Abstract
Biodegradable films made from carbohydrates, such as pectin, have gained popularity as alternatives to nondegradable packaging materials because their sources are biodegradable, renewable, and cheap by-products. However, biodegradable films’ mechanical properties, thermal properties, and water vapor permeability (WVP) have a deficient performance compared to plastics typically used in food packaging, such as polyethylene (PE), polypropylene (PP), and polyvinylidene chloride (PVDC). The addition of nanomaterials (NMAT) has been shown to improve those film properties. The objectives of this review were to summarize and analyze how the nature, concentration, distribution, and intermolecular interactions of NMAT in pectin films influence the film’s mechanical properties, thermal properties, and WVP. Most studies conclude that adequate distribution of the NMAT within the film promotes proper interface contact among film constituents and improves the film properties. Increasing the NMAT concentration has also been correlated with better biopolymer properties, but the relationship is not always linear. When compared to plastics commonly used for food packaging, pectin nanobiocomposites have similar tensile strength, WVP, and some have similar thermal resistance; however, most pectin nanobiocomposites cannot withstand as much deformation when a force is applied, compared to plastics. These results show pectin nanobiocomposites have potential as food packaging materials. However, more studies are needed to optimize pectin nanobiocomposite films and determine the influence of homogenization methods, NMAT particle size, and intermolecular forces (between pectin and nanofiller) on the film properties. Optimized films could be used in future shelf life testing to ascertain the effectiveness of these films as novel food packaging materials.





Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Espitia PJP, Du WX, Avena-Bustillos R de J, et al (2014) Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll 35:287–296. doi: 10.1016/j.foodhyd.2013.06.005
Bioplastics E (2016) Bioplastic materials http://www.european-bioplastics.org/bioplastics/materials/
Bioplastics E (2014) What are bioplastics?
Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. doi:10.1016/j.tifs.2013.06.003
Iotti M, Fabbri P, Messori M et al (2009) Organic-inorganic hybrid coatings for the modification of barrier properties of poly(lactic acid) films for food packaging applications. J Polym Environ 17:10–19. doi:10.1007/s10924-009-0120-4
Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. doi:10.3144/expresspolymlett.2009.46
Philippova OE, Korchagina EV (2012) Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 54:552–572. doi:10.1134/S0965545X12060107
Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49. doi:10.1111/j.1750-3841.2009.01456.x
European Commission (2016) Definition of a nanomaterial.
Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. doi:10.1016/j.pmatsci.2005.05.002
Tiede K, Boxall ABA, Tear SP et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821. doi:10.1080/02652030802007553
Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798. doi:10.1016/j.carbpol.2015.08.034
Azeredo HMC de (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi: 10.1016/j.foodres.2009.03.019
Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. doi:10.1016/S0079-6700(02)00019-9
Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003
Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials (Basel) 3:3654–3674. doi:10.3390/ma3063654
Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Reports 28:1–63. doi:10.1016/S0927-796X(00)00012-7
Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849. doi:10.1016/j.ijbiomac.2016.07.107
Oliveira TÍS, Zea-Redondo L, Moates GK et al (2016) Pomegranate peel pectin films as affected by montmorillonite. Food Chem 198:107–112. doi:10.1016/j.foodchem.2015.09.109
Saha NR, Sarkar G, Roy I et al (2016) Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym 136:1218–1227. doi:10.1016/j.carbpol.2015.10.046
Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. doi:10.1039/c0cs00108b
Mathew AJ, Oksman K (2014) Processing of bionanocomposites: solution casting. In: Mathew AP, Bismarck A et al (eds) Oksman K. Handb. Green Mater. Process. Technol. Prop. Appl. World Scientific, Singapore, pp 35–52
Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071. doi:10.1007/s10853-007-2434-8
Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Reports 67:1–17. doi:10.1016/j.mser.2009.09.002
Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. doi:10.1080/10408398.2010.500508
Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153. doi:10.1021/bm901428y
Folarin OM, Sadiku ER, Maity A (2011) Polymer-noble metal nanocomposites: review. Int J Phys Sci 6:4869–4882. doi:10.5897/IJPS11.570
Vartiainen J, Tammelin T, Pere J et al (2010) Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym 82:989–996. doi:10.1016/j.carbpol.2010.06.031
Suyatma NE, Ishikawa Y, Kitazawa H (2013) Nanoreinforcement of pectin film to enhance its functional packaging properties by incorporating ZnO nanoparticles. Adv Mater Res 845:451–456. doi:10.4028/www.scientific.net/AMR.845.451
Hong SI, Lee JH, Bae HJ et al (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119:2742–2749. doi:10.1002/app.31767
Bae HJ, Park HJ, Hong SI et al (2009) Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT - Food Sci Technol 42:1179–1186. doi:10.1016/j.lwt.2008.12.016
Halder S, Ghosh PK, Goyat MS, Ray S (2012) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol 27:111–124. doi:10.1080/01694243.2012.701510
Wu H-D, Tseng C-R, Chang F-C (2001) Chain conformation and crystallization behavior of the syndiotactic polystyrene nanocomposites studied using Fourier transform infrared analysis. Macromolecules 34:2992–2999. doi:10.1021/ma991897r
Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64:516–523. doi:10.1016/j.carbpol.2005.11.003
Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53. doi:10.1016/j.carbpol.2015.03.050
Vartiainen J, Lahtinen P, Kaljunen T et al (2015) Comparison of properties between cellulose nanofibrils made from banana, sugar beet, hemp, softwood and hardwood pulps. O Pap 76:57–60
Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175. doi:10.1016/j.carbpol.2016.09.062
Stuart B (2000) Infrared spectroscopy. Kirk-Othmer Encycl Chem Technol 1–20. doi: 10.1002/0471238961.0914061810151405.a01.pub2
Lorevice MV, Otoni CG, de Moura MR, Mattoso LHC (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll 52:732–740. doi:10.1016/j.foodhyd.2015.08.003
Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22:611–617. doi:10.1016/j.tifs.2011.01.007
Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114:292–302. doi:10.1016/j.jfoodeng.2012.08.021
Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536. doi:10.1016/j.polymdegradstab.2013.09.012
Kader A, Zagory D, Kerbel EL (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28:1–30. doi:10.1080/10408398909527506
Kim YT, Min B, Kim KW (2013) General characteristics of packaging materials for food system. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 13–36
Klein R (2011) Laser welding of plastics. Laser Weld Plast. doi:10.1002/9783527636969
Kumar P, Sandeep KP, Alavi S, Truong VD (2011) A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites. J Food Sci. doi:10.1111/j.1750-3841.2010.01919.x
da Silva ISV, Neto WPF, Silvério HA et al (2015) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Adv Technol. doi:10.1002/pat.3734
Moreira FK V., Camargo LA de, Marconcini JM, Mattoso LH (2013) Nutraceutically inspired pectin—Mg(OH) 2 nanocomposites for bioactive packaging applications. J Agric Food Chem 61:7119–7119. doi: 10.1021/jf402110g
Lange J, Yves W (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158
Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076. doi:10.1007/s11947-012-0835-4
Ebnesajjad S (2013) Plastic films in food packaging: materials, technology and applications. Wyley and sons Inc., Oxford
Rhim J-W, Shellhammer TH (2013) Lipid-based edible films and coatings. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 362–384
Martelli MR, Barros TT, De Moura MR et al (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci. doi:10.1111/j.1750-3841.2012.03006.x
Selke SEM (1997) Understanding plastics packaging technology. Hanser Gardner Publications, Cincinnatti
Bohlmann GM (2005) General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Bastioli C (ed) Handb. Biodegrad. Polym. iSmithers Rapra Publishing, Shropshire, pp 183–218
Acknowledgments
The authors are grateful to CONACYT (CB-223775) for their financial support. Author Rossana Villa-Rojas thanks the Tecnologico de Monterrey for the postdoctoral grant.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Villa-Rojas, R., Valdez-Fragoso, A. & Mújica-Paz, H. Manufacturing Methods and Engineering Properties of Pectin-Based Nanobiocomposite Films. Food Eng Rev 10, 46–56 (2018). https://doi.org/10.1007/s12393-017-9163-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12393-017-9163-9


