Skip to main content

Recent Advances for Rapid Identification of Chemical Information of Muscle Foods by Hyperspectral Imaging Analysis

Abstract

Muscle foods play an important role in providing a vital source of high-quality protein, amino acids and vitamin for human health. Chemical composition is one of the most vital information of muscle foods, which directly relates to the quality of pork, beef, chicken, fish and other meats. Therefore, it is significant to identify the chemical information of muscle foods for the purpose of controlling the quality and safety of meat. Hyperspectral imaging can obtain spectral and spatial information of targets simultaneously and has been developed for rapid and nondestructive determination and identification of chemical information of muscle foods. This review focuses on recent applications of hyperspectral imaging technology for the measurement and analysis of chemical composition of muscle foods, including moisture content, fat and fatty acid, pH, protein content, pigment, salt content and freshness attributes. The fundamentals of hyperspectral imaging as well as future development trends are also presented and discussed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zheng LY, Sun D-W (2004) Vacuum cooling for the food industry: a review of recent research advances. Trends Food Sci Technol 15(12):555–568

    CAS  Article  Google Scholar 

  2. Wang LJ, Sun D-W (2004) Effect of operating conditions of a vacuum cooler on cooling performance for large cooked meat joints. J Food Eng 61(2):231–240

    Article  Google Scholar 

  3. Sun D-W, Wang LJ (2000) Heat transfer characteristics of cooked meats using different cooling methods. Int J Refrig 23(7):508–516

    Article  Google Scholar 

  4. Desmond EM, Kenny TA, Ward P, Sun D-W (2000) Effect of rapid and conventional cooling methods on the quality of cooked ham joints. Meat Sci 56(3):271–277

    CAS  Article  Google Scholar 

  5. Kiani H, Zhang Z, Delgado A, Sun D-W (2011) Ultrasound assisted nucleation of some liquid and solid model foods during freezing. Food Res Int 44(9):2915–2921

    CAS  Article  Google Scholar 

  6. Cui Z-W, Sun L-J, Chen W, Sun D-W (2008) Preparation of dry honey by microwave-vacuum drying. J Food Eng 84(4):582–590

    Article  Google Scholar 

  7. Delgado AE, Sun D-W (2002) Desorption isotherms and glass transition temperature for chicken meat. J Food Eng 55(1):1–8

    Article  Google Scholar 

  8. Huang H, Liu L, Ngadi MO (2014) Recent developments in hyperspectral imaging for assessment of food quality and safety. Sensors 14(4):7248–7276

    CAS  Article  Google Scholar 

  9. Petracci M, Baeza E (2011) Harmonization of methodologies for the assessment of poultry meat quality features. Worlds Poult Sci J 67(1):137–151

    Article  Google Scholar 

  10. He H-J, Wu D, Sun D-W (2014) Rapid and non-destructive determination of drip loss and pH distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared (Vis–NIR) hyperspectral imaging. Food Chem 156:394–401

    CAS  Article  Google Scholar 

  11. Liu L, Ngadi MO (2014) Predicting intramuscular fat content of pork using hyperspectral imaging. J Food Eng 134:16–23

    Article  Google Scholar 

  12. Wu D, Sun D-W (2013) Colour measurements by computer vision for food quality control: a review. Trends Food Sci Technol 29(1):5–20

    Article  Google Scholar 

  13. Jackman P, Sun D-W, Du C-J, Allen P (2009) Prediction of beef eating qualities from colour, marbling and wavelet surface texture features using homogenous carcass treatment. Pattern Recognit 42(5):751–763

    Article  Google Scholar 

  14. Wang HH, Sun D-W (2002) Melting characteristics of cheese: analysis of effect of cheese dimensions using computer vision techniques. J Food Eng 52(3):279–284

    Article  Google Scholar 

  15. Jackman P, Sun D-W, Allen P (2009) Automatic segmentation of beef longissimus dorsi muscle and marbling by an adaptable algorithm. Meat Sci 83(2):187–194

    Article  Google Scholar 

  16. Xiong Z, Sun D-W, Zeng X-A, Xie A (2014) Recent developments of hyperspectral imaging systems and their applications in detecting quality attributes of red meats: a review. J Food Eng 132:1–13

    CAS  Article  Google Scholar 

  17. Chen Q, Zhang C, Zhao J, Ouyang Q (2013) Recent advances in emerging imaging techniques for non-destructive detection of food quality and safety. Trac Trends Anal Chem 52:261–274

    CAS  Article  Google Scholar 

  18. Barbin DF, ElMasry G, Sun D-W, Allen P (2013) Non-destructive determination of chemical composition in intact and minced pork using near-infrared hyperspectral imaging. Food Chem 138(2–3):1162–1171

    CAS  Article  Google Scholar 

  19. Elmasry G, Barbin DF, Sun D-W, Allen P (2012) Meat quality evaluation by hyperspectral imaging technique: an overview. Crit Rev Food Sci Nutr 52(8):689–711

    Article  Google Scholar 

  20. Kamruzzaman M, ElMasry G, Sun D-W, Allen P (2012) Non-destructive prediction and visualization of chemical composition in lamb meat using NIR hyperspectral imaging and multivariate regression. Innov Food Sci Emerg Technol 16:218–226

    CAS  Article  Google Scholar 

  21. Barbin D, ElMasry G, Sun D-W, Allen P (2012) Near-infrared hyperspectral imaging for grading and classification of pork. Meat Sci 90(1):259–268

    Article  Google Scholar 

  22. ElMasry G, Kamruzzaman M, Sun D-W, Allen P (2012) Principles and applications of hyperspectral imaging in quality evaluation of agro-food products: a review. Crit Rev Food Sci Nutr 52(11):999–1023

    Article  Google Scholar 

  23. Wu D, Sun D-W, He Y (2012) Application of long-wave near infrared hyperspectral imaging for measurement of color distribution in salmon fillet. Innov Food Sci Emerg Technol 16:361–372

    Article  Google Scholar 

  24. Wu D, Sun D-W (2013) Potential of time series-hyperspectral imaging (TS-HSI) for non-invasive determination of microbial spoilage of salmon flesh. Talanta 111:39–46

    CAS  Article  Google Scholar 

  25. Feng Y-Z, Sun D-W (2012) Application of hyperspectral imaging in food safety inspection and control: a review. Crit Rev Food Sci Nutr 52(11):1039–1058

    Article  Google Scholar 

  26. Liu D, Sun D-W, Zeng X-A (2014) Recent advances in wavelength selection techniques for hyperspectral image processing in the food industry. Food Bioprocess Technol 7(2): 307–323

    Article  Google Scholar 

  27. Feng Y-Z, Sun D-W (2013) Near-infrared hyperspectral imaging in tandem with partial least squares regression and genetic algorithm for non-destructive determination and visualization of Pseudomonas loads in chicken fillets. Talanta 109:74–83

    CAS  Article  Google Scholar 

  28. Feng Y-Z, ElMasry G, Sun D-W, Scannell AGM, Walsh D, Morcy N (2013) Near-infrared hyperspectral imaging and partial least squares regression for rapid and reagentless determination of Enterobacteriaceae on chicken fillets. Food Chem 138(2–3):1829–1836

    CAS  Article  Google Scholar 

  29. Goetz AF, Vane G, Solomon JE, Rock BN (1985) Imaging spectrometry for Earth remote sensing. Science 228(4704):1147–1153

    CAS  Article  Google Scholar 

  30. Wu D, Sun D-W (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review-part II—applications. Innov Food Sci Emerg Technol 19:15–28

    Article  Google Scholar 

  31. Lorente D, Aleixos N, Gómez-Sanchis J, Cubero S, García-Navarrete O-L, Blasco J (2012) Recent advances and applications of hyperspectral imaging for fruit and vegetable quality assessment. Food Bioprocess Technol 5(4):1121–1142

    Article  Google Scholar 

  32. Cheng J-H, Sun D-W (2015) Rapid quantification analysis and visualization of Escherichia coli loads in grass carp fish flesh by hyperspectral imaging method. Food Bioprocess Technol 8(5): 951–959

    Article  Google Scholar 

  33. Zhu F, Zhang D, He Y, Liu F, Sun D-W (2013) Application of visible and near infrared hyperspectral imaging to differentiate between fresh and frozen–thawed fish fillets. Food Bioprocess Technol 6(10):2931–2937

    CAS  Article  Google Scholar 

  34. Gowen AA, O’Donnell CP, Cullen PJ, Downey G, Frias JM (2007) Hyperspectral imaging—an emerging process analytical tool for food quality and safety control. Trends Food Sci Technol 18(12):590–598

    CAS  Article  Google Scholar 

  35. Qin JW, Chao KL, Kim MS, Lu RF, Burks TF (2013) Hyperspectral and multispectral imaging for evaluating food safety and quality. J Food Eng 118(2):157–171

    CAS  Article  Google Scholar 

  36. Cheng J-H, Sun D-W, Zeng X-A, Pu H-B (2014) Non-destructive and rapid determination of TVB-N content for freshness evaluation of grass carp (Ctenopharyngodon idella) by hyperspectral imaging. Innov Food Sci Emerg Technol 21:179–187

    CAS  Article  Google Scholar 

  37. Wu D, Sun D-W (2013) Advanced applications of hyperspectral imaging technology for food quality and safety analysis and assessment: a review-part I—fundamentals. Innov Food Sci Emerg Technol 19:1–14

    Article  Google Scholar 

  38. Zeaiter M, Roger JM, Bellon-Maurel V, Rutledge DN (2004) Robustness of models developed by multivariate calibration. Part I: the assessment of robustness. TrAC Trends Anal Chem 23(2):157–170

    CAS  Article  Google Scholar 

  39. Prats-Montalbán JM, de Juan A, Ferrer A (2011) Multivariate image analysis: a review with applications. Chemometr Intell Lab Syst 107(1):1–23

    Article  Google Scholar 

  40. Wold S, Sjöström M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab Syst 58(2):109–130

    CAS  Article  Google Scholar 

  41. Agatonovic-Kustrin S, Beresford R (2000) Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research. J Pharm Biomed Anal 22(5):717–727

    CAS  Article  Google Scholar 

  42. Zhang L, Zhou W, Jiao L (2004) Wavelet support vector machine. IEEE Trans Syst Man Cybernet B (Cybernetics) 34(1):34–39

    Article  Google Scholar 

  43. Cheng J-H, Sun D-W, Pu H-B, Wang Q-J, Chen Y-N (2015) Suitability of hyperspectral imaging for rapid evaluation of thiobarbituric acid (TBA) value in grass carp (Ctenopharyngodon idella) fillet. Food Chem 171:258–265

    CAS  Article  Google Scholar 

  44. Cheng J-H, Sun D-W, Pu H, Zhu Z (2015) Development of hyperspectral imaging coupled with chemometric analysis to monitor K value for evaluation of chemical spoilage in fish fillets. Food Chem 185:245–253

    CAS  Article  Google Scholar 

  45. He H-J, Wu D, Sun D-W (2013) Non-destructive and rapid analysis of moisture distribution in farmed Atlantic salmon (Salmo salar) fillets using visible and near-infrared hyperspectral imaging. Innova Food Sci Emerg Technol 18:237–245

    Article  Google Scholar 

  46. Barbin DF, ElMasry G, Sun D-W, Allen P (2012) Predicting quality and sensory attributes of pork using near-infrared hyperspectral imaging. Anal Chim Acta 719:30–42

    CAS  Article  Google Scholar 

  47. ElMasry G, Sun D-W, Allen P (2013) Chemical-free assessment and mapping of major constituents in beef using hyperspectral imaging. J Food Eng 117(2):235–246

    CAS  Article  Google Scholar 

  48. Xiong ZJ, Sun D-W, Xie AG, Han Z, Wang L (2015) Potential of hyperspectral imaging for rapid prediction of hydroxyproline content in chicken meat. Food Chem 175:417–422

    CAS  Article  Google Scholar 

  49. Gou P, Santos-Garcés E, Høy M, Wold JP, Liland KH, Fulladosa E (2013) Feasibility of NIR interactance hyperspectral imaging for on-line measurement of crude composition in vacuum packed dry-cured ham slices. Meat Sci 95(2):250–255

    CAS  Article  Google Scholar 

  50. Liu D, Qu J, Sun D-W, Pu H, Zeng X-A (2013) Non-destructive prediction of salt contents and water activity of porcine meat slices by hyperspectral imaging in a salting process. Innov Food Sci Emerg Technol 20:316–323

    CAS  Article  Google Scholar 

  51. Dissing BS, Nielsen ME, Ersboll BK, Frosch S (2011) Multispectral imaging for determination of Astaxanthin concentration in salmonids. PLoS One 6(5):e19032

    CAS  Article  Google Scholar 

  52. Cheng J-H, Sun D-W (2014) Hyperspectral imaging as an effective tool for quality analysis and control of fish and other seafoods: current research and potential applications. Trends Food Sci Technol 37(2):78–91

    CAS  Article  Google Scholar 

  53. Karoui R, Mouazen AM, Dufour E, Pillonel L, Picque D, Bosset JO et al (2006) Mid-infrared spectrometry: a tool for the determination of chemical parameters in Emmental cheeses produced during winter. Lait 86:83–97

    CAS  Article  Google Scholar 

  54. Qiao J, Wang N, Ngadi MO, Gunenc A, Monroy M, Gariépy C, Prasher SO (2007) Prediction of drip-loss, pH, and color for pork using a hyperspectral imaging technique. Meat Sci 76(1):1–8

    CAS  Article  Google Scholar 

  55. Liu D, Pu H, Sun D-W, Wang L, Zeng X-A (2014) Combination of spectra and texture data of hyperspectral imaging for prediction of pH in salted meat. Food Chem 160:330–337

    CAS  Article  Google Scholar 

  56. Pu H, Sun D-W, Ma J, Liu D, Cheng J-H (2014) Using wavelet textural features of visible and near infrared hyperspectral image to differentiate between fresh and Frozen-Thawed Pork. Food Bioprocess Technol 7(11):3088–3099

    Article  Google Scholar 

  57. Xie A, Sun D-W, Xu Z, Zhu Z (2015) Rapid detection of frozen pork quality without thawing by Vis–NIR hyperspectral imaging technique. Talanta 139:208–215

    CAS  Article  Google Scholar 

  58. Chen QS, Zhang YH, Zhao JW, Hui Z (2013) Nondestructive measurement of total volatile basic nitrogen (TVB-N) content in salted pork in jelly using a hyperspectral imaging technique combined with efficient hypercube processing algorithms. Anal Methods 5(22):6382–6388

    CAS  Article  Google Scholar 

  59. Kim MS, Li Y, Zhang L, Peng Y, Tang X, Chao K, Dhakal S, Tu SI, Chao K (2011) Hyperspectral imaging technique for determination of pork freshness attributes 8027, 80270H-80270H-80279

  60. ElMasry G, Sun D-W, Allen P (2012) Near-infrared hyperspectral imaging for predicting colour, pH and tenderness of fresh beef. J Food Eng 110(1):127–140

    Article  Google Scholar 

  61. Kobayashi K-I, Matsui Y, Maebuchi Y, Toyota T, Nakauchi S (2010) Near infrared spectroscopy and hyperspectral imaging for prediction and visualisation of fat and fatty acid content in intact raw beef cuts. J Near Infrared Spectrosc 18(5):301–315

    CAS  Article  Google Scholar 

  62. Li Y, Shan J, Peng Y, Gao X (2011) Nondestructive assessment of beef-marbling grade using hyperspectral imaging technology. In: IEEE 2011 international conference on new technology of agricultural engineering (ICAE), pp 779–783

  63. Xiong Z, Sun D-W, Xie A, Pu H, Han Z, Luo M (2015) Quantitative determination of total pigments in red meats using hyperspectral imaging and multivariate analysis. Food Chem 178:339–345

    CAS  Article  Google Scholar 

  64. Kamruzzaman M, ElMasry G, Sun D-W, Allen P (2012) Prediction of some quality attributes of lamb meat using near-infrared hyperspectral imaging and multivariate analysis. Anal Chim Acta 714:57–67

    CAS  Article  Google Scholar 

  65. Pu H, Sun D-W, Ma J, Liu D, Kamruzzaman M (2014) Hierarchical variable selection for predicting chemical constituents in lamb meats using hyperspectral imaging. J Food Eng 143:44–52

    CAS  Article  Google Scholar 

  66. Kandpal LM, Lee H, Kim MS, Mo C, Cho B-K (2013) Hyperspectral reflectance imaging technique for visualization of moisture distribution in cooked chicken breast. Sensors 13(10):13289–13300

    Article  Google Scholar 

  67. Xiong Z, Sun D-W, Pu H, Xie A, Han Z, Luo M (2015) Non-destructive prediction of thiobarbituric acid reactive substances (TBARS) value for freshness evaluation of chicken meat using hyperspectral imaging. Food Chem 179:175–181

    CAS  Article  Google Scholar 

  68. Wu D, Shi H, Wang SJ, He Y, Bao YD, Liu KS (2012) Rapid prediction of moisture content of dehydrated prawns using online hyperspectral imaging system. Anal Chim Acta 726:57–66

    CAS  Article  Google Scholar 

  69. Fengle Z, Hailiang Z, Yongni S, Yong H, Ngadi M (2014) Mapping of fat and moisture distribution in atlantic salmon using near-infrared hyperspectral imaging. Food Bioprocess Technol 7(4):1208–1214

    Article  Google Scholar 

  70. Segtnan VH, Hoy M, Sorheim O, Kohler A, Lundby F, Wold JP, Ofstad R (2009) Noncontact salt and fat distributional analysis in salted and smoked salmon fillets using X-ray computed tomography and NIR interactance imaging. J Agric Food Chem 57(5):1705–1710

    CAS  Article  Google Scholar 

  71. ElMasry G, Wold JP (2008) High-speed assessment of fat and water content distribution in fish fillets using online imaging spectroscopy. J Agric Food Chem 56(17):7672–7677

    CAS  Article  Google Scholar 

  72. Thaller G, Kühn C, Winter A, Ewald G, Bellmann O, Wegner J, Zühlke H, Fries R (2003) DGAT1, a new positional and functional candidate gene for intramuscular fat deposition in cattle. Anim Genet 34(5):354–357

    CAS  Article  Google Scholar 

  73. Qiao J, Ngadi MO, Wang N, Gariépy C, Prasher SO (2007) Pork quality and marbling level assessment using a hyperspectral imaging system. J Food Eng 83(1):10–16

    Article  Google Scholar 

  74. Huang H, Liu L, Ngadi M, Gariepy C (2013) Prediction of pork marbling scores using pattern analysis techniques. Food Control 31(1):224–229

    Article  Google Scholar 

  75. Dai Q, Cheng JH, Sun DW, Zeng XA (2015) Advances in feature selection methods for hyperspectral image processing in food industry applications: a review. Crit Rev Food Sci Nutr 55(10):1368–1382

    CAS  Article  Google Scholar 

  76. Mallat Stephane G (1989) A theory for multiresolution signal decomposing: the wavelet representation. IEEE Trans PAMI 11(7):674–693

    Article  Google Scholar 

  77. Barclay VJ, Bonner RF, Hamilton IP (1997) Application of wavelet transforms to experimental spectra: smoothing, de-noising, and data set compression. Anal Chem 69:78–90

    CAS  Article  Google Scholar 

  78. Gributs CEW, Burns DH (2006) Parsimonious calibration models for nearinfrared spectroscopy using wavelets and scaling functions. Chemometr Intell Lab Syst 83:44–53

    CAS  Article  Google Scholar 

  79. Singh C-B, Choudhary R, Jayas D-S, Paliwal J (2010) Wavelet analysis of signals in agriculture and food quality inspection. Food Bioprocess Technol 3(1):2–12

    Article  Google Scholar 

  80. Dai Q, Cheng JH, Sun DW, Zhu Z, Pu H (2016) Prediction of total volatile basic nitrogen contents using wavelet features from visible/near-infrared hyperspectral images of prawn (Metapenaeus ensis). Food Chem 197:257–265

    CAS  Article  Google Scholar 

  81. Iqbal A, Sun D-W, Allen P (2013) Prediction of moisture, color and pH in cooked, pre-sliced turkey hams by NIR hyperspectral imaging system. J Food Eng 117(1):42–51

    CAS  Article  Google Scholar 

  82. Badii F, Howell NK (2002) Effect of antioxidants, citrate, and cryoprotectants on protein denaturation and texture of frozen cod (Gadus morhua). J Agric Food Chem 50(7):2053–2061

    CAS  Article  Google Scholar 

  83. Talens P, Mora L, Morsy N, Barbin DF, ElMasry G, Sun D-W (2013) Prediction of water and protein contents and quality classification of Spanish cooked ham using NIR hyperspectral imaging. J Food Eng 117(3):272–280

    CAS  Article  Google Scholar 

  84. Cheng J-H, Dai Q, Sun D-W, Zeng X-A, Liu D, Pu H-B (2013) Applications of non-destructive spectroscopic techniques for fish quality and safety evaluation and inspection. Trends Food Sci Technol 34(1):18–31

    CAS  Article  Google Scholar 

  85. Begley TH, Lanza E, Norris KH, Hruschka WR (1984) Determination of sodium chloride in meat by near-infrared diffuse reflectance spectroscopy. J Agric Food Chem 32(5):984–987

    CAS  Article  Google Scholar 

  86. Dai Q, Cheng J-H, Sun D-W, Pu H, Zeng X-A, Xiong Z (2015) Potential of visible/near-infrared hyperspectral imaging for rapid detection of freshness in unfrozen and frozen prawns. J Food Eng 149:97–104

    Article  Google Scholar 

  87. Lowe T, Ryder J, Carragher J, Wells R (1993) Flesh quality in snapper, Pagrcrs auratus, affected by capture stress. J Food Sci 58(4):770–773

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This research was supported by the Key Projects of Administration of Ocean and Fisheries of Guangdong Province (A201401C04), the Collaborative Innovation Major Special Projects of Guangzhou City (201508020097), the Natural Science Foundation of Guangdong Province (2014A030313244), the International S&T Cooperation Projects of Guangdong Province (2013B051000010) and the International S&T Cooperation Program of China (2015DFA71150). The authors were also grateful to the Guangdong Province Government (China) for its support through the program of “Leading Talent of Guangdong Province (Da-Wen Sun).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Da-Wen Sun.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, YN., Sun, DW., Cheng, JH. et al. Recent Advances for Rapid Identification of Chemical Information of Muscle Foods by Hyperspectral Imaging Analysis. Food Eng Rev 8, 336–350 (2016). https://doi.org/10.1007/s12393-016-9139-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-016-9139-1

Keywords

  • Hyperspectral imaging
  • Chemical composition
  • Muscle foods
  • Seafood products
  • Optimal wavelengths
  • Prediction models