Food Engineering Reviews

, Volume 10, Issue 1, pp 14–33 | Cite as

The Theory of Decompression Failure in Polymers During the High-Pressure Processing of Food

  • Julia Sterr
  • Benedikt Stefan Fleckenstein
  • Horst-Christian Langowski
Review Article


The occurrence of blistering and the formation of bubbles in matrices after a sudden pressure drop is a well-known phenomenon in many fields, including in the petroleum industry (“explosive decompression failure”), in diving (decompression sickness), in the infrastructure of hydrogen fuel cells, in the foaming of polymers, and in the high-pressure processing of food. This usually undesirable effect is caused by the increased absorption of gas in the polymer under high-pressure conditions and the subsequent supersaturation and increase in free energy on rapid pressure release. The exact mechanisms of the resulting expansion of gas, and hence the formation of bubbles, are not fully understood. Regarding the high-pressure processing of food where pressures of up to 6000 bar are reached at moderate temperatures, little information is available about the key factors involved in decompression failure. This review summarizes results and findings from relevant research areas to understand polymer decompression failure. The first part of this review describes the transport properties of gases in polymers under high pressure (sorption and desorption, diffusion coefficient, and permeability coefficient). The second part focuses on damage mechanisms and discusses parameters such as material properties, the nature of the gas, and process conditions (e.g., temperature, decompression rate). Knowledge gaps and proposed research are highlighted.


Explosive decompression failure Isostatic pressure Solubility Diffusion coefficient Bubble formation 



Amorphous polyethylene terephthalate


Bubble density = bubbles/blisters per volume of the matrix


Bubble size, volume or diameter


Decompression sickness


Ethylene propylene diene, M-class


Bubble growth rate


High-pressure processing


Modified atmosphere packaging


Acrylonitrile butadiene rubber


Polyamide 11






Polyethylene high density


Polyethylene low density


Polyethylene terephthalate


Poly(glycolic acid)


Poly l-lactic acid


Copolymer of d,l-lactide and glycolide (varying content)


Maximum applied pressure in the system


Poly(methyl methacrylate)






Supersaturation pressure




Polytetrafluorethylene (Teflon)


Poly(vinyl acetate)


Poly(vinyl chloride)


Poly(vinylidene fluoride)


Supercritical carbon dioxide


Supersaturation ratio


Standard temperature (273 K) and pressure (1.013 bar)


Titanium dioxide


Glass transition temperature


Melting temperature


Vinyl methyl polysiloxane


Explosive decompression failure


  1. 1.
    Al-Nehlawi A, Guri S, Guamis B, Saldo J (2014) Synergistic effect of carbon dioxide atmospheres and high hydrostatic pressure to reduce spoilage bacteria on poultry sausages. LWT-Food Sci Technol 58(2):404–411CrossRefGoogle Scholar
  2. 2.
    Corwin H, Shellhammer TH (2002) Combined carbon dioxide and high pressure inactivation of pectin methylesterase, polyphenol oxidase, Lactobacillus plantarum and Escherichia coli. J Food Sci 67(2):697–701CrossRefGoogle Scholar
  3. 3.
    Bull MK, Steele RJ, Kelly M, Olivier SA, Chapman B (2010) Packaging under pressure: effects of high pressure, high temperature processing on the barrier properties of commonly available packaging materials. Innovative Food Sci Emerg Technol 11(4):533–537CrossRefGoogle Scholar
  4. 4.
    Fairclough JPA, Conti M (2009) Influence of ultra-high pressure sterilization on the structure of polymer films. Packag Technol Sci 22(5):303–310. CrossRefGoogle Scholar
  5. 5.
    Fleckenstein BS, Sterr J, Langowski H-C (2014) The effect of high pressure processing on the integrity of polymeric packaging—analysis and categorization of occurring defects. Packag Technol Sci 27(2):83–103. CrossRefGoogle Scholar
  6. 6.
    Götz J, Weisser H (2002) Permeation of aroma compounds through plastic films under high pressure: in-situ measuring method. Innovative Food Sci Emerg Technol 3(1):25–31CrossRefGoogle Scholar
  7. 7.
    Koutchma T, Song Y, Setikaite I, Juliano P, Barbosa-Cánovas GV, Dunne CP, Patazca E (2009) Packaging evaluation for high-pressure high-temperature sterilization of shelf-stable foods. J Food Process Eng 33(6):1097–1114. CrossRefGoogle Scholar
  8. 8.
    Masuda M, Saito Y, Iwanami T, Hirai Y (1992) Effects of hydrostatic pressure on packaging materials for food. In: Balny C, Hayashi R, Heremans K, Masson P (eds) High pressure and biotechnology, vol 224. John Libbey EUROTEXT, Montrouge, pp 545–547Google Scholar
  9. 9.
    Richter T (2011) Der Einfluss hohen hydrostatischen Drucks auf polymere thermoplastische Lebensmittelverpackungen, München, Techn. Univ., Diss., 2011Google Scholar
  10. 10.
    Richter T, Sterr J, Jost V, Langowski H-C (2010) High pressure-induced structural effects in plastic packaging. High Pressure Res 30(4):555–566. CrossRefGoogle Scholar
  11. 11.
    Sterr J, Fleckenstein BS, Langowski H-C (2015a) The effect of high pressure processing on tray packages with modified atmosphere. Food Eng Rev 7(2):209–221. CrossRefGoogle Scholar
  12. 12.
    Baudet C, Grandidier J-C, Cangémi L (2009) A two-phase model for the diffuso-mechanical behaviour of semicrystalline polymers in gaseous environment. Int J Solids Struct 46(6):1389–1401. CrossRefGoogle Scholar
  13. 13.
    Boyer SAE, Klopffer M-H, Martin J, Grolier J-PE (2007) Supercritical gas–polymer interactions with applications in the petroleum industry. Determination of thermophysical properties. J Appl Polym Sci 103(3):1706–1722. CrossRefGoogle Scholar
  14. 14.
    Grolier J-PE, Boyer SAE (2007) Solubility of gases in polymers. In: Letcher TM (ed) Development and applications in solubility. RSC Pub, Cambridge, pp 249–260CrossRefGoogle Scholar
  15. 15.
    Barth RR, Simmons KL, San Marchi C (2013) Polymers for hydrogen infrastructure and vehicle fuel systems. Applications, properties, and gap analysis, Albuquerque, New Mexico, U.S.AGoogle Scholar
  16. 16.
    Koga A, Yamabe T, Sato H, Uchida K, Nakayama J, Yamabe J, Nishimura S (2013) A visualizing study of blister initiation behavior by gas decompression. Tribol Online 8(1):68–75CrossRefGoogle Scholar
  17. 17.
    Flook V (2000) The physics and physiology of decompression. Eur J Underwater Hyperb Med 1(1):8–13Google Scholar
  18. 18.
    Flaconnèche B, Martin J, Klopffer M-H (2001b) Transport properties of gases in polymers: experimental methods. Oil Gas Sci. Technol. – Rev. IFP Energ Nouvelles 56(3):245–259. CrossRefGoogle Scholar
  19. 19.
    Barrer RM (1951) Diffusion in and through solids. The Cambridge Series of Physical Chemistry. University Press, CambridgeGoogle Scholar
  20. 20.
    Battino R, Clever HL (1966) The solubility of gases in liquids. Chem Rev 66(4):395–463. CrossRefGoogle Scholar
  21. 21.
    Prausnitz JM, Lichtenthaler RN, Azevedo EGd (1999) Molecular thermodynamics of fluid-phase equilibria, 3rd ed. Prentice-Hall International Series in the Physical and Chemical Engineering Sciences. Prentice Hall PTR, Upper Saddle RiverGoogle Scholar
  22. 22.
    Sander R (2015) Compilation of Henry’s law constants (version 4.0) for water as solvent. Atmos Chem Phys 15(8):4399–4981. CrossRefGoogle Scholar
  23. 23.
    Wedler G (1997) Lehrbuch der physikalischen Chemie, 4., völlig überarb. und erw. Aufl. Wiley-VCH, WeinheimGoogle Scholar
  24. 24.
    Atkins PW, de Paula J (2006) Physikalische Chemie, 4., vollst. überarb. Aufl. VCH, Weinheim [u.a]Google Scholar
  25. 25.
    Sarrasin F, Memari P, Klopffer M-H, Lachet V, Taravel Condat C, Rousseau B, Espuche E (2015) Influence of high pressures on CH4, CO2 and H2S solubility in polyethylene. Experimental and molecular simulation approaches for pure gas and gas mixtures. Modelling of the sorption isotherms. J Membr Sci 490:380–388. CrossRefGoogle Scholar
  26. 26.
    Enns T, Scholander PF, Bradstreet ED (1965) Effect of hydrostatic pressure on gases dissolved in water. J Phys Chem 69(2):389–391. CrossRefGoogle Scholar
  27. 27.
    Ludwig H, Macdonald AG (2005) The significance of the activity of dissolved oxygen, and other gases, enhanced by high hydrostatic pressure. Comp Biochem Physiol A Mol Integr Physiol 140(4):387–395. CrossRefGoogle Scholar
  28. 28.
    Spycher N, Pruess K, Ennis-King J (2003) CO2–H2O mixtures in the geological sequestration of CO2. I. Assessment and calculation of mutual solubilities from 12 to 100°C and up to 600 bar. Geochim Cosmochim Acta 67(16):3015–3031CrossRefGoogle Scholar
  29. 29.
    Michaels AS, Bixler HJ (1961) Solubility of gases in polyethylene. J Polym Sci 50(154):393–412. CrossRefGoogle Scholar
  30. 30.
    Scheichl R, Klopffer M-H, Benjelloun-Dabaghi Z, Flaconnèche B (2005) Permeation of gases in polymers: parameter identification and nonlinear regression analysis. J Membr Sci 254(1–2):275–293CrossRefGoogle Scholar
  31. 31.
    Boyer SAE, Randzio SL, Grolier J-PE (2006) Thermal expansion of polymers submitted to supercritical CO2 as a function of pressure. J Polym Sci B Polym Phys 44(1):185–194. CrossRefGoogle Scholar
  32. 32.
    Budd PM, McKeown NB, Fritsch D (2005) Free volume and intrinsic microporosity in polymers. J Mater Chem 15(20):1977–1986. CrossRefGoogle Scholar
  33. 33.
    Duncan B, Urquhart J, Roberts S (2005) Review of measurement and modelling of permeation and diffusion in polymers. NPL Report DEPC MPR 012, MiddlesexGoogle Scholar
  34. 34.
    Fujita H (1961) Diffusion in polymer–diluent systems. Fortschritte Der Hochpolymeren-Forschung. Springer, In, pp 1–47Google Scholar
  35. 35.
    Mercea P (2008) Models for diffusion in polymers. In: Piringer OG, Baner AL (eds) Plastic packaging. Interactions with food and pharmaceuticals, 2nd edn. Wiley-VCH, Weinheim, pp 123–161Google Scholar
  36. 36.
    Vrentas JS, Duda JL (1977) Diffusion in polymer–solvent systems. I. Reexamination of the free-volume theory. J Polym Sci Polym Phys Ed 15(3):403–416CrossRefGoogle Scholar
  37. 37.
    Vrentas JS, Vrentas CM, Duda JL (1993) Comparison of free-volume theories. Polym J 25(1):99–101. CrossRefGoogle Scholar
  38. 38.
    Sterr J, Rötzer K, Weck K, Wirth ALK, Fleckenstein BS, Langowski H-C (2015b) In-situ measurement of oxygen concentration under high pressure and the application to oxygen permeation through polymer films. J Chem Phys 143(11):114201. CrossRefGoogle Scholar
  39. 39.
    Hilic S, Boyer SAE, Pádua AAH, Grolier J-PE (2001) Simultaneous measurement of the solubility of nitrogen and carbon dioxide in polystyrene and of the associated polymer swelling. J Polym Sci B Polym Phys 39(17):2063–2070. CrossRefGoogle Scholar
  40. 40.
    Muth O, Hirth T, Vogel H (2001) Investigation of sorption and diffusion of supercritical carbon dioxide into poly(vinyl chloride). J Supercrit Fluids 19(3):299–306CrossRefGoogle Scholar
  41. 41.
    Vieth WR (1991) Diffusion in and through polymers. Principles and applications. Hanser Publishers; Distributed in the USA and in Canada by Oxford University Press, MunichGoogle Scholar
  42. 42.
    Vieth WR, Howell JM, Hsieh JH (1976) Dual sorption theory. J Membr Sci 1(2):177–220. CrossRefGoogle Scholar
  43. 43.
    Tsujita Y (2003) Gas sorption and permeation of glassy polymers with microvoids. Prog Polym Sci 28(9):1377–1401CrossRefGoogle Scholar
  44. 44.
    Chang S-H, Park S-C, Shim J-J (1998) Phase equilibria of supercritical fluid–polymer systems. J Supercrit Fluids 13(1–3):113–119. CrossRefGoogle Scholar
  45. 45.
    Bonavoglia B, Storti G, Morbidelli M, Rajendran A, Mazzotti M (2006) Sorption and swelling of semicrystalline polymers in supercritical CO2. J Polym Sci B Polym Phys 44(11):1531–1546CrossRefGoogle Scholar
  46. 46.
    Sato Y, Fujiwara K, Takikawa T, Sumarno TS, Masuoka H (1999) Solubilities and diffusion coefficients of carbon dioxide and nitrogen in polypropylene, high-density polyethylene, and polystyrene under high pressures and temperatures. Fluid Phase Equilib 162(1–2):261–276. CrossRefGoogle Scholar
  47. 47.
    Berens AR, Huvard GS, Korsmeyer RW, Kunig FW (1992) Application of compressed carbon dioxide in the incorporation of additives into polymers. J Appl Polym Sci 46(2):231–242. CrossRefGoogle Scholar
  48. 48.
    Tang M, T-B D, Chen Y-P (2004b) Sorption and diffusion of supercritical carbon dioxide in polycarbonate. J Supercrit Fluids 28(2–3):207–218. CrossRefGoogle Scholar
  49. 49.
    Tang M, Huang Y-C, Chen Y-P (2004a) Sorption and diffusion of supercritical carbon dioxide into polysulfone. J Appl Polym Sci 94(2):474–482. CrossRefGoogle Scholar
  50. 50.
    Naito Y, Mizoguchi K, Terada K, Kamiya Y (1991) The effect of pressure on gas permeation through semicrystalline polymers above the glass transition temperature. J Polym Sci B Polym Phys 29(4):457–462CrossRefGoogle Scholar
  51. 51.
    Kulkarni SS, Stern SA (1983) The diffusion of CO2, CH4, C2H4, and C3H8 in polyethylene at elevated pressures. J Polym Sci Polym Phys Ed 21(3):441–465. CrossRefGoogle Scholar
  52. 52.
    Flaconnèche B, Martin J, Klopffer M-H (2001a) Permeability, diffusion and solubility of gases in polythylene, polyamide 11 and poly(vinylidene fluoride). Oil Gas Sci. Technol. – Rev. IFP Energies Nouvelles 56(3):261–278CrossRefGoogle Scholar
  53. 53.
    Lei Z, Ohyabu H, Sato Y, Inomata H, Smith RL (2007) Solubility, swelling degree and crystallinity of carbon dioxide–polypropylene system. J Supercrit Fluids 40(3):452–461. CrossRefGoogle Scholar
  54. 54.
    Ru-Ting X, Xing-Yuan H (2015) Predictive calculation of carbon dioxide solubility in polymers. RSC Adv 5(94):76979–76986. CrossRefGoogle Scholar
  55. 55.
    Schnitzler J v, Eggers R (1999) Mass transfer in polymers in a supercritical CO2-atmosphere. J Supercrit Fluids 16(1):81–92CrossRefGoogle Scholar
  56. 56.
    Briscoe BJ, Mahgerefteh H (1984) A novel technique for the quantitative measurement of gaseous uptake in organic polymers at high pressures. J Phys E: Sci Instrum 17(6):483CrossRefGoogle Scholar
  57. 57.
    Lundberg JL, Mooney EJ, Rogers CE (1969) Diffusion and solubility of methane in polyisobutylene. J Polym Sci A-2 Polym Phys 7(5):947–962. CrossRefGoogle Scholar
  58. 58.
    Brandrup J, Immergut EH, Grulke EA (eds) (1999) Polymer handbook, vol 1 & 2, 4th edn. Wiley, HobokenGoogle Scholar
  59. 59.
    Lewis E, Duckett RA, Ward IM, Fairclough JPA, Ryan AJ (2003) The barrier properties of polyethylene terephthalate to mixtures of oxygen, carbon dioxide and nitrogen. Polymer 44(5):1631–1640. CrossRefGoogle Scholar
  60. 60.
    Areerat S, Hayata Y, Katsumoto R, Kegasawa T, Egami H, Ohshima M (2002) Solubility of carbon dioxide in polyethylene/titanium dioxide composite under high pressure and temperature. J Appl Polym Sci 86(2):282–288. CrossRefGoogle Scholar
  61. 61.
    Tang Q, Yang B, Zhao Y, Zhao L (2007) Sorption and diffusion of sub/supercritical carbon dioxide in poly (methyl methacrylate). J Macromol Sci, Part B: Phys 46(2):275–284CrossRefGoogle Scholar
  62. 62.
    Boyer SAE, Grolier J-PE, Yoshida H, Haudin J-M, Chenot J-L (2011) Thermodynamics and thermokinetics to model phase transitions of polymers over extended temperature and pressure ranges under various hydrostatic fluids. Thermodynamics-Interaction Studies-Solids, Liquids and GasesGoogle Scholar
  63. 63.
    Briscoe BJ, Zakaria S (1991) Interaction of CO2 gas with silicone elastomer at high ambient pressures. J Polym Sci B Polym Phys 29(8):989–999. CrossRefGoogle Scholar
  64. 64.
    Spyriouni T, Boulougouris GC, Theodorou DN (2009) Prediction of sorption of CO2 in glassy atactic polystyrene at elevated pressures through a new computational scheme. Macromolecules 42(5):1759–1769. CrossRefGoogle Scholar
  65. 65.
    Klotz IM (1963) Variation of solubility with depth in the ocean. A thermodynamic analysis. Limnol Oceangr 8(2):149–151. CrossRefGoogle Scholar
  66. 66.
    Wiebe R, Gaddy VL (1939) The solubility in water of carbon dioxide at 50, 75 and 100°, at pressures to 700 atmospheres. J Am Chem Soc 61(2):315–318. CrossRefGoogle Scholar
  67. 67.
    Wiebe R, Gaddy VL (1940) The solubility of carbon dioxide in water at various temperatures from 12 to 40° and at pressures to 500 atmospheres. Critical phenomena. J Am Chem Soc 62(4):815–817. CrossRefGoogle Scholar
  68. 68.
    Sato Y, Takikawa T, Sorakubo A, Takishima S, Masuoka H, Imaizumi M (2000) Solubility and diffusion coefficient of carbon dioxide in biodegradable polymers. Ind Eng Chem Res 39(12):4813–4819. CrossRefGoogle Scholar
  69. 69.
    Tromans D (1998) Temperature and pressure dependent solubility of oxygen in water: a thermodynamic analysis. Hydrometallurgy 48(3):327–342CrossRefGoogle Scholar
  70. 70.
    Briscoe BJ, Zakaria S (1990b) Polymer–gas interactions at high pressure: the use of ultrasonic probes. Polymer 31(3):440–447CrossRefGoogle Scholar
  71. 71.
    Sato Y, Yurugi M, Fujiwara K, Takishima S, Masuoka H (1996) Solubilities of carbon dioxide and nitrogen in polystyrene under high temperature and pressure. Asian Thermophysical Prop Conf 125(1–2):129–138. Google Scholar
  72. 72.
    Pino M, Duckett RA, Ward IM (2005) Single and mixed gas diffusion through polyethylene films. Polymer 46(13):4882–4890. CrossRefGoogle Scholar
  73. 73.
    Jordan SM, Koros WJ (1990) Permeability of pure and mixed gases in silicone rubber at elevated pressures. J Polym Sci B Polym Phys 28(6):795–809. CrossRefGoogle Scholar
  74. 74.
    Briscoe BJ, Kelly CT (1996) The effect of structure on gas solubility and gas induced dilation in a series of poly(urethane) elastomers. Polymer 37(15):3405–3410. CrossRefGoogle Scholar
  75. 75.
    Briscoe BJ, Zakaria S (1992) Sorption and dilation of silicone elastomer composites at high gas pressures: the role of interfacial quality. J Polym Sci B Polym Phys 30(9):959–969. CrossRefGoogle Scholar
  76. 76.
    Briscoe BJ, Savvas T, Kelly CT (1994) “Explosive decompression failure” of rubbers: a review of the origins of pneumatic stress induced rupture in elastomers. Rubber Chem Technol 67(3):384–416. CrossRefGoogle Scholar
  77. 77.
    Yamabe J, Nishimura S (eds) (2010) Estimation of critical pressure of decompression failure of EPDM composites for sealing under high-pressured hydrogen gas. Proceedings of the 18th European Conference on Fracture, CD–DOM. Accessed 12 Oct 2017
  78. 78.
    Boyer SAE, Grolier J-PE (2005b) Simultaneous measurement of the concentration of a supercritical gas absorbed in a polymer and of the concomitant change in volume of the polymer. The coupled VW-pVT technique revisited. Polymer 46(11):3737–3747CrossRefGoogle Scholar
  79. 79.
    Kazarian SG (2000) Polymer processing with supercritical fluids. Polymer. Science 42(1):78–101Google Scholar
  80. 80.
    Schrittesser B, Pinter G, Schwarz T, Kadar Z, Nagy T (2016) Rapid gas decompression performance of elastomers—a study of influencing testing parameters. Procedia Struct Integr 2:1746–1754. CrossRefGoogle Scholar
  81. 81.
    Sato Y, Takikawa T, Takishima S, Masuoka H (2001) Solubilities and diffusion coefficients of carbon dioxide in poly(vinyl acetate) and polystyrene. J Supercrit Fluids 19(2):187–198. CrossRefGoogle Scholar
  82. 82.
    Nilsson F, Hallstensson K, Johansson K, Umar Z, Hedenqvist MS (2013) Predicting solubility and diffusivity of gases in polymers under high pressure: N2 in polycarbonate and poly(ether-ether-ketone). Ind Eng Chem Res 52(26):8655–8663. CrossRefGoogle Scholar
  83. 83.
    Chiou JS, Barlow JW, Paul DR (1985b) Polymer crystallization induced by sorption of CO2 gas. J Appl Polym Sci 30(9):3911–3924. CrossRefGoogle Scholar
  84. 84.
    Klopffer M-H, Flaconnèche B (2001) Transport properties of gases in polymers. Bibliographic review. Oil Gas Sci Technol – Rev IFP Energ Nouvelles 56(3):223–244CrossRefGoogle Scholar
  85. 85.
    Chiou JS, Barlow JW, Paul DR (1985a) Plasticization of glassy polymers by CO2. J Appl Polym Sci 30(6):2633–2642. CrossRefGoogle Scholar
  86. 86.
    Bos A, Pünt IGM, Wessling M, Strathmann H (1999) CO2-induced plasticization phenomena in glassy polymers. J Membr Sci 155(1):67–78. CrossRefGoogle Scholar
  87. 87.
    Boyer SAE, Grolier J-PE (2005a) Modification of the glass transitions of polymers by high-pressure gas solubility. Pure Appl Chem 77(3):593–603CrossRefGoogle Scholar
  88. 88.
    Wang W-CV, Kramer EJ, Sachse WH (1982) Effects of high-pressure CO2 on the glass transition temperature and mechanical properties of polystyrene. J Polym Sci Polym Phys Ed 20(8):1371–1384.
  89. 89.
    Wessling M, Borneman Z, van den Boomgaard T, Smolders CA (1994) Carbon dioxide foaming of glassy polymers. J Appl Polym Sci 53(11):1497–1512. CrossRefGoogle Scholar
  90. 90.
    Zhang Z, Handa YP (1998) An in-situ study of plasticization of polymers by high-pressure gases. J Polym Sci B Polym Phys 36(6):977–982CrossRefGoogle Scholar
  91. 91.
    Chow TS (1980) Molecular interpretation of the glass transition temperature of polymer-diluent systems. Macromolecules 13(2):362–364. CrossRefGoogle Scholar
  92. 92.
    Campion RP, Morgan GJ (1992) High pressure permeation and diffusion of gases in polymers of different structures. Plast Rubber Compos Process Appl 17(1):51–58Google Scholar
  93. 93.
    Paterson MS (1964) Effect of pressure on Young’s modulus and the glass transition in rubbers. J Appl Phys 35(1):176. CrossRefGoogle Scholar
  94. 94.
    Jones Parry E, Tabor D (1973) Effect of hydrostatic pressure on the mechanical properties of polymers. A brief review of published data. J Mater Sci 8(10):1510–1516. CrossRefGoogle Scholar
  95. 95.
    Crank J (1975) The mathematics of diffusion, vol 3, 2nd edn. Clarendon Press, OxfordGoogle Scholar
  96. 96.
    Arora KA, Lesser AJ, McCarthy TJ (1998) Preparation and characterization of microcellular polystyrene foams processed in supercritical carbon dioxide. Macromolecules 31(14):4614–4620. CrossRefGoogle Scholar
  97. 97.
    Naito Y, Kamiya Y, Terada K, Mizoguchi K, Wang J (1996) Pressure dependence of gas permeability in a rubbery polymer. J Appl Polym Sci 61(6):945–950CrossRefGoogle Scholar
  98. 98.
    Lorge O, Briscoe BJ, Dang P (1999) Gas induced damage in poly (vinylidene fluoride) exposed to decompression. Polymer 40(11):2981–2991CrossRefGoogle Scholar
  99. 99.
    Fleming GK, Koros WJ (1986) Dilation of polymers by sorption of carbon dioxide at elevated pressures. 1. Silicone rubber and unconditioned polycarbonate. Macromolecules 19(8):2285–2291. CrossRefGoogle Scholar
  100. 100.
    Grandidier J-C, Baudet C, Boyer SA, Klopffer M-H, Cangémi L (2015) Diffuso-kinetics and diffuso-mechanics of carbon dioxide/polyvinylidene fluoride system under explosive gas decompression. Identification of key diffuso-elastic couplings by numerical and experimental confrontation. Oil Gas Sci. Technol. – Rev. IFP Energ Nouvelles 70(2):251–266. CrossRefGoogle Scholar
  101. 101.
    Ramsing N, Gundersen J (2000) Seawater and gases. Tabulated physical parameters of interest to people working with microsensors in marine systems, DenmarkGoogle Scholar
  102. 102.
    Lubetkin SD (1994) Bubble nucleation and growth. In: Wedlock DJ (ed) Controlled particle, droplet and bubble formation. Butterworth-Heinemann Ltd, Oxford, pp 159–190CrossRefGoogle Scholar
  103. 103.
    Arieli R, Marmur A (2011) Decompression sickness bubbles: are gas micronuclei formed on a flat hydrophobic surface? Respir Physiol Neurobiol 177(1):19–23. CrossRefGoogle Scholar
  104. 104.
    Arieli R, Marmur A (2013) Dynamics of gas micronuclei formed on a flat hydrophobic surface, the predecessors of decompression bubbles. Respir Physiol Neurobiol 185(3):647–652. CrossRefGoogle Scholar
  105. 105.
    Jones SF, Evans GM, Galvin KP (1999) Bubble nucleation from gas cavities—a review. Adv Colloid Interf Sci 80(1):27–50. CrossRefGoogle Scholar
  106. 106.
    Campbell J (1968) The tribonucleation of bubbles. J Phys D Appl Phys 1(8):1085CrossRefGoogle Scholar
  107. 107.
    Wilt PM (1986) Nucleation rates and bubble stability in water–carbon dioxide solutions. J Colloid Interface Sci 112(2):530–538CrossRefGoogle Scholar
  108. 108.
    Fischer S (2001) Blasenbildung von in Flüssigkeiten gelösten Gasen, Technische Universität München, UniversitätsbibliothekGoogle Scholar
  109. 109.
    Papadopoulou V, Eckersley RJ, Balestra C, Karapantsios TD, Tang M-X (2013) A critical review of physiological bubble formation in hyperbaric decompression. Adv Colloid Interf Sci 191–192(0):22–30. CrossRefGoogle Scholar
  110. 110.
    Harvey EN, Barnes DK, McElroy WD, Whiteley AH, Pease DC, Cooper KW (1944) Bubble formation in animals. I. Physical factors. J Cell Comp Physiol 24(1):1–22. CrossRefGoogle Scholar
  111. 111.
    Harvey EN (1945) Decompression sickness and bubble formation in blood and tissues. Bull N Y Acad Med 21(10):505Google Scholar
  112. 112.
    Boyer SAE, Gerland M, Castagnet S (2013) Gas environment effect on cavitation damage in stretched polyvinylidene fluoride. Polym Eng Sci 54(9):2139–2146. CrossRefGoogle Scholar
  113. 113.
    Hayward ATJ (1967) Tribonucleation of bubbles. Br J Appl Phys 18(5):641–644. CrossRefGoogle Scholar
  114. 114.
    Ikels KG (1970) Production of gas bubbles in fluids by tribonucleation. J Appl Physiol 28(4):524–527CrossRefGoogle Scholar
  115. 115.
    Fraldi M, Cutolo A, Esposito L, Perrella G, Carbone, Maria Giovanna Pastore, Sansone L, Scherillo G, Mensitieri G (2014) Delamination onset and design criteria of multilayer flexible packaging under high pressure treatments. Innovative Food Sci Emerg Technol Doi:
  116. 116.
    Galotto MJ, Ulloa PA, Hernández D, Fernández-Martín F, Gavara R, Guarda A (2008) Mechanical and thermal behaviour of flexible food packaging polymeric films materials under high pressure/temperature treatments. Packag Technol Sci 21(5):297–308. CrossRefGoogle Scholar
  117. 117.
    Baudet C, Grandidier J-C, Cangémi L (2011) A damage model for the blistering of polyvinylidene fluoride subjected to carbon dioxide decompression. J Mech Phys Solids 59(9):1909–1926. CrossRefGoogle Scholar
  118. 118.
    Kane-Diallo O, Castagnet S, Nait-Ali A, Benoît G, Grandidier J-C (2016) Time-resolved statistics of cavity fields nucleated in a gas-exposed rubber under variable decompression conditions—support to a relevant modeling framework. Polym Test 51:122–130. CrossRefGoogle Scholar
  119. 119.
    Dewimille B, Martin J, Jarrin J (1993) Behaviour of thermoplastic polymers during explosive decompressions in a petroleum environment. Le J Phys IV 3(C7):1559Google Scholar
  120. 120.
    Koga A, Uchida K, Yamabe J, Nishimura S (2011) Evaluation on high-pressure hydrogen decompression failure of rubber O-ring using design of experiments. International Journal of Automotive. Engineering 2(4):123–129Google Scholar
  121. 121.
    Van Liew HD, Burkard ME (1993) Density of decompression bubbles and competition for gas among bubbles, tissue, and blood. J Appl Physiol 75:2293CrossRefGoogle Scholar
  122. 122.
    Ramesh NS, Rasmussen DH, Campbell GA (1991) Numerical and experimental studies of bubble growth during the microcellular foaming process. Polym Eng Sci 31(23):1657–1664. CrossRefGoogle Scholar
  123. 123.
    Gent AN, Tompkins DA (1969) Nucleation and growth of gas bubbles in elastomers. J Appl Phys 40(6):2520–2525. CrossRefGoogle Scholar
  124. 124.
    Handa YP, Zhang Z (2000) A new technique for measuring retrograde vitrification in polymer–gas systems and for making ultramicrocellular foams from the retrograde phase. J Polym Sci B Polym Phys 38(5):716–725.<716:AID-POLB9>3.0.CO;2-N CrossRefGoogle Scholar
  125. 125.
    Sheridan M, Shea L, Peters M, Mooney D (2000) Bioabsorbable polymer scaffolds for tissue engineering capable of sustained growth factor delivery. J Control Release 64(1–3):91–102. CrossRefGoogle Scholar
  126. 126.
    Kazarian SG, Vincent MF, Bright FV, Liotta CL, Eckert CA (1996) Specific intermolecular interaction of carbon dioxide with polymers. J Am Chem Soc 118(7):1729–1736. CrossRefGoogle Scholar
  127. 127.
    Chen X, Feng JJ, Bertelo CA (2006) Plasticization effects on bubble growth during polymer foaming. Polym Eng Sci 46(1):97–107. CrossRefGoogle Scholar
  128. 128.
    Jarrin J, Dewimille B, Devaux E (1994) Blistering of thermoplastic materials used in the petroleum industry. In: SPE Annual Technical Conference and Exhibition, New Orleans, p 203–214Google Scholar
  129. 129.
    Goldman S (2009) Generalizations of the Young–Laplace equation for the pressure of a mechanically stable gas bubble in a soft elastic material. J Chem Phys 131(18):184502. CrossRefGoogle Scholar
  130. 130.
    Goldman S (2010) Free energy wells for small gas bubbles in soft deformable materials. J Chem Phys 132(16):164509. CrossRefGoogle Scholar
  131. 131.
    Gaskins N, Vann RD, Hobbs GW, Swingle M, Lee S, Needham D (2001) Surface tension and bubble formation in agar gelatin. Undersea Hyperb Med Soc 28:56–59Google Scholar
  132. 132.
    Arieli Y, Katsenelson K, Arieli R (2007) Bubble reduction after decompression in the prawn Palaemon elegans by pretreatment with hyperbaric oxygen. Undersea Hyperb Med Soc 34(5):369–378Google Scholar
  133. 133.
    Jaravel J, Castagnet S, Grandidier J-C, Benoît G (2011) On key parameters influencing cavitation damage upon fast decompression in a hydrogen saturated elastomer. Polym Test 30(8):811–818. CrossRefGoogle Scholar
  134. 134.
    Fradin JF, Le Bail A, Sanz PD, Molina-García AD (1998) Note. Behaviour of packaging materials during high pressure thawing. Food Sci Technol Int 4(6):419–424CrossRefGoogle Scholar
  135. 135.
    Harris LD, Kim B-S, Mooney DJ (1998) Open pore biodegradable matrices formed with gas foaming. J Biomed Mater Res 42(3):396–402CrossRefGoogle Scholar
  136. 136.
    Richter T (2014) Device and method for the high-pressure treatment of products (US8771773B2)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Technische Universität München, Center of Life and Food Sciences WeihenstephanFreising-WeihenstephanGermany
  2. 2.Fraunhofer Institute for Process Engineering and Packaging IVVFreisingGermany

Personalised recommendations