  Google Scholar 

  44. 44.

    Drenckhan W, Saint-jalmes A (2015) The science of foaming. Adv Colloid Interf Sci 222:228–259.

    CAS  Article  Google Scholar 

  45. 45.

    Du X, Zhao L, Chen H, Qu W, Lei Z, Li Y, Li S (2013) Synthesis and properties of multilayered films foams. Colloids Surf A Physicochem Eng Asp 436:599–603.

    CAS  Article  Google Scholar 

  46. 46.

    Eisner MD, Jeelani SAK, Bernhard L, Windhab EJ (2007) Stability of foams containing proteins, fat particles and nonionic surfactants. Chem Eng Sci 62(7):1974–1987.

    CAS  Article  Google Scholar 

  47. 47.

    Ernest A, Kristian H (2009) Formulation and stability of model food foam microstructures. A Thesis Submitted to The University of Birmingham, School of Chemical Engineering, The University of Birmingham

  48. 48.

    Feng J, Chen Q, Wu X, Jafari SM, McClements DJ (2018) Formulation of oil-in-water emulsions for pesticide applications: impact of surfactant type and concentration on physical stability. Environ Sci Pollut Res 25(22):21742–21751

    CAS  Google Scholar 

  49. 49.

    Liger-Belair G (2012) The physics behind the fizz in champagne and sparkling wines, The European Physical Journal Special Topics. 201(1):1–88.

  50. 50.

    Gallart M, Tomas X, Suberbiola G, Lopez-Tamames E, Balderas S (2004) Relationship between foam parameters obtained by the gas-sparging method and sensory evaluation of sparkling wines. J Sci Food Agric 84:127–133.

    CAS  Article  Google Scholar 

  51. 51.

    Gmoser R, Bordes R, Nilsson G, Altskär A, Stading M, Lorén N et al (2016) Effect of dispersed particles on instant coffee foam stability and rheological properties. Eur Food Res Technol 243(1):115–121.

    CAS  Article  Google Scholar 

  52. 52.

    Goff HD (2002) Formation and stabilisation of structure in ice-cream and related products. Curr Opin Colloid Interface Sci 7(5–6):432–437

    CAS  Google Scholar 

  53. 53.

    Güçlü-Üstündağ Ö, Mazza G (2007) Saponins: properties, applications and processing. Crit Rev Food Sci Nutr 47(3):37–41.

    CAS  Article  Google Scholar 

  54. 54.

    Hanselmann W, Windhab E (1998) Flow characteristics and modelling of foam generation in a continuous rotor / stator mixer. J Food Eng 38(4):393–405

    Google Scholar 

  55. 55.

    Harris P (2012) Food gels. Springer Science & Business Media, Berlin

    Google Scholar 

  56. 56.

    Hasenhuettl GL, Hartel RW (eds) (2008) Food emulsifiers and their applications, vol 19. Springer, New York

    Google Scholar 

  57. 57.

    Hatakeyama S, Akiyama M, Yoneyama R, Watanabe K, Koizumi R, Miyaji K et al (2019) Effects of manufacturing conditions on the foaming properties of milk and sensory characteristics of foamed milk. LWT Food Sci Technol 99:555–561.

    CAS  Article  Google Scholar 

  58. 58.

    He Y, Yazhgur P, Salonen A, Langevin D (2015) Adsorption--desorption kinetics of surfactants at liquid surfaces. Adv Colloid Interf Sci 222:377–384

    CAS  Google Scholar 

  59. 59.

    Hedrick PL Jr (1984) Foaming creamer and method of making same. In: U.S. Patent No. 4,438,147. Washington, DC, U.S. Patent and Trademark Office

    Google Scholar 

  60. 60.

    Ho TM, Le THA, Yan A, Bhandari BR, Bansal N (2019) Foaming properties and foam structure of milk during storage. Food Res Int 116:379–386.

    CAS  Article  PubMed  Google Scholar 

  61. 61.

    Hosna S, Mohd I, Sagir M, Muhammad M (2015) Static and dynamic foam/oil interactions: potential of CO2-philic surfactants as mobility control agents. J Pet Sci Eng 135:118–126.

    CAS  Article  Google Scholar 

  62. 62.

    Huppertz T (2010a) Foaming properties of milk: a review of the influence of composition and processing. Int J Dairy Technol 63(4):477–488.

    Article  Google Scholar 

  63. 63.

    Huppertz T (2010b) High pressure processing of milk. In: Griggiths MW (ed) Improving the safety and quality of Milk: Milk production and processing. Woodhead Publishing Limited, New Delhi, pp 373–399

    Google Scholar 

  64. 64.

    Hutzler S, Weaire D, Saugey A, Cox S, Peron N (2005) The physics of foam drainage. In: Proceeding of 52nd SEPAWA Congress, pp 191–206

  65. 65.

    Iglesias E, Anderez J, Forgiarini A, Salager J (1995) A new method to estimate the stability of short-life foams P. Colloids Surf A Physicochem Eng Asp 98:167–174

    CAS  Google Scholar 

  66. 66.

    Illy E, Navarini L (2011) Neglected food bubbles: the espresso coffee foam. Food Biophys 6(3):335–348.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Iimure T, Takoi K, Kaneko T, Kihara M, Hayashi K, Ito K, Sato K, Takeda K (2008) Novel prediction method of beer foam stability using protein Z, barley dimeric α-amylase inhibitor-1 (BDAI-1) and yeast thioredoxin. J Agric Food Chem 56(18):8664–8671

    CAS  PubMed  Google Scholar 

  68. 68.

    Jang W, Nikolov A, Wasan DT (2006) The destabilization of aerated food products. J Food Eng 76(2):256–260.

    CAS  Article  Google Scholar 

  69. 69.

    Ji S, Shen W, Chen L, Zhang Y, Wu X, Fan Y et al (2019) Synthesis and properties of sugar-based surfactants alkoxyethyl β-D-glucopyranoside. Colloids and Surfaces A 564(August 2018):59–68.

    CAS  Article  Google Scholar 

  70. 70.

    Jimenez-junca C, Sher A, Gumy J, Niranjan K (2015) Production of milk foams by steam injection: the effects of steam pressure and nozzle design. J Food Eng 166:247–254.

    CAS  Article  Google Scholar 

  71. 71.

    Kamath S, Huppertz T, Houlihan AV, Deeth HC (2008) The influence of temperature on the foaming of milk. Int Dairy J 18(10–11):994–1002

    CAS  Google Scholar 

  72. 72.

    Kamath S, Webb RE, Deeth HC (2011) The composition of interfacial material from skim milk foams. J Dairy Sci 94(6):2707–2718.

    CAS  Article  PubMed  Google Scholar 

  73. 73.

    Kampf N, Martinez CG, Corradini MG, Peleg M (2003) Effect of two gums on the development, rheological properties and stability of egg albumen foams. Rheol Acta 42(3):259–268.

    CAS  Article  Google Scholar 

  74. 74.

    Kemp B, Condé B, Jégou S, Howell K, Vasserot Y, Marchal R (2019) Chemical compounds and mechanisms involved in the formation and stabilization of foam in sparkling wines. Crit Rev Food Sci Nutr 59(13):2072–2094.

    CAS  Article  PubMed  Google Scholar 

  75. 75.

    Khezri M, Shahriari S, Shahsavani L (2017) The effect of xanthan gum and temperature on foam stability of milk-based espresso coffees. J Food Biosci Technol Sci Res Branch 7(1):15–22

    Google Scholar 

  76. 76.

    Kordialik-bogacka E, Ambroziak W (2004) Investigation of foam-active polypeptides during beer fermentation, 1968(August), 1960–1968.

  77. 77.

    Martínez-Padilla LP, García-Mena V, Casas-Alencáster NB, Sosa-Herrera MG (2014) Foaming properties of skim milk powder fortified with milk proteins. Int Dairy J 36(1):21–28.

    CAS  Article  Google Scholar 

  78. 78.

    Langevin D (2000) Influence of interfacial rheology on foam and emulsion properties. Adv Colloid Interf Sci 88(1–2):209–222

    CAS  Google Scholar 

  79. 79.

    Lau CK, Dickinson E (2005) Instability and structural change in an aerated system containing egg albumen and invert sugar. Food Hydrocoll 19:111–121.

    CAS  Article  Google Scholar 

  80. 80.

    Lee LW, Liu X, San W, Wong E, Liu SQ (2017) Effects of sucrose monopalmitate (P90), tween 80 and modified starch on coffee aroma retention and release in coffee oil-based emulsions. Food Hydrocoll 66:128–135.

    CAS  Article  Google Scholar 

  81. 81.

    Li X, Vries RD (2018) Interfacial stabilization using complexes of plant proteins and polysaccharides. Curr Opin Food Sci 21:51–56.

    Article  Google Scholar 

  82. 82.

    Liger-Belair G, Lemaresquier H, Robillard B, Duteurtre B, Jeandet P (2001) The secrets of fizz in champagne wines: a phenomenological study. Am J Enol Vitic 52(2):88–92

    Google Scholar 

  83. 83.

    Liger-Belair G (2017) Effervescence in champagne and sparkling wines: from grape harvest to bubble rise. Eur Phys J Spec Top 226:3–116.

    CAS  Article  Google Scholar 

  84. 84.

    Lunkenheimer K, Malysa K (2003) Simple and generally applicable method of determination and evaluation of foam properties. J Surfactant Deterg 6(1):69–74

    CAS  Google Scholar 

  85. 85.

    Mangas JJ, Moreno J, Rodrı R, Picinelli A (1999) Analysis of polysaccharides in cider: their effect on sensory foaming properties. J Agric Food Chem 47:152–156

    CAS  PubMed  Google Scholar 

  86. 86.

    Martínez-Rodriguez AJ, Polo MC (2003) Effect of the addition of bentonite to the tirage solution on the nitrogen composition and sensory quality of sparkling wines. Food Chem 81:383–388

    Google Scholar 

  87. 87.

    Maurdev G, Langevin D (2006) Bubble motion measurements during foam drainage and coarsening. J Colloid Interface Sci 300:735–743.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    Mengual O, Meunier G, Cayré I, Puech K, Snabre P (1999a) TURBISCAN MA 2000: multiple light scattering measurement for concentrated emulsion and suspension instability analysis. Talanta 50(2):445–456

    CAS  PubMed  Google Scholar 

  89. 89.

    Mengual O, Meunier G, Cayre I, Puech K, Snabre P (1999b) Characterisation of instability of concentrated dispersions by a new optical analyser: the TURBISCAN MA 1000. Colloids Surf A Physicochem Eng Asp 152(1–2):111–123

    CAS  Google Scholar 

  90. 90.

    Misra NN, Phalak R, Martynenko A (2018) A microscopic computer vision algorithm for autonomous bubble detection in aerated complex liquids. J Food Eng 238:54–60.

    CAS  Article  Google Scholar 

  91. 91.

    Moore JE, Mccoy TM, Marlow JB, Pottage MJ, Mudie ST, Pearson GR et al (2018) Rich liquid crystal phase behavior of novel alkyl-tri (ethylene glycol ) -glucoside carbohydrate surfactants. J Colloid Interface Sci.

  92. 92.

    Münchow M, Jørgensen L, Manuel J, Sørensen K, Ipsen R (2015) Steam-frothing of milk for coffee: evaluation for foam properties using video analysis and feature extraction. Int Dairy J 51:84–91.

    CAS  Article  Google Scholar 

  93. 93.

    Navarini A, Ferrari M, Liverani FS, Liggieri L, Ravera F (2004) Dynamic tensiometric characterization of espresso coffee beverage. Food Hydrocoll 18(3):387–393

    CAS  Google Scholar 

  94. 94.

    Neethling SJ, Lee HT, Cilliers JJ (2001) A foam drainage equation generalized for all liquid contents. J Phys Condens Matter 14(3):331

    Google Scholar 

  95. 95.

    Neethling SJ, Lee HT, Grassia P (2005) The growth, drainage and breakdown of foams. Colloid Surf A Physicochem Eng Aspects 263(August 2004):184–196.

    CAS  Article  Google Scholar 

  96. 96.

    Neves ICO, de Faria JT, Vidigal MCTR, Fidelis PC, Minim VPR, Minim LA (2018) Foaming properties of suspensions composed by β-lactoglobulin and polysaccharides, in the presence of sucrose or polyols. Colloids Surf A Physicochem Eng Asp 550:199–208.

    CAS  Article  Google Scholar 

  97. 97.

    Nilsson G (2015) Microstructure of instant coffee foam confocal microscopy method development and production. In: Master of Science Thesis in the Master Degree Programme Biotechnology. Chalmers University of Technology, Gothenburg

    Google Scholar 

  98. 98.

    Niranjan, K. (1999). An introduction to bubble mechanics in foods. Bubbles in Food, pp 3–10

  99. 99.

    Niu C, Han Y, Wang J, Zheng F, Liu C, Li Y, Li Q (2018) Malt derived proteins: effect of protein Z on beer foam stability. Food Biosci 25:21–27.

    CAS  Article  Google Scholar 

  100. 100.

    Nunes FM, Coimbra MA (1998) Influence of polysaccharide composition in foam stability of espresso coffee. Carbohydr Polym.

  101. 101.

    Nunes FM, Coimbra MA, Duarte AC, Delgadillo I (1997) Foamability, foam stability, and chemical composition of espresso coffee as affected by the degree of roast. J Agric Food Chem 45(8):3238–3243.

    CAS  Article  Google Scholar 

  102. 102.

    Oetjen K, Bilke-Krause C, Madani M, Willers T (2014) Temperature effect on foamability, foam stability, and foam structure of milk. Colloids Surf A Physicochem Eng Asp 460:280–285.

    CAS  Article  Google Scholar 

  103. 103.

    Osman AM, Coverdale SM, Onley-Watson K, Bell D, Healy P (2003) The gel filterarion chromatographic profile of proteins and peptides of wort and beer: effects of processing-malting, mashing, kettle biling, fermentation and filtering. J Inst Brew 109(1):41–50

    CAS  Google Scholar 

  104. 104.

    Patino JMR, Sánchez CC, Niño MRR, Fernández MC (2001) Structural and dynamic properties of milk proteins spread at the air–water interface. J Colloid Interface Sci 242(1):141–151.

    CAS  Article  Google Scholar 

  105. 105.

    Patino JMR, Sánchez CC, Rosario M, Niño R (2008) Implications of interfacial characteristics of food foaming agents in foam formulations. Adv Colloid Interf Sci 140:95–113.

    CAS  Article  Google Scholar 

  106. 106.

    Peng D, Jin W, Li J, Xiong W, Pei Y, Wang Y, Li Y, Li B (2017a) Adsorption and distribution of edible gliadin nanoparticles at the air/water interface. J Agric Food Chem 65(11):2454–2460.

    CAS  Article  PubMed  Google Scholar 

  107. 107.

    Peng D, Jin W, Tang C, Lu Y, Wang W, Li J, Li B (2017b) Foaming and surface properties of gliadin nanoparticles: influence of pH and heating temperature. Food Hydrocoll.

  108. 108.

    Piazza L, Bulbarello A, Gigli J (2006) Rheological interfacial properties of espresso coffee foaming fractions. IUFoST 19(4):1503–1510.

    Article  Google Scholar 

  109. 109.

    Piazza L, Gigli J, Bulbarello A (2008) Interfacial rheology study of espresso coffee foam structure and properties. J Food Eng 84(3):420–429.

    Article  Google Scholar 

  110. 110.

    Picinelli Lobo A, Fernández Tascón N, Rodríguez Madrera R, Suárez Valles B (2005) Sensory and foaming properties of sparkling cider. J Agric Food Chem 53(26):10051–10056.

    CAS  Article  PubMed  Google Scholar 

  111. 111.

    Pilhofer GM, Lee H, Mccarthy MJ (1994) Functionality of milk fat in foam formation and stability. J Dairy Sci 77(1):55–63.

    CAS  Article  Google Scholar 

  112. 112.

    Piorkowski DT, McClements DJ (2013) Beverage emulsions: recent developments in formulation, production, and applications. Food Hydrocoll.

  113. 113.

    Pitois O (2012) Foam ripening. Foam Eng:59–73

  114. 114.

    Pizones Ruiz-Henestrosa V, Carrera Sanchez C, Rodríguez Patino JM (2008) Effect of sucrose on functional properties of soy globulins: adsorption and foam characteristics. J Agric Food Chem 56(7):2512–2521

    CAS  Google Scholar 

  115. 115.

    Pozo-Bayón MÁ, Martínez-Rodríguez A, Pueyo E, Moreno-Arribas MV (2009) Chemical and biochemical features involved in sparkling wine production: from a traditional to an improved winemaking technology. Trends Food Sci Technol 20(6–7):289–299.

    CAS  Article  Google Scholar 

  116. 116.

    Pugh RJ (2016) Bubble and foam chemistry. Cambridge University Press, Cambridge

    Google Scholar 

  117. 117.

    Rajkumar P, Kailappan R, Viswanathan R, Parvathi K (2007a) Thin layer drying study on foamed mango pulp. Agric Eng Int CIGR J. FP 06 024. vol IX

  118. 118.

    Rajkumar P, Kailappan R, Viswanathan R, Raghavan GSV, Ratti C, Rajkumar P et al (2007b) Foam mat drying of alphonso mango pulp. Dry Technol Int J 25(2):357–365.

    Article  Google Scholar 

  119. 119.

    Ralla T, Salminen H, Edelmann M, Dawid C, Hofmann T, Weiss J (2017) Sugar beet extract (Beta vulgaris L.) as new natural emulsifier: emulsion formation. J Agric Food Chem 65(20):4153–4160

    CAS  PubMed  Google Scholar 

  120. 120.

    Rouimi S, Schorsch C, Valentini C, Vaslin S (2005) Foam stability and interfacial properties of milk protein – surfactant systems. Food Hydrocoll 19(3):467–478.

    CAS  Article  Google Scholar 

  121. 121.

    Sadtler VM, Guely M, Marchal P, Choplin L (2004) Shear-induced phase transitions in sucrose ester surfactant. J Colloid Interface Sci 270:270–275.

    CAS  Article  PubMed  Google Scholar 

  122. 122.

    Saint-Jalmes A (2006) Physical chemistry in foam drainage and coarsening. Soft Matter 2(10):836–849

    CAS  Google Scholar 

  123. 123.

    Saint-Jalmes A, Langevin D (2002) Time evolution of aqueous foams: drainage and coarsening. J Phys Condens Matter 14(40):9397

    CAS  Google Scholar 

  124. 124.

    Sánchez CC, Patino JMR (2005) Interfacial, foaming and emulsifying characteristics of sodium caseinate as influenced by protein concentration in solution. Food Hydrocoll 19(3):407–416.

    CAS  Article  Google Scholar 

  125. 125.

    Schmidt I, Novales B, Boué F, Axelos MAV (2010) Foaming properties of protein/pectin electrostatic complexes and foam structure at nanoscale. J Colloid Interface Sci 345(2):316–324.

    CAS  Article  PubMed  Google Scholar 

  126. 126.

    Segel E, Wye EJ, Dycker D (1960) Foaming beverages. United States Patent Office, pp 1–3

  127. 127.

    Shrinivasan D (2005) Protein stabilization of emulsions and foams. J Food Sci 70(3)

  128. 128.

    Silva S, Espiga A, Niranjan K, Livings S, Gumy J-C, Sher A (2008) Formation and stability of milk foams. In: Bubbles in food, vol 2. Elsevier, Amsterdam, pp 153–161

    Google Scholar 

  129. 129.

    Stevenson P (2012) Foam engineering: fundamentals and applications. Wiley, Hoboken

    Google Scholar 

  130. 130.

    Strybulevych A, Leroy V, Scanlon MG, Page JH (2007) Characterizing a model food gel containing bubbles and solid inclusions using ultrasound. Soft Matter 3:1388–1394.

    CAS  Article  Google Scholar 

  131. 131.

    Subramani T (2012) Study of air pollution due to vehicle emission in tourism centre. Int J Eng Res Appl 2(3):1753–1763

    Google Scholar 

  132. 132.

    Sundara VR, Serbescu A (2014) Aerated chocolate. Google Patents

    Google Scholar 

  133. 133.

    Slack PT, Bamforth CW (1983) The fractionation of polypeptides from barley and beer by hydrophobic interaction chromatography: the influence of their hydrophobicity on foam stability. J Inst Brew 89(6):397–401

    CAS  Google Scholar 

  134. 134.

    Tadros T (2013) Ostwald ripening. Encyclopedia of Colloid and Interface Science, p 820

  135. 135.

    Tcholakova S, Mitrinova Z, Golemanov K, Denkov ND, Vethamuthu M, Ananthapadmanabhan KP (2011) Control of Ostwald ripening by using surfactants with high surface modulus. Langmuir 27(24):14807–14819

    CAS  PubMed  Google Scholar 

  136. 136.

    Vera MU, Durian DJ (2002) Enhanced drainage and coarsening in aqueous foams. Phys Rev Lett 88(8):88304

    CAS  Google Scholar 

  137. 137.

    Villagran FV, Dria GJ, Bruno Jr, DJ, Small LE (2000) Higher density foamable instant coffee products for preparing cappuccino like beverages. Google Patents

    Google Scholar 

  138. 138.

    Vincenzi S, Crapisi A, Curioni A (2014) Food hydrocolloids foamability of prosecco wine: cooperative effects of high molecular weight glycocompounds and wine PR-proteins. Food Hydrocoll 34:202–207.

    CAS  Article  Google Scholar 

  139. 139.

    Wang J, Nguyen AV, Farrokhpay S (2016) A critical review of the growth, drainage and collapse of foams. Adv Colloid Interf Sci 228:55–70

    CAS  Google Scholar 

  140. 140.

    Wang P, Tao H, Wu F, Yang N, Chen F, Jin Z, Xu X (2014) Effect of frozen storage on the foaming properties of wheat gliadin. Food Chem 164:44–49

    CAS  PubMed  Google Scholar 

  141. 141.

    Weaire D, Phelan R (1996) The physics of foam. J Phys Condens Matter 8(47):9519

    CAS  Google Scholar 

  142. 142.

    Wouters AGB, Schaefer S, Joye IJ, Delcour JA (2019) Relating the structural, air-water interfacial and foaming properties of wheat (Triticum aestivum L.) gliadin and maize (Zea mays L.) zein based nanoparticle suspensions. Colloids Surf A Physicochem Eng Asp 567:249–259

    CAS  Google Scholar 

  143. 143.

    Wyss CA, Gumy JC, Warnery FP, Bourgeois T (2010) Soluble foaming beverage powder. U.S. Patent Application No. 12/672,452

  144. 144.

    Yang X, Foegeding EA (2010) Effects of sucrose on egg white protein and whey protein isolate foams: factors determining properties of wet and dry foams (cakes). Food Hydrocoll 24(2–3):227–238.

    CAS  Article  Google Scholar 

  145. 145.

    Yang Y, Mcclements DJ (2013) Encapsulation of vitamin E in edible emulsions fabricated using a natural surfactant. Food Hydrocoll 30(2):712–720.

    CAS  Article  Google Scholar 

  146. 146.

    Yekeen N, Idris AK, Manan MA (2016a) Experimental study of influence of silica nanoparticles on the bulk stability of SDS-foam in presence of oil. J Dispers Sci Technol.

  147. 147.

    Yekeen N, Idris AK, Manan MA, Samin AM, Risal AR, Kun TX (2016b) Bulk and bubble-scale experimental studies of influence of nanoparticles on foam stability. Chin J Chem Eng.

  148. 148.

    Zayas JF (2012) Functionality of proteins in food. Springer Science & Business Media, Berlin

    Google Scholar 

  149. 149.

    Zhao Q, Jiang L, Lian Z, Khoshdel E, Schumm S, Huang J, Zhang Q (2018) High internal phase water-in-oil emulsions stabilized by food-grade starch. J Colloid Interface Sci.

Download references

Author information



Corresponding author

Correspondence to C. Anandharamakrishnan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Deotale, S., Dutta, S., Moses, J.A. et al. Foaming Characteristics of Beverages and Its Relevance to Food Processing. Food Eng Rev 12, 229–250 (2020).

Download citation


  • Foam
  • Bubble
  • Aeration
  • Carbonation
  • Beverages
  • Stabilization