Skip to main content

Advertisement

Log in

Vinegar Engineering: a Bioprocess Perspective

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Food engineering is an important sub-field that requires special attention in the food industry. The application of biochemical process engineering principles in food production often leads to the optimization of certain features of the food production process; similarly, it results in rapid production, improved quality and reduced food losses. Consequently, to address each aspect of food processing including engineering adequately, researchers must have a multidisciplinary approach, using aspects from a number of fields such as microbiology, chemistry, food technology, process engineering and molecular biology. Accordingly, this review focuses on the engineering of various vinegars. Furthermore, cognizance is given to the gaps that need to be addressed in vinegar engineering, particularly to address limitations employed in traditional approaches during vinegar production. Food engineering assessments address numerous functions in integrated systems for which fermentation systems are the primary process. Mathematical models are used to describe the process, simulate future fermentations and describe process performance. Vinegar engineering also includes the use or design of bioreactors intended for improved product yield and rapid production, improved mass or energy transfer efficiencies and the reduction of detrimental hydrodynamics fermentor conditions on the microorganisms used. For vinegar fermentation, bioreactor selection which might include cell immobilization requires that appropriate process control and optimization be conducted using mathematical models, with rates of acetification being influenced by parameters such as the ratio of dissolved oxygen consumption in comparison to acetic acid yield.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Anonymous (n.d.) Enzyme immobilization methods and applications (Biotechnology notes). https://www.easybiologyclass.com/enzyme-cell-immobilization-techniques/ Accessed 11 April 2019

  2. Baimark Y, Niamsa N (2009) Study on wood vinegars for use as coagulating and antifungal agents on the production of natural rubber sheets. Biomass Bioenergy 33:994–998

    CAS  Google Scholar 

  3. Bakar FB (2014) Modelling and simulation of fermentation product purification for local vinegar using batch distillation. CHEMICA: Jurnal Teknik Kimia 1(2):49–55

    Google Scholar 

  4. Boehme P, Stellenberger T, Zhang W, Schulz E, Bergmann T, Jing L, Grebbing M, Baiker A, Ehrhardt A (2014) Feasible and sufficient small-scale amplification of high-capacity adenovirus. Mol Ther 22:1

    Google Scholar 

  5. Branen AL, Davidson PM, Salminen S, Thorngate J eds. (2001). Food additives. CRC Press

  6. Brun KEJ (1945) Manufacture of vinegar. U.S., Patent 2,390-717

  7. Budak HN, Guzel-Seydim ZB (2010) Antioxidant activity and phenolic content of wine vinegars produced by two different techniques. J Sci Food Agric 90:2021–2026

    CAS  PubMed  Google Scholar 

  8. Cheun KS, Kang SG, Kang SK, Jung ST, Park YK (2005) Changes of the flavonoids in onion vinegar fermented with onion juice and ethanol. Korean J Food Preserv 12:650–655

    Google Scholar 

  9. Davis EA, Wong WH, Harman WN (2015) Distilled white vinegar (5% acetic acid) as a potential decontamination method for adult zebra mussels. Manag Biol Invasions 6:423–428

    Google Scholar 

  10. De Leonardis A, Macciola V, Iorizzo M, Lombardi SJ, Lopez F, Marconi E (2018) Effective assay for olive vinegar production from olive oil mill wastewaters. Food Chem 240:437–440

    PubMed  Google Scholar 

  11. Demir H, Top A, Balköse D, Ülkü S (2008) Dye adsorption behavior of Luffa cylindrica fibers. J Hazard Mater 153:389–394

    CAS  PubMed  Google Scholar 

  12. Dendooven L, Magaña IP, De la Torre M (2000) Optimization of gibberellic acid production by immobilized Gibberella fujikuroi mycelium in fluidized bioreactors. J Biotechnol 76:147–155

    PubMed  Google Scholar 

  13. de Ory I, Romero LE, Cantero D (1999) Maximum yield acetic acid fermenter. Bioprocess Eng 21:187–190

    Google Scholar 

  14. de Ory I, Romero LE, Cantero D (2004a) Operation in semi-continuous with a closed pilot plant scale acetifier for vinegar production. J Food Eng 63:39–45

    Google Scholar 

  15. de Ory I, Romero LE, Cantero D (2004b) Optimization of immobilization conditions for vinegar production. Siran, wood chips and polyurethane foam as carriers for Acetobacter aceti. Process Biochem 39:547–555

    Google Scholar 

  16. Dobre T, Sandu IU, Stroescu M, Stoica AN (2007) Modelling of acetic acid biosynthesis at low acid concentration. Revista de Chimie-Bucharest-original edition 58:251

    CAS  Google Scholar 

  17. Ebner H, Enenkel A, Firma FH, (1978) Two stage process for the production of vinegar with high acetic acid concentration. U.S. Patent 4,076,844

  18. Ebner H, Follmann H, Sellmer S, (2000) Vinegar. Ullmann's Encyclopedia of Industrial Chemistry. vol A27

  19. Ebner H, Firma FH, (1969) Process for acetic acid fermentation. U.S. Patent 3,445,245

  20. Ebner H, Firma FH, (1985) Process for the production of vinegar with more than 12 gms/100 ml acetic acid. U.S. Patent 4,503,078

  21. Enenkel A, Firma FH, (1988) Control arrangement for a vinegar fermentation process. U.S. Patent 4,773,315

  22. Ernst M, Hunt Foods Inc, (1961) Process for making vinegar. U.S. Patent 2,997,424

  23. Fernández-Pérez R, Torres C, Sanz S, Ruiz-Larrea F (2010) Strain typing of acetic acid bacteria responsible for vinegar production by the submerged elaboration method. Food Microbiol 27:973–978

    PubMed  Google Scholar 

  24. Fregapane G, Rubio-Fernández H, Nieto J, Salvador MD (1999) Wine vinegar production using a noncommercial 100-litre bubble column reactor equipped with a novel type of dynamic sparger. Biotechnol Bioeng 63:141–146

    CAS  PubMed  Google Scholar 

  25. García-García I, Santos-Dueñas IM, Jiménez-Ot C, Jiménez-Hornero JE, Bonilla-Venceslada JL (2009) Vinegar engineering. In: Vinegars of the World. Springer, Milan, pp 97–120

    Google Scholar 

  26. Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176

    CAS  PubMed  Google Scholar 

  27. Garcia-Ochoa F, Gomez E, Santos VE, Merchuk JC (2010) Oxygen uptake rate in microbial processes: an overview. Biochem Eng J 49:289–307

    CAS  Google Scholar 

  28. Garrido-Vidal D, Pizarro C, González-Sáiz JM (2003) Study of process variables in industrial acetic fermentation by a continuous pilot fermentor and response surfaces. Biotechnol Prog 19:1468–1479

    CAS  PubMed  Google Scholar 

  29. Ghatak PD, Sen CK, (2016) Antioxidant additives in food preservation and human health. Food Toxicol, 377

  30. Ghommidh C, Navarro JM, Messing RA (1982) A study of acetic acid production by immobilized Acetobacter cells: product inhibition effects. Biotechnol Bioeng 24:1991–1999

    CAS  PubMed  Google Scholar 

  31. Ghosh S, Chakraborty R, Chatterjee G, Raychaudhuri U (2012) Study on fermentation conditions of palm juice vinegar by response surface methodology and development of a kinetic model. Braz J Chem Eng 29:461–472

    CAS  Google Scholar 

  32. González-Sáiz JM, Esteban-Díez I, Sánchez-Gallardo C, Pizarro C (2008a) Monitoring of substrate and product concentrations in acetic fermentation processes for onion vinegar production by NIR spectroscopy: value addition to worthless onions. Anal Bioanal Chem 391:2

    Google Scholar 

  33. González-Sáiz JM, Pizarro C, Garrido-Vidal D (2008b) Modelling gas–liquid and liquid–gas transfers in vinegar production by genetic algorithms. J Food Eng 87:136–147

    Google Scholar 

  34. González-Sáiz JM, Garrido-Vidal D, Pizarro C (2009a) Scale up and design of processes in aerated-stirred fermenters for the industrial production of vinegar. J Food Eng 93:89–100

    Google Scholar 

  35. González-Sáiz JM, Garrido-Vidal D, Pizarro C (2009b) Modelling the industrial production of vinegar in aerated-stirred fermentors in terms of process variables. J Food Eng 91:183–196

    Google Scholar 

  36. Gullo M, Verzelloni E, Canonico M (2014) Aerobic submerged fermentation by acetic acid bacteria for vinegar production: process and biotechnological aspects. Process Biochem 49:1571–1579

    CAS  Google Scholar 

  37. Halladj F, Boukhiar A, Amellal H, Benamara S (2016) Optimization of traditional date vinegar preparation using full factorial design. J Am Soc Brew Chem 74:137–144

    CAS  Google Scholar 

  38. Heinrich F, Firma FH, (1932) Manufacture of vinegar. U.S. Patent 1,880,381

  39. Heinrich F, Standard Brands Inc, (1937) Apparatus for the production of vinegar. U.S. Patent 2,094,592

  40. Ho CW, Lazim AM, Fazry S, Zaki UK, Lim SJ (2017) Varieties, production, composition and health benefits of vinegars: a review. Food Chem 221:1621–1630

    CAS  PubMed  Google Scholar 

  41. Horiuchi JI, Kanno T, Kobayashi M (2000a) Effective onion vinegar production by a two-step fermentation system. J Biosci Bioeng 90:289–293

    CAS  PubMed  Google Scholar 

  42. Horiuchi JI, Tabata K, Kanno T, Kobayashi M (2000b) Continuous acetic acid production by a packed bed bioreactor employing charcoal pellets derived from waste mushroom medium. J Biosci Bioeng 89:126–130

    CAS  PubMed  Google Scholar 

  43. Horiuchi JI, Tada K, Kobayashi M, Kanno T, Ebie K (2004) Biological approach for effective utilization of worthless onions—vinegar production and composting. Resour Conserv Recycl 40:97–109

    Google Scholar 

  44. Hsu EJ, Hsu Edward J, (1989) Automated method for a semi-solid fermentation used in the production of ancient quality rice vinegar and/or rice wine. U.S. Patent 4,808,419

  45. Huang YL, Mann K, Novak JM, Yang ST (1998) Acetic acid production from fructose by clostridium formicoaceticum immobilized in a Fibrous-Bed bioreactor. Biotechnol Prog 14:800–806

    CAS  PubMed  Google Scholar 

  46. Huang YL, Wu Z, Zhang L, Cheung CM, Yang ST (2002) Production of carboxylic acids from hydrolyzed corn meal by immobilized cell fermentation in a fibrous-bed bioreactor. Bioresour Technol 82:51–59

    CAS  PubMed  Google Scholar 

  47. Hutchinson UF, Ntwampe SK, Ngongang MM, Du Plessis HW, Chidi BS, Saulse CK, Jolly NP, (2018) Cell immobilization by Gel entrapment in Ca-alginate beads for balsamic-styled vinegar production. In Proceedings of the 10th International Conference on Advances in Science, Engineering, Technology and Healthcare (ASETH-18) November. 19–20, 2018 Cape Town (South Africa)

  48. Hyuseinov EE, Ludwig WP, WTI Inc (2016) Concentrated natural food additive and methods of preparing the same. U.S. Patent Application 15/177,408

  49. Johnston CS, Gaas CA (2006) Vinegar: medicinal uses and antiglycemic effect. Medscape Gen Med 8:61

    Google Scholar 

  50. Kaur P, Kocher GS, Phutela RP (2011) Production of tea vinegar by batch and semicontinuous fermentation. J Food Sci Technol 48:755–758

    CAS  PubMed  Google Scholar 

  51. Kaushal N, Phutela RP (2017) Vinegar production from barley malt using immobilized Gluconobacter oxydans. Int J Pure Appl Biosci 5:264–271

    Google Scholar 

  52. Kennedy JF, Humphreys JD, Barker SA, Greenshields RN (1980) Application of living immobilized cells to the acceleration of the continuous conversions of ethanol (wort) to acetic acid (vinegar)—hydrous titanium (IV) oxide-immobilized Acetobacter species. Enzym Microb Technol 2:209–216

    CAS  Google Scholar 

  53. Kim JN, Choo JS, Wee YJ, Yun JS, Ryu HW (2005) Culture medium optimization for acetic acid production by a persimmon vinegar-derived bacterium. Appl Biochem Biotechnol 123:861–869

    Google Scholar 

  54. Kocher GS, Dhillon HK (2013) Fermentative production of sugarcane vinegar by immobilized cells of Acetobacter aceti under packed bed conditions. Sugar Tech 15:71–76

    CAS  Google Scholar 

  55. Kocher GS, Kalra KL, Phutela RP (2006) Comparative production of sugarcane vinegar by different immobilization techniques. J Inst Brew 112:264–266

    CAS  Google Scholar 

  56. Krusong, W., Petch-nom, P. and Pinviset, P., 2010. Semicontinuous production process of corn vinegar in stirred tank reactor using fixation of Acetobacter aceti WK on surface of loffa sponge. Kasetsart J Nat Sci 44:201–207

  57. Krusong W, Tantratian S (2014) Acetification of rice wine by Acetobacter aceti using loofa sponge in a low-cost reciprocating shaker. J Appl Microbiol 117:1348–1357

    CAS  PubMed  Google Scholar 

  58. Krusong W, Vichitraka A, (2011) An air-lift acetifier with mash recycling system for corn vinegar production by adsorbed cells of Acetobacter aceti WK on surface of loofa sponge. In 2nd International conference on biotechnology and food science IPCBEE 86–90

  59. Krusong W, Yaiyen S, Pornpukdeewatana S (2015) Impact of high initial concentrations of acetic acid and ethanol on acetification rate in an internal Venturi injector bioreactor. J Appl Microbiol 118:629–640

    CAS  PubMed  Google Scholar 

  60. Kumar G, Mudhoo A, Sivagurunathan P, Nagarajan D, Ghimire A, Lay CH, Lin CY, Lee DJ, Chang JS (2016) Recent insights into the cell immobilization technology applied for dark fermentative hydrogen production. Bioresour Technol 219:725–737

    CAS  PubMed  Google Scholar 

  61. Kyraleou M, Kallithraka S, Chira K, Tzanakouli E, Ligas I, Kotseridis Y (2015) Differentiation of wines treated with wood chips based on their phenolic content, volatile composition, and sensory parameters. J Food Sci 80:C2701–C2710

    CAS  PubMed  Google Scholar 

  62. Laqui-Estaña J, López-Solís R, Peña-Neira Á, Medel-Marabolí M, Obreque-Slier E (2019) Wines in contact with oak wood: the impact of the variety (Carménère and Cabernet Sauvignon), format (barrels, chips and staves), and aging time on the phenolic composition. J Sci Food Agric 99:436–448

    PubMed  Google Scholar 

  63. Mazza S, Murooka Y (2009) Vinegars through the ages. In: Vinegars of the World. Springer, Milan, pp 17–39

    Google Scholar 

  64. Mazutti MA, Zabot G, Boni G, Skovronski A, de Oliveira D, Di Luccio M, Rodrigues MI, Treichel H, Maugeri F (2010) Kinetics of inulinase production by solid-state fermentation in a packed-bed bioreactor. Food Chem 120:163–173

    CAS  Google Scholar 

  65. Mehaia MA, Cheryan M (1991) Fermentation of date extracts to ethanol and vinegar in batch and continuous membrane reactors. Enzym Microb Technol 13:257–261

    CAS  Google Scholar 

  66. Monteagudo JM, Rodríguez L, Rincón J, Fuertes J (1997) Kinetics of lactic acid fermentation by Lactobacillus delbrueckii grown on beet molasses. J Chem Technol Biotechnol: International Research in Process, Environmental and Clean Technology 68:271–276

    CAS  Google Scholar 

  67. Mounir M, Shafiei R, Zarmehrkhorshid R, Hamouda A, Thonart P, Delvigne F, Alaoui MI (2016) Optimization of biomass production of Acetobacter pasteurianus KU710511 as a potential starter for fruit vinegar production. Afr J Biotechnol 15:1429–1441

    CAS  Google Scholar 

  68. Moutafchieva D, Popova D, Dimitrova M, Tchaoushev S (2013) Experimental determination of the volumetric mass transfer coefficient. J Chem Technol Metall 48:351–356

    Google Scholar 

  69. Mun SP, Ku CS (2010) Pyrolysis GC-MS analysis of tars formed during the aging of wood and bamboo crude vinegars. J Wood Sci 56:47–52

    CAS  Google Scholar 

  70. Mitchell DA, von Meien OF, Krieger N, Dalsenter FD (2004) A review of recent developments in modeling of microbial growth kinetics and intraparticle phenomena in solid-state fermentation. Biochem Eng J 17:15–26

    CAS  Google Scholar 

  71. Nair M, Upadhyaya I, Amalaradjou MR, Venkitanarayanan K (2017) Antimicrobial food additives and disinfectants: mode of action and microbial resistance mechanisms. In: Om V (ed) Singh ed. Food Borne Pathogens and Antibiotic Resistance, Wiley-Blackwell, pp 275–301

    Google Scholar 

  72. Nayak J, Pal M, Pal P (2015) Modeling and simulation of direct production of acetic acid from cheese whey in a multi-stage membrane-integrated bioreactor. Biochem Eng J 93:179–195

    CAS  Google Scholar 

  73. Nayak J, Pal P (2013) Transforming waste cheese-whey into acetic acid through a continuous membrane-integrated hybrid process. Ind Eng Chem Res 52:2977–2984

    CAS  Google Scholar 

  74. Nie Z, Zheng Y, Wang M, Han Y, Wang Y, Luo J, Niu D (2013) Exploring microbial succession and diversity during solid-state fermentation of Tianjin duliu mature vinegar. Bioresour Technol 148:325–333

    CAS  PubMed  Google Scholar 

  75. Otto H, Heinz E, (1955) Method for the production of vinegar acids by oxidative fermentation of alcohols. U.S. Patent 2,707,683

  76. Park YS, Ohtake H, Fukaya M, Okumura H, Kawamura Y, Toda K (1989) Effects of dissolved oxygen and acetic acid concentrations on acetic acid production in continuous culture of Acetobacter aceti. J Ferment Bioeng 68:96–101

    CAS  Google Scholar 

  77. Pochat-Bohatier C, Bohatier C, Ghommidh C (2003) Modelling the kinetics of growth of acetic acid bacteria to increase vinegar production: analogy with mechanical modelling. http://www.math.ucsd.edu/~helton/MTNSHISTORY/CONTENTS/2000PERPIGNAN/CDROM/articles/B57.pdf Accessed: 12 March 2019

  78. Qi Z, Yang H, Xia X, Xin Y, Zhang L, Wang W, Yu X (2013) A protocol for optimization vinegar fermentation according to the ratio of oxygen consumption versus acid yield. J Food Eng 116:304–309

    CAS  Google Scholar 

  79. Qi Z, Yang H, Xia X, Quan W, Wang W, Yu X (2014) Achieving high strength vinegar fermentation via regulating cellular growth status and aeration strategy. Process Biochem 49:1063–1070

    CAS  Google Scholar 

  80. Rubio-Fernández H, Salvador MD, Fregapane G (2004) Influence of fermentation oxygen partial pressure on semicontinuous acetification for wine vinegar production. Eur Food Res Technol 219:393–397

    Google Scholar 

  81. Saudagar PS, Shaligram NS, Singhal RS (2008) Immobilization of Streptomyces clavuligerus on loofah sponge for the production of clavulanic acid. Bioresour Technol 99:2250–2253

    CAS  PubMed  Google Scholar 

  82. Schlepütz T, Büchs J (2013) Investigation of vinegar production using a novel shaken repeated batch culture system. Biotechnol Prog 29:1158–1168

    PubMed  Google Scholar 

  83. Schlepütz T, Gerhards JP, Büchs J (2013) Ensuring constant oxygen supply during inoculation is essential to obtain reproducible results with obligatory aerobic acetic acid bacteria in vinegar production. Process Biochem 48:398–405

    Google Scholar 

  84. Seletzky JM, Noak U, Fricke J, Welk E, Eberhard W, Knocke C, Büchs J (2007) Scale-up from shake flasks to fermenters in batch and continuous mode with Corynebacterium glutamicum on lactic acid based on oxygen transfer and pH. Biotechnol Bioeng 98:800–811

    CAS  PubMed  Google Scholar 

  85. Sobotka M, Prokop A, Dunn IJ, Einsele A, (1982) Review of methods for the measurement of oxygen transfer in microbial systems. In Ann Rep Ferment Proc Vol. 5, 127–210. Elsevier

  86. Solieri L, Giudici P (2009) Vinegars of the world. In: Vinegars of the World. Springer, Milan, pp 1–16

    Google Scholar 

  87. Sun Y, Furusaki S (1990) Continuous production of acetic acid using immobilized Acetobacter aceti in a three-phase fluidized bed bioreactor. J Ferment Bioeng 69:102–110

    CAS  Google Scholar 

  88. Talabardon M, Schwitzguébel JP, Peringer P, Yang ST (2000) Acetic acid production from lactose by an anaerobic thermophilic coculture immobilized in a fibrous-bed bioreactor. Biotechnol Prog 16:1008–1017

    CAS  PubMed  Google Scholar 

  89. Tanobe VO, Flores-Sahagun TH, Amico SC, Muniz GI, Satyanarayana KG (2014) Sponge gourd (Luffa cylindrica) reinforced polyester composites: preparation and properties. Def Sci J 64:273–280

    CAS  Google Scholar 

  90. Tesfaye W, Morales ML, Garcıa-Parrilla MC, Troncoso AM (2002) Wine vinegar: technology, authenticity and quality evaluation. Trends Food Sci Technol 13:12–21

    CAS  Google Scholar 

  91. Thiripurasundari G, Usharani G (2011) Comparative production of vinegar using cashew apple juice by different immobilization techniques. Current Botany 2:31–33

    Google Scholar 

  92. Van Noort D, (2016) Bioreactors ona Chip. In Carl-Fredrik Mandenius. ed. Bioreactors: Design, Operation and Novel Applications. Wiley-VCH

  93. Van't Riet K, Tramper J, (1991) Basic bioreactor design. CRC Press

  94. Wenye Z, Junsong Z, Xin Z (2003) Study on the technology condition of making hawthorn fruit vinegar by one-step fermentation [J]. Chinese Condiment 7:005

    Google Scholar 

  95. Wiley RC, (2017) Preservation methods for minimally processed refrigerated fruits and vegetables. In Minimally Processed Refrigerated Fruits and Vegetables . Springer US. 187–237

  96. Wititsiri S (2011) Production of wood vinegars from coconut shells and additional materials for control of termite workers, Odontotermes sp. and striped mealy bugs, Ferrisia virgata. Songklanakarin J Sci Technol 33(3):349–354

    CAS  Google Scholar 

  97. Wittler R, Firma FH (1991) Method and apparatus for controlling foam in a vinegar fermentation process. U.S. Patent 4,997,660

  98. Yan Q, Zheng P, Dong JJ, Sun ZH (2014) A fibrous bed bioreactor to improve the productivity of succinic acid by Actinobacillus succinogenes. J Chem Technol Biotechnol 89:1760–1766

    CAS  Google Scholar 

  99. Zheng Y, Zhang K, Wang C, Liu H, Luo J, Wang M (2010) Improving acetic acid production of Acetobacter pasteurianus AC2005 in hawthorn vinegar fermentation by using beer for seed culture. Int J Food Sci Technol 45:2394–2399

    CAS  Google Scholar 

  100. Żur J, Wojcieszyńska D, Guzik U (2016) Metabolic responses of bacterial cells to immobilization. Molecules 21:958

    PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U.F. Hutchinson or N.P. Jolly.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hutchinson, U., Jolly, N., Chidi, B. et al. Vinegar Engineering: a Bioprocess Perspective. Food Eng Rev 11, 290–305 (2019). https://doi.org/10.1007/s12393-019-09196-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-019-09196-x

Keywords

Navigation