Skip to main content
Log in

Manufacturing Methods and Engineering Properties of Pectin-Based Nanobiocomposite Films

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Biodegradable films made from carbohydrates, such as pectin, have gained popularity as alternatives to nondegradable packaging materials because their sources are biodegradable, renewable, and cheap by-products. However, biodegradable films’ mechanical properties, thermal properties, and water vapor permeability (WVP) have a deficient performance compared to plastics typically used in food packaging, such as polyethylene (PE), polypropylene (PP), and polyvinylidene chloride (PVDC). The addition of nanomaterials (NMAT) has been shown to improve those film properties. The objectives of this review were to summarize and analyze how the nature, concentration, distribution, and intermolecular interactions of NMAT in pectin films influence the film’s mechanical properties, thermal properties, and WVP. Most studies conclude that adequate distribution of the NMAT within the film promotes proper interface contact among film constituents and improves the film properties. Increasing the NMAT concentration has also been correlated with better biopolymer properties, but the relationship is not always linear. When compared to plastics commonly used for food packaging, pectin nanobiocomposites have similar tensile strength, WVP, and some have similar thermal resistance; however, most pectin nanobiocomposites cannot withstand as much deformation when a force is applied, compared to plastics. These results show pectin nanobiocomposites have potential as food packaging materials. However, more studies are needed to optimize pectin nanobiocomposite films and determine the influence of homogenization methods, NMAT particle size, and intermolecular forces (between pectin and nanofiller) on the film properties. Optimized films could be used in future shelf life testing to ascertain the effectiveness of these films as novel food packaging materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Espitia PJP, Du WX, Avena-Bustillos R de J, et al (2014) Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll 35:287–296. doi: 10.1016/j.foodhyd.2013.06.005

  2. Bioplastics E (2016) Bioplastic materials http://www.european-bioplastics.org/bioplastics/materials/

  3. Bioplastics E (2014) What are bioplastics?

  4. Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. doi:10.1016/j.tifs.2013.06.003

    Article  CAS  Google Scholar 

  5. Iotti M, Fabbri P, Messori M et al (2009) Organic-inorganic hybrid coatings for the modification of barrier properties of poly(lactic acid) films for food packaging applications. J Polym Environ 17:10–19. doi:10.1007/s10924-009-0120-4

    Article  CAS  Google Scholar 

  6. Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. doi:10.3144/expresspolymlett.2009.46

    Article  CAS  Google Scholar 

  7. Philippova OE, Korchagina EV (2012) Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 54:552–572. doi:10.1134/S0965545X12060107

    Article  CAS  Google Scholar 

  8. Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49. doi:10.1111/j.1750-3841.2009.01456.x

    Article  Google Scholar 

  9. European Commission (2016) Definition of a nanomaterial.

  10. Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. doi:10.1016/j.pmatsci.2005.05.002

    Article  CAS  Google Scholar 

  11. Tiede K, Boxall ABA, Tear SP et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821. doi:10.1080/02652030802007553

    Article  CAS  Google Scholar 

  12. Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798. doi:10.1016/j.carbpol.2015.08.034

    Article  CAS  Google Scholar 

  13. Azeredo HMC de (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi: 10.1016/j.foodres.2009.03.019

  14. Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. doi:10.1016/S0079-6700(02)00019-9

  15. Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. doi:10.1016/j.progpolymsci.2013.02.003

    Article  CAS  Google Scholar 

  16. Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials (Basel) 3:3654–3674. doi:10.3390/ma3063654

    Article  CAS  Google Scholar 

  17. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Reports 28:1–63. doi:10.1016/S0927-796X(00)00012-7

    Article  Google Scholar 

  18. Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849. doi:10.1016/j.ijbiomac.2016.07.107

    Article  CAS  Google Scholar 

  19. Oliveira TÍS, Zea-Redondo L, Moates GK et al (2016) Pomegranate peel pectin films as affected by montmorillonite. Food Chem 198:107–112. doi:10.1016/j.foodchem.2015.09.109

    Article  CAS  Google Scholar 

  20. Saha NR, Sarkar G, Roy I et al (2016) Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym 136:1218–1227. doi:10.1016/j.carbpol.2015.10.046

    Article  CAS  Google Scholar 

  21. Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. doi:10.1039/c0cs00108b

  22. Mathew AJ, Oksman K (2014) Processing of bionanocomposites: solution casting. In: Mathew AP, Bismarck A et al (eds) Oksman K. Handb. Green Mater. Process. Technol. Prop. Appl. World Scientific, Singapore, pp 35–52

    Google Scholar 

  23. Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071. doi:10.1007/s10853-007-2434-8

    Article  CAS  Google Scholar 

  24. Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Reports 67:1–17. doi:10.1016/j.mser.2009.09.002

    Article  Google Scholar 

  25. Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. doi:10.1080/10408398.2010.500508

    Article  CAS  Google Scholar 

  26. Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153. doi:10.1021/bm901428y

    Article  CAS  Google Scholar 

  27. Folarin OM, Sadiku ER, Maity A (2011) Polymer-noble metal nanocomposites: review. Int J Phys Sci 6:4869–4882. doi:10.5897/IJPS11.570

    Google Scholar 

  28. Vartiainen J, Tammelin T, Pere J et al (2010) Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym 82:989–996. doi:10.1016/j.carbpol.2010.06.031

    Article  CAS  Google Scholar 

  29. Suyatma NE, Ishikawa Y, Kitazawa H (2013) Nanoreinforcement of pectin film to enhance its functional packaging properties by incorporating ZnO nanoparticles. Adv Mater Res 845:451–456. doi:10.4028/www.scientific.net/AMR.845.451

    Article  Google Scholar 

  30. Hong SI, Lee JH, Bae HJ et al (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119:2742–2749. doi:10.1002/app.31767

    Article  CAS  Google Scholar 

  31. Bae HJ, Park HJ, Hong SI et al (2009) Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT - Food Sci Technol 42:1179–1186. doi:10.1016/j.lwt.2008.12.016

    Article  CAS  Google Scholar 

  32. Halder S, Ghosh PK, Goyat MS, Ray S (2012) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol 27:111–124. doi:10.1080/01694243.2012.701510

    Article  Google Scholar 

  33. Wu H-D, Tseng C-R, Chang F-C (2001) Chain conformation and crystallization behavior of the syndiotactic polystyrene nanocomposites studied using Fourier transform infrared analysis. Macromolecules 34:2992–2999. doi:10.1021/ma991897r

    Article  CAS  Google Scholar 

  34. Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64:516–523. doi:10.1016/j.carbpol.2005.11.003

    Article  CAS  Google Scholar 

  35. Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53. doi:10.1016/j.carbpol.2015.03.050

    Article  CAS  Google Scholar 

  36. Vartiainen J, Lahtinen P, Kaljunen T et al (2015) Comparison of properties between cellulose nanofibrils made from banana, sugar beet, hemp, softwood and hardwood pulps. O Pap 76:57–60

    Google Scholar 

  37. Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175. doi:10.1016/j.carbpol.2016.09.062

    Article  CAS  Google Scholar 

  38. Stuart B (2000) Infrared spectroscopy. Kirk-Othmer Encycl Chem Technol 1–20. doi: 10.1002/0471238961.0914061810151405.a01.pub2

  39. Lorevice MV, Otoni CG, de Moura MR, Mattoso LHC (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll 52:732–740. doi:10.1016/j.foodhyd.2015.08.003

    Article  CAS  Google Scholar 

  40. Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22:611–617. doi:10.1016/j.tifs.2011.01.007

    Article  CAS  Google Scholar 

  41. Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114:292–302. doi:10.1016/j.jfoodeng.2012.08.021

    Article  CAS  Google Scholar 

  42. Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536. doi:10.1016/j.polymdegradstab.2013.09.012

    Article  CAS  Google Scholar 

  43. Kader A, Zagory D, Kerbel EL (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28:1–30. doi:10.1080/10408398909527506

    Article  CAS  Google Scholar 

  44. Kim YT, Min B, Kim KW (2013) General characteristics of packaging materials for food system. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 13–36

    Google Scholar 

  45. Klein R (2011) Laser welding of plastics. Laser Weld Plast. doi:10.1002/9783527636969

  46. Kumar P, Sandeep KP, Alavi S, Truong VD (2011) A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites. J Food Sci. doi:10.1111/j.1750-3841.2010.01919.x

  47. da Silva ISV, Neto WPF, Silvério HA et al (2015) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Adv Technol. doi:10.1002/pat.3734

  48. Moreira FK V., Camargo LA de, Marconcini JM, Mattoso LH (2013) Nutraceutically inspired pectin—Mg(OH) 2 nanocomposites for bioactive packaging applications. J Agric Food Chem 61:7119–7119. doi: 10.1021/jf402110g

  49. Lange J, Yves W (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158

    Article  CAS  Google Scholar 

  50. Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076. doi:10.1007/s11947-012-0835-4

    Article  Google Scholar 

  51. Ebnesajjad S (2013) Plastic films in food packaging: materials, technology and applications. Wyley and sons Inc., Oxford

    Google Scholar 

  52. Rhim J-W, Shellhammer TH (2013) Lipid-based edible films and coatings. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 362–384

    Google Scholar 

  53. Martelli MR, Barros TT, De Moura MR et al (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci. doi:10.1111/j.1750-3841.2012.03006.x

  54. Selke SEM (1997) Understanding plastics packaging technology. Hanser Gardner Publications, Cincinnatti

    Google Scholar 

  55. Bohlmann GM (2005) General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Bastioli C (ed) Handb. Biodegrad. Polym. iSmithers Rapra Publishing, Shropshire, pp 183–218

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to CONACYT (CB-223775) for their financial support. Author Rossana Villa-Rojas thanks the Tecnologico de Monterrey for the postdoctoral grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo Mújica-Paz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Villa-Rojas, R., Valdez-Fragoso, A. & Mújica-Paz, H. Manufacturing Methods and Engineering Properties of Pectin-Based Nanobiocomposite Films. Food Eng Rev 10, 46–56 (2018). https://doi.org/10.1007/s12393-017-9163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-017-9163-9

Keywords