Skip to main content
Log in

Drying Technologies: Vehicle to High-Quality Herbs

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Herbs are usually marketed as dry due to a consumer demand beyond their seasonality; dehydration leads to a stable, easily moveable product that is available throughout the year. The process of drying, though, leads to modifications in the appearance, composition and quality of the raw material. The extent of these alterations depends on the applied drying methodology and its parameters, rendering the optimization of this process imperative. Numerous studies examining the effect of drying on the main characteristics of herbs have been published in recent years, and this review aims at organizing the available information of the studied herbs, drying methods and measured parameters in a comprehensive manner. Primarily, since aroma is the main characteristic of herbs and the principal aim for the end product is to retain the raw material’s character, this review will focus on the most widely studied effect of drying, which is the essential oil yield and composition. Secondly, results from various studies on the influence of drying on biochemical compounds, organoleptic properties of dried herbs are also presented. The most common approach to the study of drying kinetics is also presented. Finally, novel technologies targeting to minimize the magnitude of changes from the raw material are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. CBI Market Information Database (2013) CBI Tradewatch spices and herbs

  2. Calín-Sánchez Á, Szumny A, Figiel A, Jaloszynski K, Adamski M, Carbonell-Barrachina ÁA (2011) Effects of vacuum level and microwave power on rosemary volatile composition during vacuum-microwave drying. J Food Eng 103(2):219–227

    Article  CAS  Google Scholar 

  3. Hamrouni-Sellami I, Rahali FZ, Rebey IB, Bourgou S, Limam F, Marzouk B (2013) Total phenolics, flavonoids, and antioxidant activity of sage (Salvia officinalis L.) plants as affected by different drying methods. Food Bioprocess Technol 6(3):806–817

    Article  CAS  Google Scholar 

  4. Díaz-Maroto MC, González Viñas MA, Cabezudo MD (2003) Evaluation of the effect of drying on aroma of parsley by free choice profiling. Eur Food Res Technol 216(3):227–232

    Google Scholar 

  5. Yousif AN, Durance TD, Scaman CH, Girard B (2000) Headspace volatiles and physical characteristics of vacuum-microwave, air, and freeze-dried oregano (Lippia berlandieri Schauer). J Food Sci 65(6):926–930

    Article  CAS  Google Scholar 

  6. Arslan D, Özcan MM, Mengeş HO (2010) Evaluation of drying methods with respect to drying parameters, some nutritional and colour characteristics of peppermint (Mentha × piperita L.). Energy Convers Manag 51(12):2769–2775

    Article  CAS  Google Scholar 

  7. Hossain MB, Barry-Ryan C, Martin-Diana AB, Brunton NP (2010) Effect of drying method on the antioxidant capacity of six Lamiaceae herbs. Food Chem 123(1):85–91

    Article  CAS  Google Scholar 

  8. Ibáñez E, Oca A, De Murga G, López-Sebastián S, Tabera J, Reglero G (1999) Supercritical fluid extraction and fractionation of different preprocessed rosemary plants. J Agric Food Chem 47(4):1400–1404

    Article  Google Scholar 

  9. Sellami IH, Rebey IB, Sriti J, Rahali FZ, Limam F, Marzouk B (2012) Drying sage (Salvia officinalis L.) plants and its effects on content, chemical composition, and radical scavenging activity of the essential oil. Food Bioprocess Technol 5(8):2978–2989

    Article  CAS  Google Scholar 

  10. Okos M, Campanella O, Narsimhan G, Singh RK, Weitnauer AC (2007) Food dehydration. In: Heldman DR, Lund DB (eds) Handbook of food engineering, 2nd edn. CRC Press, Boca Raton, pp 601–744

    Google Scholar 

  11. Balladin DA, Headley O (1999) Evaluation of solar dried thyme (Thymus vulgaris Linné) herbs. Renew Energy 17(4):523–531

    Article  CAS  Google Scholar 

  12. Figiel A, Szumny A, Gutiérrez-Ortíz A, Carbonell-Barrachina ÁA (2010) Composition of oregano essential oil (Origanum vulgare) as affected by drying method. J Food Eng 98(2):240–247

    Article  CAS  Google Scholar 

  13. Soysal Y (2004) Microwave drying characteristics of parsley. Biosyst Eng 89(2):167–173

    Article  Google Scholar 

  14. Doymaz İ (2006) Thin-layer drying behaviour of mint leaves. J Food Eng 74(3):370–375

    Article  Google Scholar 

  15. Janjai S, Bala BK (2012) Solar drying technology. Food Eng Rev 4(1):16–54

    Article  Google Scholar 

  16. Shylaja MR, Peter KV (2004) The functional role of herbal spices. In: Kuruppacharil PV (ed) Handbook of herbs and spices, vol 2. Woodhead Publishing and CRC Press, Cambridge and Boca Raton, p 11

  17. Ghasemi Pirbalouti A, Mahdad E, Craker L (2013) Effects of drying methods on qualitative and quantitative properties of essential oil of two basil landraces. Food Chem 141(3):2440–2449

    Article  CAS  Google Scholar 

  18. Omidbaigi R, Sefidkon F, Kazemi F (2004) Influence of drying methods on the essential oil content and composition of Roman chamomile. Flavour Fragr J 19(3):196–198

    Article  CAS  Google Scholar 

  19. Sharma A, Chen CR, Vu Lan N (2009) Solar-energy drying systems: a review. Renew Sustain Energy Rev 13(6–7):1185–1210

    Article  Google Scholar 

  20. Ferreira JFS, Luthria DL (2010) Drying affects artemisinin, dihydroartemisinic acid, artemisinic acid, and the antioxidant capacity of Artemisia Annua L. leaves. J Agric Food Chem 58(3):1691–1698

    Article  CAS  Google Scholar 

  21. Müller J (2007) Convective drying of medicinal, aromatic and spice plants: a review. Stewart Postharvest Rev 3(4):1–6

  22. Rodriguez J, Melo EC, Mulet A, Bon J (2013) Optimization of the antioxidant capacity of thyme (Thymus vulgaris L.) extracts: management of the convective drying process assisted by power ultrasound. J Food Eng 119(4):793–799

    Article  CAS  Google Scholar 

  23. Shahhoseini R, Ghorbani H, Karimi SR, Estaji A, Moghaddam M (2013) Qualitative and quantitative changes in the essential oil of lemon verbena (Lippia citriodora) as affected by drying condition. Dry Technol 31(9):1020–1028

    Article  CAS  Google Scholar 

  24. Ratti C (2001) Hot air and freeze-drying of high-value foods: a review. J Food Eng 49(4):311–319

    Article  Google Scholar 

  25. Fennell CW, Light ME, Sparg SG, Stafford GI, Van Staden J (2004) Assessing African medicinal plants for efficacy and safety: agricultural and storage practices. J Ethnopharmacol 95(2–3):113–121

    Article  CAS  Google Scholar 

  26. Antal T, Figiel A, Kerekes B, Sikolya L (2011) Effect of drying methods on the quality of the essential oil of spearmint leaves (Mentha spicata L.). Dry Technol 29(15):1836–1844

    Article  CAS  Google Scholar 

  27. Müller J, Reisinger G, Kisgeci J, Kotta E, Tesic M, Mühlbauer W (1989) Development of a greenhouse-type solar dryer for medicinal plants and herbs. Solar Wind Technol 6(5):523–530

    Article  Google Scholar 

  28. Asekun OT, Grierson DS, Afolayan AJ (2007) Effects of drying methods on the quality and quantity of the essential oil of Mentha longifolia L. subsp. capensis. Food Chem 101(3):995–998

    Article  CAS  Google Scholar 

  29. Demir V, Gunhan T, Yagcioglu AK, Degirmencioglu A (2004) Mathematical modelling and the determination of some quality parameters of air-dried bay leaves. Biosyst Eng 88(3):325–335

    Article  Google Scholar 

  30. Di Cesare LF, Forni E, Viscardi D, Nani RC (2003) Changes in the chemical composition of basil caused by different drying procedures. J Agric Food Chem 51(12):3575–3581

    Article  CAS  Google Scholar 

  31. Feng H, Yin Y, Tang J (2012) Microwave drying of food and agricultural materials: basics and heat and mass transfer modeling. Food Eng Rev 4(2):89–106

    Article  Google Scholar 

  32. Heindl AGW, Müller J (2007) Microwave drying of medicinal and aromatic plants. Stewart Postharvest Rev 3(4):1–6

  33. Alibas I (2007) Energy consumption and colour characteristics of nettle leaves during microwave, vacuum and convective drying. Biosyst Eng 96(4):495–502

    Article  Google Scholar 

  34. Yousif AN, Scaman CH, Durance TD, Girard B (1999) Flavor volatiles and physical properties of vacuum-microwave- and air-dried sweet basil (Ocimum basilicum L.). J Agric Food Chem 47(11):4777–4781

    Article  CAS  Google Scholar 

  35. Gao Q, Wu C, Wang M, Xu B, Du L (2012) Effect of drying of jujubes (Ziziphus jujuba Mill.) on the contents of sugars, organic acids, a-tocopherol, β-carotene, and phenolic compounds. J Agric Food Chem 60(38):9642–9648

    Article  CAS  Google Scholar 

  36. Venskutonis PR (1997) Effect of drying on the volatile constituents of thyme (Thymus vulgaris L.) and sage (Salvia officinalis L.). Food Chem 59(2):219–227

    Article  CAS  Google Scholar 

  37. Chan EWC, Lim YY, Wong SK, Lim KK, Tan SP, Lianto FS, Yong MY (2009) Effects of different drying methods on the antioxidant properties of leaves and tea of ginger species. Food Chem 113(1):166–172

    Article  CAS  Google Scholar 

  38. García-Pérez JV, Cárcel JA, de la Fuente-Blanco S, Riera-Franco de Sarabia E (2006) Ultrasonic drying of foodstuff in a fluidized bed: parametric study. Ultrasonics 44(Suppl.):e539–e543

    Article  Google Scholar 

  39. Lucio-Juárez JS, Moscosa-Santillán M, González-García R, Grajales-Lagunes A, Ruiz-Cabrera MA (2013) Ultrasonic assisted pre-treatment method for enhancing mass transfer during the air-drying of habanero chili pepper (Capsicum chinense). Int J Food Prop 16(4):867–881

    Article  Google Scholar 

  40. Sabarez HT, Gallego-Juarez J, Riera E (2012) Ultrasonic-assisted convective drying of apple slices. Dry Technol 30(9):989–997

    Article  Google Scholar 

  41. Cárcel JA, García-Pérez JV, Benedito J, Mulet A (2012) Food process innovation through new technologies: use of ultrasound. J Food Eng 110(2):200–207

    Article  Google Scholar 

  42. Giusti AM, Bignetti E, Cannella C (2008) Exploring new frontiers in total food quality definition and assessment: from chemical to neurochemical properties. Food Bioprocess Technol 1(2):130–142

    Article  Google Scholar 

  43. Luque De Castro MD, Jiménez-Carmona MM, Fernández-Pérez V (1999) Towards more rational techniques for the isolation of valuable essential oils from plants. TrAC Trend Anal Chem 18(11):708–716

    Article  CAS  Google Scholar 

  44. Khangholil S, Rezaeinodehi A (2008) Effect of drying temperature on essential oil content and composition of sweet wormwood (Artemisia annua) growing wild in Iran. Pak J Biol Sci 11(6):934–937

    Article  CAS  Google Scholar 

  45. Bartley JP, Jacobs AL (2000) Effects of drying on flavour compounds in Australian-grown ginger (Zingiber officinale). J Sci Food Agric 80(2):209–215

    Article  CAS  Google Scholar 

  46. Huopalahti R, Kesälahti E, Linko R (1985) Effect of hot air and freeze drying on the volatile compounds of dill (Anethum graveolens L.) herb. J Agric Sci Finl 57:133–138

    CAS  Google Scholar 

  47. Mohamed Hanaa AR, Sallam YI, El-Leithy AS, Aly SE (2012) Lemongrass (Cymbopogon citratus) essential oil as affected by drying methods. Ann Agric Sci 57(2):113–116

    Google Scholar 

  48. Sellami IH, Wannes WA, Bettaieb I, Berrima S, Chahed T, Marzouk B, Limam F (2011) Qualitative and quantitative changes in the essential oil of Laurus nobilis L. leaves as affected by different drying methods. Food Chem 126(2):691–697

    Article  CAS  Google Scholar 

  49. Barbosa FDF, Barbosa LCA, Melo EC, Botelho FM, Santos RHS (2006) Effect of drying air temperature upon the content and chemical composition of the essential oil from Lippia alba (Mill) N. E. Brown. Quim Nova 29(6):1221–1225

    Article  CAS  Google Scholar 

  50. Tarakemeh A, Abutalebi A (2012) Effect of drying method on the essential oil quantity of basil (Ocimum basilicum L.). J Essent Oil Bear Plants 15(3):503–505

    Article  Google Scholar 

  51. Hassanpouraghdam MB, Hassani A, Vojodi L, Farsad-Akhtar N (2010). Drying method affects essential oil content and composition of basil (Ocimum basilicum L.). J Essent Oil-Bear Plants, 13(6):759–766

  52. Dìaz-Maroto MC, Sánchez Palomo E, Castro L, González Viñas MA, Pérez-Coello MS (2004) Changes produced in the aroma compounds and structural integrity of basil (Ocimum basilicum L.) during drying. J Sci Food Agric 84(15):2070–2076

    Article  CAS  Google Scholar 

  53. Raghavan B, Rao LJ, Singh M, Abraham KO (1997) Effect of drying methods on the flavour quality of marjoram (Oreganum majorana L.). Nahrung Food 41(3):159–161

    Article  CAS  Google Scholar 

  54. Di Cesare LF, Forni E, Viscardi D, Nani RC (2004) Influence of drying techniques on the volatile phenolic compounds, chlorophyll and colour of oregano (Origanum vulgare L. ssp. prismaticum Gaudin). Ital J Food Sci 16(2):165–175

    Google Scholar 

  55. Díaz-Maroto MC, Pérez-Coello MS, Cabezudo MD (2002) Effect of different drying methods on the volatile components of parsley (Petroselinum crispum L.). Eur Food Res Technol 215(3):227–230

    Article  CAS  Google Scholar 

  56. Khorshidi J, Mohammadi R, Fakhr TM, Nourbakhsh H (2009) Influence of drying methods, extraction time, and organ type on essential oil content of rosemary (Rosmarinus officinalis L.). Nat Sci 7(11):42–44

    Google Scholar 

  57. Rao LJ, Singh M, Raghavan B, Abraham KO (1998) Rosemary (Rosmarinus officinalis L.): impact of drying on its flavor quality. J Food Qual 21(2):107–115

    Article  Google Scholar 

  58. Ghasemi Pirbalouti A, Oraie M, Pouriamehr M, Babadi ES (2013) Effects of drying methods on qualitative and quantitative of the essential oil of Bakhtiari savory (Satureja bachtiarica Bunge.). Ind Crops Prod 46:324–327

    Article  CAS  Google Scholar 

  59. Sefidkon F, Abbasi K, Khaniki GB (2006) Influence of drying and extraction methods on yield and chemical composition of the essential oil of Satureja hortensis. Food Chem 99(1):19–23

    Article  CAS  Google Scholar 

  60. Omidbaigi R, Kabudani M, Tabibzadeh Z (2007) Effect of drying methods on the essential oil content and composition of Tanacetum parthenium (L.) Schultz Bip cv. Zardband. J Essent Oil Bear Plant 10(1):26–30

    Article  CAS  Google Scholar 

  61. Rahimmalek M, Goli SAH (2013) Evaluation of six drying treatments with respect to essential oil yield, composition and color characteristics of Thymys daenensis subsp. daenensis. Celak leaves. Ind Crops Prod 42:613–619

    Article  CAS  Google Scholar 

  62. Sárosi S, Sipos L, Kókai Z, Pluhár Z, Szilvássy B, Novák I (2013) Effect of different drying techniques on the aroma profile of Thymus vulgaris analyzed by GC–MS and sensory profile methods. Ind Crops Prod 46:210–216

    Article  CAS  Google Scholar 

  63. Venskutonis PR, Poll L, Larsen M (1996) Influence of drying and irradiation on the composition of volatile compounds of thyme (Thymus vulgaris L.). Flavour Fragr J 11(2):123–128

    Article  CAS  Google Scholar 

  64. Jerković I, Mastelić J, Miloš M (2001) The impact of both the season of collection and drying on the volatile constituents of Origanum vulgare L. ssp. hirtum grown wild in Croatia. Int J Food Sci Technol 36(6):649–654

    Article  Google Scholar 

  65. Abaas IS, Hamzah MJ, Majeed AH (2013) Analysis with evaluation of drying temperature on essential oil content of Achillea frayrantissima L. and Artemisia herb-alba L. Int J Pharm Pharm Sci 5(3):913–914

    Google Scholar 

  66. Arabhosseini A, Padhye S, Van Beek TA, Van Boxtel AJB, Huisman W, Posthumus MA, Müller J (2006) Loss of essential oil of tarragon (Artemisia dracunculus L.) due to drying. J Sci Food Agric 86(15):2543–2550

    Article  CAS  Google Scholar 

  67. Deans SG, Svoboda KP (1992) Effect of drying regime on volatile oil and microflora of aromatic plants. Acta Hortic 306:450

    Article  Google Scholar 

  68. Argyropoulos D, Müller J (2014) Changes of essential oil content and composition during convective drying of lemon balm (Melissa officinalis L.). Ind Crops Prod 52:118–124

    Article  CAS  Google Scholar 

  69. Rohloff J, Dragland S, Mordal R, Iversen T (2005) Effect of harvest time and drying method on biomass production, essential oil yield, and quality of peppermint (Mentha × piperita L.). J Agric Food Chem 53(10):4143–4148

    Article  CAS  Google Scholar 

  70. Blanco MCSG, Ming LC, Marques MOM, Bovi OA (2002) Drying temperature effects in peppermint essential oil content and composition. Acta Hortic 569:95–98

    Article  CAS  Google Scholar 

  71. Piga A, Usai M, Marchetti M, Foddai M, Del Caro A, Meier HP, Onorati V, Vinci F (2007) Influence of different drying parameters on the composition of volatile compounds of thyme and rosemary cultivated in Sardinia. In: 3rd CIGR section VI international symposium on food and agricultural products: processing and innovations, Naples, Italy

  72. Blanco MCSG, Ming LC, Marques MOM, Bovi OA (2002) Drying temperature effects in rosemary essential oil and composition. Acta Hortic 569:99

    Article  CAS  Google Scholar 

  73. Arabhosseini A, Huisman W, van Boxtel A, Müller J (2007) Long-term effects of drying conditions on the essential oil and color of tarragon leaves during storage. J Food Eng 79(2):561–566

    Article  CAS  Google Scholar 

  74. Buchaillot A, Caffin N, Bhandari B (2009) Drying of lemon myrtle (Backhousia citriodora) leaves: retention of volatiles and color. Dry Technol 27(3):445–450

    Article  CAS  Google Scholar 

  75. Kubra IR, Rao LJM (2012) Effect of microwave drying on the phytochemical composition of volatiles of ginger. Int J Food Sci Technol 47(1):53–60

    Article  CAS  Google Scholar 

  76. Calín-Sánchez Á, Lech K, Szumny A, Figiel A, Carbonell-Barrachina ÁA (2012) Volatile composition of sweet basil essential oil (Ocimum basilicum L.) as affected by drying method. Food Res Int 48(1):217–225

    Article  CAS  Google Scholar 

  77. Tambunan AH, Yudistira, Kisdiyani, Hernani (2001) Freeze drying characteristics of medicinal herbs. Dry Technol 19(2):325–331

    Article  CAS  Google Scholar 

  78. Dìaz-Maroto MC, Pérez-Coello MS, Cabezudo MD (2002) Effect of drying method on the volatiles in bay leaf (Laurus nobilis L.). J Agric Food Chem 50(16):4520–4524

    Article  CAS  Google Scholar 

  79. Divya P, Puthusseri B, Neelwarne B (2012) Carotenoid content, its stability during drying and the antioxidant activity of commercial coriander (Coriandrum sativum L.) varieties. Food Res Int 45(1):342–350

    Article  CAS  Google Scholar 

  80. Orphanides A, Goulas V, Gekas V (2013) Effect of drying method on the phenolic content and antioxidant capacity of spearmint. Czech J Food Sci 31(5):509–513

    CAS  Google Scholar 

  81. Papageorgiou V, Mallouchos A, Komaitis M (2008) Investigation of the antioxidant behavior of air- and freeze-dried aromatic plant materials in relation to their phenolic content and vegetative cycle. J Agric Food Chem 56(14):5743–5752

    Article  CAS  Google Scholar 

  82. Yi W, Wetzstein HY (2011) Effects of drying and extraction conditions on the biochemical activity of selected herbs. HortScience 46(1):70–73

    CAS  Google Scholar 

  83. Daniel DL, Huerta BEB, Sosa IA, Mendoza MGV (2012) Effect of fixed bed drying on the retention of phenolic compounds, anthocyanins and antioxidant activity of roselle (Hibiscus sabdariffa L.). Ind Crops Prod 40(1):268–276

    Article  CAS  Google Scholar 

  84. Tiwari B, Brunton NP, Brennan C (eds) (2013) Handbook of plant food phytochemicals: sources, stability and extraction. Wiley, Sussex

    Google Scholar 

  85. Capecka E, Mareczek A, Leja M (2005) Antioxidant activity of fresh and dry herbs of some Lamiaceae species. Food Chem 93(2):223–226

    Article  CAS  Google Scholar 

  86. Pokorný J (2003) The impact of food processing in phytochemicals: the case of antioxidants. In: Johnson IT, Williamson G (eds) Phytochemical functional foods. Elsevier, Amsterdam, pp 298–314

    Chapter  Google Scholar 

  87. Shahidi F, Zhong Y (2010) Novel antioxidants in food quality preservation and health promotion. Eur J Lipid Sci Technol 112(9):930–940

    Article  CAS  Google Scholar 

  88. Schwarz K, Ternes W, Schmauderer E (1992) Antioxidative constituents of Rosmarinus officinalis and Salvia officinalis—III. Stability of phenolic diterpenes of rosemary extracts under thermal stress as required for technological processes. Z Lebensm Unters For 195(2):104–107

    Article  CAS  Google Scholar 

  89. Chan EWC, Kong LQ, Yee KY, Chua WY, Loo TY (2012) Antioxidant and antibacterial properties of some fresh and dried Labiatae herbs. Free Radic Antioxid 2(3):20–27

    Article  CAS  Google Scholar 

  90. Gulati A, Rawat R, Singh B, Ravindranath SD (2003) Application of microwave energy in the manufacture of enhanced-quality green tea. J Agric Food Chem 51(16):4764–4768

    Article  CAS  Google Scholar 

  91. McCaig TN (2002) Extending the use of visible/near-infrared reflectance spectrophotometers to measure colour of food and agricultural products. Food Res Int 35(8):731–736

    Article  CAS  Google Scholar 

  92. Rudra SG, Singh H, Basu S, Shivhare US (2008) Enthalpy entropy compensation during thermal degradation of chlorophyll in mint and coriander puree. J Food Eng 86(3):379–387

    Article  CAS  Google Scholar 

  93. Rocha T, Lebert A, Marty-Audouin C (1993) Effect of pretreatments and drying conditions on drying rate and colour retention of basil (Ocimum basilicum). LWT Food Sci Technol 26(5):456–463

    Article  CAS  Google Scholar 

  94. Ahmed J, Shivhare US, Singh G (2001) Drying characteristics and product quality of coriander leaves. Food Bioprod Process Trans Inst Chem Eng C 79(2):103–106

    Article  CAS  Google Scholar 

  95. Rocha T, Marty-Audouin C, Lebert A (1993) Effect of drying temperature and blanching on the degradation of chlorophyll a and b in mint (Mentha spicata Huds.) and basil (Ocimum basilicum): analysis by high performance liquid chromatography with photodiode array detection. Chromatographia 36:152–156

    Article  CAS  Google Scholar 

  96. Krokida MK, Maroulis ZB, Saravacos GD (2001) The effect of the method of drying on the colour of dehydrated products. I Int J Food Sci Technol 36(1):53–59

    Article  CAS  Google Scholar 

  97. Arabhosseini A, Padhye S, Huisman W, van Boxtel A, Müller J (2011) Effect of drying on the color of tarragon (Artemisia dracunculus L.) leaves. Food Bioprocess Technol 4(7):1281–1287

    Article  Google Scholar 

  98. Doymaz İ, Tugrul N, Pala M (2006) Drying characteristics of dill and parsley leaves. J Food Eng 77(3):559–565

    Article  Google Scholar 

  99. Arslan D, Özcan MM (2012) Evaluation of drying methods with respect to drying kinetics, mineral content, and color characteristics of savory leaves. Food Bioprocess Technol 5(3):983–991

    Article  CAS  Google Scholar 

  100. Therdthai N, Zhou W (2009) Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen). J Food Eng 91(3):482–489

    Article  Google Scholar 

  101. Pääkkönen K, Malmsten T, Hyvönen L (1989) Effects of drying method, packaging, and storage temperature and time on the quality of Dill (Anethum graveolens L.). J Food Sci 54(6):1485–1487

    Article  Google Scholar 

  102. Arslan D, Musa Özcan M (2008) Evaluation of drying methods with respect to drying kinetics, mineral content and colour characteristics of rosemary leaves. Energy Convers Manag 49(5):1258–1264

    Article  CAS  Google Scholar 

  103. Dìaz-Maroto MC, Pérez-Coello MS, González Viñas MA, Cabezudo MD (2003) Influence of drying on the flavor quality of spearmint (Mentha spicata L.). J Agric Food Chem 51(5):1265–1269

    Article  CAS  Google Scholar 

  104. Szumny A, Figiel A, Gutiérrez-Ortíz A, Carbonell-Barrachina AA (2010) Composition of rosemary essential oil (Rosmarinus officinalis) as affected by drying method. J Food Eng 97(2):253–260

    Article  CAS  Google Scholar 

  105. Calín-Sánchez Á, Figiel A, Lech K, Szumny A, Carbonell-Barrachina ÁA (2013) Effects of drying methods on the composition of thyme (Thymus vulgaris L.) essential oil. Dry Technol 31(2):224–235

    Article  CAS  Google Scholar 

  106. Masanetz C, Grosch W (1998) Hay-like off-flavour of dry parsley. Z Lebensm Unters For 206(2):114–120

    Article  CAS  Google Scholar 

  107. Díaz-Maroto MC, Pérez-Coello MS, Sánchez-Palomo E, González Viñas MA (2007) Impact of drying and storage time on sensory characteristics of rosemary (Rosmarinus officinalis L.). J Sens Stud 22(1):34–48

    Article  Google Scholar 

  108. Günhan T, Demir V, Hancioglu E, Hepbasli A (2005) Mathematical modelling of drying of bay leaves. Energy Convers Manag 46(11–12):1667–1679

    Article  Google Scholar 

  109. Akpinar E (2010) Drying of mint leaves in a solar dryer and under open sun: modeling performance analysis. Energy Convers Manag 51(12):2407–2418

    Article  Google Scholar 

  110. Akpinar E (2006) Mathematical modelling of thin layer drying process under open sun of some aromatic plants. J Food Eng 77(4):864–870

    Article  Google Scholar 

  111. Doymaz I (2011) Drying of thyme (Thymus vulgaris L.) and selection of a suitable thin-layer drying model. J Food Process Preserv 35:458–465

    Article  Google Scholar 

  112. Motevali A, Younji S, Amiri Chayjan R, Aghilinategh N, Banakar A (2013) Drying kinetics of dill leaves in a convective dryer. Int Agrophys 27:39–47

    Google Scholar 

  113. Sarimeseli A (2011) Microwave drying characteristics of coriander (Coriandrum sativum L.) leaves. Energy Convers Manag 52:1449–1453

    Article  Google Scholar 

  114. Özbek B, Dadali G (2007) Thin-layer drying characteristics and modelling of mint leaves undergoing microwave treatment. J Food Eng 83:541–549

    Article  Google Scholar 

  115. Kadam DM, Goyal RK, Singh KK, Gupta MK (2011) Thin layer convective drying of mint leaves. J Med Plants Res 5(2):164–170

    Google Scholar 

  116. Akpinar E (2011) Drying of parsley leaves in a solar dryer and under open sun: modeling, energy and exergy aspects. J Food Process Eng 34:27–48

    Article  Google Scholar 

  117. Sledz M, Nowacka M, Wiktor A, Witrowa-Rajchert D (2013) Selected chemical and physico-chemical properties of microwave-convective dried herbs. Food Bioprod Process 91:421–428

    Article  CAS  Google Scholar 

  118. Moses JA, Norton T, Alagusundaram K, Tiwari BK (2014) Novel drying techniques for the food industry. Food Eng Rev 6(3):43–55

    Article  Google Scholar 

  119. Cárcel JA, García-Pérez JV, Riera E, Mulet A (2007) Influence of high-intensity ultrasound on drying kinetics of persimmon. Dry Technol 25(1):185–193

    Article  CAS  Google Scholar 

  120. Cárcel JA, Garcia-Perez JV, Riera E, Mulet A (2011) Improvement of convective drying of carrot by applying power ultrasound-influence of mass load density. Dry Technol 29(2):174–182

    Article  CAS  Google Scholar 

  121. García-Pérez JV, Cárcel JA, Riera E, Mulet A (2009) Influence of the applied acoustic energy on the drying of carrots and lemon peel. Dry Technol 27(2):281–287

    Article  Google Scholar 

  122. García-Pérez JV, Ozuna C, Ortuño C, Cárcel JA, Mulet A (2011) Modeling ultrasonically assisted convective drying of eggplant. Dry Technol 29(13):1499–1509

    Article  Google Scholar 

  123. Sledz M, Witrowa-Rajchert D (2013). Structure of the microwave-convective dried basil treated by ultrasound. In: Food structure and functionality conference—15 years later, Stare Jabłonki, Poland

  124. Sham PWY, Scaman CH, Durance TD (2001) Texture of vacuum microwave dehydrated apple chips as affected by calcium pretreatment, vacuum level, and apple variety. J Food Sci 66(9):1341–1347

    Article  CAS  Google Scholar 

  125. Boggia R, Leardi R, Zunin P, Bottino A, Capannelli G (2013) Dehydration of pdo genovese basil leaves (Ocimum basilicum maximum L. cv genovese gigante) by direct osmosis. J Food Process Preserv 37(5):621–629

    CAS  Google Scholar 

  126. Falade KO, Igbeka JC (2007) Osmotic dehydration of tropical fruits and vegetables. Food Rev Int 23(4):373–405

    Article  CAS  Google Scholar 

  127. Witrowa-Rajchert D, Wiktor A, Sledz M, Nowacka M (2014) Selected emerging technologies to enhance the drying process: a review. Dry Technol 32(11):1386–1396

    Article  Google Scholar 

  128. Guiné RPF (2008) Pear Drying. In: Hui YH (ed) Handbook of fruits and fruit processing. Blackwell, Ames

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vassilis Gekas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Orphanides, A., Goulas, V. & Gekas, V. Drying Technologies: Vehicle to High-Quality Herbs. Food Eng Rev 8, 164–180 (2016). https://doi.org/10.1007/s12393-015-9128-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9128-9

Keywords

Navigation