Food Engineering Reviews

, Volume 10, Issue 1, pp 46–56 | Cite as

Manufacturing Methods and Engineering Properties of Pectin-Based Nanobiocomposite Films

  • Rossana Villa-Rojas
  • Aurora Valdez-Fragoso
  • Hugo Mújica-Paz
Review Article


Biodegradable films made from carbohydrates, such as pectin, have gained popularity as alternatives to nondegradable packaging materials because their sources are biodegradable, renewable, and cheap by-products. However, biodegradable films’ mechanical properties, thermal properties, and water vapor permeability (WVP) have a deficient performance compared to plastics typically used in food packaging, such as polyethylene (PE), polypropylene (PP), and polyvinylidene chloride (PVDC). The addition of nanomaterials (NMAT) has been shown to improve those film properties. The objectives of this review were to summarize and analyze how the nature, concentration, distribution, and intermolecular interactions of NMAT in pectin films influence the film’s mechanical properties, thermal properties, and WVP. Most studies conclude that adequate distribution of the NMAT within the film promotes proper interface contact among film constituents and improves the film properties. Increasing the NMAT concentration has also been correlated with better biopolymer properties, but the relationship is not always linear. When compared to plastics commonly used for food packaging, pectin nanobiocomposites have similar tensile strength, WVP, and some have similar thermal resistance; however, most pectin nanobiocomposites cannot withstand as much deformation when a force is applied, compared to plastics. These results show pectin nanobiocomposites have potential as food packaging materials. However, more studies are needed to optimize pectin nanobiocomposite films and determine the influence of homogenization methods, NMAT particle size, and intermolecular forces (between pectin and nanofiller) on the film properties. Optimized films could be used in future shelf life testing to ascertain the effectiveness of these films as novel food packaging materials.


Pectin Nanoparticles Glass transition temperature Mechanical properties Water vapor permeability Films 



The authors are grateful to CONACYT (CB-223775) for their financial support. Author Rossana Villa-Rojas thanks the Tecnologico de Monterrey for the postdoctoral grant.


  1. 1.
    Espitia PJP, Du WX, Avena-Bustillos R de J, et al (2014) Edible films from pectin: physical-mechanical and antimicrobial properties—a review. Food Hydrocoll 35:287–296. doi:  10.1016/j.foodhyd.2013.06.005
  2. 2.
    Bioplastics E (2016) Bioplastic materials
  3. 3.
    Bioplastics E (2014) What are bioplastics?Google Scholar
  4. 4.
    Peelman N, Ragaert P, De Meulenaer B et al (2013) Application of bioplastics for food packaging. Trends Food Sci Technol 32:128–141. doi: 10.1016/j.tifs.2013.06.003 CrossRefGoogle Scholar
  5. 5.
    Iotti M, Fabbri P, Messori M et al (2009) Organic-inorganic hybrid coatings for the modification of barrier properties of poly(lactic acid) films for food packaging applications. J Polym Environ 17:10–19. doi: 10.1007/s10924-009-0120-4 CrossRefGoogle Scholar
  6. 6.
    Lu DR, Xiao CM, Xu SJ (2009) Starch-based completely biodegradable polymer materials. Express Polym Lett 3:366–375. doi: 10.3144/expresspolymlett.2009.46 CrossRefGoogle Scholar
  7. 7.
    Philippova OE, Korchagina EV (2012) Chitosan and its hydrophobic derivatives: preparation and aggregation in dilute aqueous solutions. Polym Sci Ser A 54:552–572. doi: 10.1134/S0965545X12060107 CrossRefGoogle Scholar
  8. 8.
    Arora A, Padua GW (2010) Review: nanocomposites in food packaging. J Food Sci 75:43–49. doi: 10.1111/j.1750-3841.2009.01456.x CrossRefGoogle Scholar
  9. 9.
    European Commission (2016) Definition of a nanomaterial.Google Scholar
  10. 10.
    Ray SS, Bousmina M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079. doi: 10.1016/j.pmatsci.2005.05.002 CrossRefGoogle Scholar
  11. 11.
    Tiede K, Boxall ABA, Tear SP et al (2008) Detection and characterization of engineered nanoparticles in food and the environment. Food Addit Contam Part A 25:795–821. doi: 10.1080/02652030802007553 CrossRefGoogle Scholar
  12. 12.
    Zia F, Zia KM, Zuber M et al (2015) Starch based polyurethanes: a critical review updating recent literature. Carbohydr Polym 134:784–798. doi: 10.1016/j.carbpol.2015.08.034 CrossRefGoogle Scholar
  13. 13.
    Azeredo HMC de (2009) Nanocomposites for food packaging applications. Food Res Int 42:1240–1253. doi:  10.1016/j.foodres.2009.03.019
  14. 14.
    Kickelbick G (2003) Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale. Prog Polym Sci. doi: 10.1016/S0079-6700(02)00019-9
  15. 15.
    Kango S, Kalia S, Celli A et al (2013) Surface modification of inorganic nanoparticles for development of organic-inorganic nanocomposites—a review. Prog Polym Sci 38:1232–1261. doi: 10.1016/j.progpolymsci.2013.02.003 CrossRefGoogle Scholar
  16. 16.
    Jeon IY, Baek JB (2010) Nanocomposites derived from polymers and inorganic nanoparticles. Materials (Basel) 3:3654–3674. doi: 10.3390/ma3063654 CrossRefGoogle Scholar
  17. 17.
    Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R Reports 28:1–63. doi: 10.1016/S0927-796X(00)00012-7 CrossRefGoogle Scholar
  18. 18.
    Shankar S, Tanomrod N, Rawdkuen S, Rhim JW (2016) Preparation of pectin/silver nanoparticles composite films with UV-light barrier and properties. Int J Biol Macromol 92:842–849. doi: 10.1016/j.ijbiomac.2016.07.107 CrossRefGoogle Scholar
  19. 19.
    Oliveira TÍS, Zea-Redondo L, Moates GK et al (2016) Pomegranate peel pectin films as affected by montmorillonite. Food Chem 198:107–112. doi: 10.1016/j.foodchem.2015.09.109 CrossRefGoogle Scholar
  20. 20.
    Saha NR, Sarkar G, Roy I et al (2016) Studies on methylcellulose/pectin/montmorillonite nanocomposite films and their application possibilities. Carbohydr Polym 136:1218–1227. doi: 10.1016/j.carbpol.2015.10.046 CrossRefGoogle Scholar
  21. 21.
    Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev. doi: 10.1039/c0cs00108b
  22. 22.
    Mathew AJ, Oksman K (2014) Processing of bionanocomposites: solution casting. In: Mathew AP, Bismarck A et al (eds) Oksman K. Handb. Green Mater. Process. Technol. Prop. Appl. World Scientific, Singapore, pp 35–52Google Scholar
  23. 23.
    Zhao R, Torley P, Halley PJ (2008) Emerging biodegradable materials: starch- and protein-based bio-nanocomposites. J Mater Sci 43:3058–3071. doi: 10.1007/s10853-007-2434-8 CrossRefGoogle Scholar
  24. 24.
    Chivrac F, Pollet E, Avérous L (2009) Progress in nano-biocomposites based on polysaccharides and nanoclays. Mater Sci Eng R Reports 67:1–17. doi: 10.1016/j.mser.2009.09.002 CrossRefGoogle Scholar
  25. 25.
    Tang XZ, Kumar P, Alavi S, Sandeep KP (2012) Recent advances in biopolymers and biopolymer-based nanocomposites for food packaging materials. Crit Rev Food Sci Nutr 52:426–442. doi: 10.1080/10408398.2010.500508 CrossRefGoogle Scholar
  26. 26.
    Le Corre D, Bras J, Dufresne A (2010) Starch nanoparticles: a review. Biomacromolecules 11:1139–1153. doi: 10.1021/bm901428y CrossRefGoogle Scholar
  27. 27.
    Folarin OM, Sadiku ER, Maity A (2011) Polymer-noble metal nanocomposites: review. Int J Phys Sci 6:4869–4882. doi: 10.5897/IJPS11.570 Google Scholar
  28. 28.
    Vartiainen J, Tammelin T, Pere J et al (2010) Biohybrid barrier films from fluidized pectin and nanoclay. Carbohydr Polym 82:989–996. doi: 10.1016/j.carbpol.2010.06.031 CrossRefGoogle Scholar
  29. 29.
    Suyatma NE, Ishikawa Y, Kitazawa H (2013) Nanoreinforcement of pectin film to enhance its functional packaging properties by incorporating ZnO nanoparticles. Adv Mater Res 845:451–456. doi: 10.4028/ CrossRefGoogle Scholar
  30. 30.
    Hong SI, Lee JH, Bae HJ et al (2011) Effect of shear rate on structural, mechanical, and barrier properties of chitosan/montmorillonite nanocomposite film. J Appl Polym Sci 119:2742–2749. doi: 10.1002/app.31767 CrossRefGoogle Scholar
  31. 31.
    Bae HJ, Park HJ, Hong SI et al (2009) Effect of clay content, homogenization RPM, pH, and ultrasonication on mechanical and barrier properties of fish gelatin/montmorillonite nanocomposite films. LWT - Food Sci Technol 42:1179–1186. doi: 10.1016/j.lwt.2008.12.016 CrossRefGoogle Scholar
  32. 32.
    Halder S, Ghosh PK, Goyat MS, Ray S (2012) Ultrasonic dual mode mixing and its effect on tensile properties of SiO2-epoxy nanocomposite. J Adhes Sci Technol 27:111–124. doi: 10.1080/01694243.2012.701510 CrossRefGoogle Scholar
  33. 33.
    Wu H-D, Tseng C-R, Chang F-C (2001) Chain conformation and crystallization behavior of the syndiotactic polystyrene nanocomposites studied using Fourier transform infrared analysis. Macromolecules 34:2992–2999. doi: 10.1021/ma991897r CrossRefGoogle Scholar
  34. 34.
    Mangiacapra P, Gorrasi G, Sorrentino A, Vittoria V (2006) Biodegradable nanocomposites obtained by ball milling of pectin and montmorillonites. Carbohydr Polym 64:516–523. doi: 10.1016/j.carbpol.2005.11.003 CrossRefGoogle Scholar
  35. 35.
    Gorrasi G (2015) Dispersion of halloysite loaded with natural antimicrobials into pectins: characterization and controlled release analysis. Carbohydr Polym 127:47–53. doi: 10.1016/j.carbpol.2015.03.050 CrossRefGoogle Scholar
  36. 36.
    Vartiainen J, Lahtinen P, Kaljunen T et al (2015) Comparison of properties between cellulose nanofibrils made from banana, sugar beet, hemp, softwood and hardwood pulps. O Pap 76:57–60Google Scholar
  37. 37.
    Chaichi M, Hashemi M, Badii F, Mohammadi A (2017) Preparation and characterization of a novel bionanocomposite edible film based on pectin and crystalline nanocellulose. Carbohydr Polym 157:167–175. doi: 10.1016/j.carbpol.2016.09.062 CrossRefGoogle Scholar
  38. 38.
    Stuart B (2000) Infrared spectroscopy. Kirk-Othmer Encycl Chem Technol 1–20. doi:  10.1002/0471238961.0914061810151405.a01.pub2
  39. 39.
    Lorevice MV, Otoni CG, de Moura MR, Mattoso LHC (2016) Chitosan nanoparticles on the improvement of thermal, barrier, and mechanical properties of high- and low-methyl pectin films. Food Hydrocoll 52:732–740. doi: 10.1016/j.foodhyd.2015.08.003 CrossRefGoogle Scholar
  40. 40.
    Lagaron JM, Lopez-Rubio A (2011) Nanotechnology for bioplastics: opportunities, challenges and strategies. Trends Food Sci Technol 22:611–617. doi: 10.1016/j.tifs.2011.01.007 CrossRefGoogle Scholar
  41. 41.
    Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114:292–302. doi: 10.1016/j.jfoodeng.2012.08.021 CrossRefGoogle Scholar
  42. 42.
    Cavallaro G, Lazzara G, Milioto S (2013) Sustainable nanocomposites based on halloysite nanotubes and pectin/polyethylene glycol blend. Polym Degrad Stab 98:2529–2536. doi: 10.1016/j.polymdegradstab.2013.09.012 CrossRefGoogle Scholar
  43. 43.
    Kader A, Zagory D, Kerbel EL (1989) Modified atmosphere packaging of fruits and vegetables. Crit Rev Food Sci Nutr 28:1–30. doi: 10.1080/10408398909527506 CrossRefGoogle Scholar
  44. 44.
    Kim YT, Min B, Kim KW (2013) General characteristics of packaging materials for food system. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 13–36Google Scholar
  45. 45.
    Klein R (2011) Laser welding of plastics. Laser Weld Plast. doi: 10.1002/9783527636969
  46. 46.
    Kumar P, Sandeep KP, Alavi S, Truong VD (2011) A review of experimental and modeling techniques to determine properties of biopolymer-based nanocomposites. J Food Sci. doi: 10.1111/j.1750-3841.2010.01919.x
  47. 47.
    da Silva ISV, Neto WPF, Silvério HA et al (2015) Mechanical, thermal and barrier properties of pectin/cellulose nanocrystal nanocomposite films and their effect on the storability of strawberries (Fragaria ananassa). Polym Adv Technol. doi: 10.1002/pat.3734
  48. 48.
    Moreira FK V., Camargo LA de, Marconcini JM, Mattoso LH (2013) Nutraceutically inspired pectin—Mg(OH) 2 nanocomposites for bioactive packaging applications. J Agric Food Chem 61:7119–7119. doi:  10.1021/jf402110g
  49. 49.
    Lange J, Yves W (2003) Recent innovations in barrier technologies for plastic packaging—a review. Packag Technol Sci 16:149–158CrossRefGoogle Scholar
  50. 50.
    Jiménez A, Fabra MJ, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Technol 5:2058–2076. doi: 10.1007/s11947-012-0835-4 CrossRefGoogle Scholar
  51. 51.
    Ebnesajjad S (2013) Plastic films in food packaging: materials, technology and applications. Wyley and sons Inc., OxfordGoogle Scholar
  52. 52.
    Rhim J-W, Shellhammer TH (2013) Lipid-based edible films and coatings. In: Han JH (ed) Innov. Food Packag. Academic Press, London, pp 362–384Google Scholar
  53. 53.
    Martelli MR, Barros TT, De Moura MR et al (2013) Effect of chitosan nanoparticles and pectin content on mechanical properties and water vapor permeability of banana puree films. J Food Sci. doi: 10.1111/j.1750-3841.2012.03006.x
  54. 54.
    Selke SEM (1997) Understanding plastics packaging technology. Hanser Gardner Publications, CincinnattiGoogle Scholar
  55. 55.
    Bohlmann GM (2005) General characteristics, processability, industrial applications and market evolution of biodegradable polymers. In: Bastioli C (ed) Handb. Biodegrad. Polym. iSmithers Rapra Publishing, Shropshire, pp 183–218Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Escuela de Ingeniería y CienciasTecnologico de MonterreyMonterreyMexico

Personalised recommendations