Skip to main content

Advertisement

Log in

Structuring Food Emulsions to Improve Nutrient Delivery During Digestion

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Emulsion-based delivery systems can be used to control the release, target the delivery, and inhibit unfavorable chemical reactions of many nutrients. Over the last several years, many attempts have been made to understand the physicochemical changes of food emulsions during digestion and their effects on the delivery of nutrients therein. In vivo and in vitro studies focusing on oral environment or gastrointestinal tract have revealed that food emulsions experience complicated physical and biochemical stresses during digestion. Microstructural changes induced by droplet flocculation, creaming, phase separation, etc., are widely observed during digestion of food emulsions, and the intensity and the locations of the changes that occur greatly affect the delivery efficacy (i.e., bioavailability) of the nutrients. Careful design of emulsion structures provides ways to better control the responses of the emulsions over environmental conditions during digestion and thus improve nutrient delivery. This review summarizes current understanding of emulsion performances during digestion and their effects on nutrient release and digestion. We introduce several novel-structured emulsions, i.e., multilayer emulsions, multiple emulsions, gelled emulsions, Pickering emulsions, and solid lipid particles and their advantageous roles in delivering food nutrients in digestive tract. Examples of nutrient delivery, covering a wide range of food nutrients, including functional lipids, proteins, carotenoids, volatile flavor compounds and minerals, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akhtar M, Murray BS, Afeisume EI, Khew SH (2014) Encapsulation of flavonoid in multiple emulsion using spinning disc reactor technology. Food Hydrocoll 34:62–67

    Article  CAS  Google Scholar 

  2. Aveyard R, Binks BP, Clint JH (2003) Emulsions stabilized solely by solid colloidal particles. Adv Colloid Interface Sci 100–102:503–546

    Article  Google Scholar 

  3. Benjamin O, Silcock P, Beauchamp J, Buettner A, Everett DW (2013) Volatile release and structural stability of β-lactoglobulin primary and multilayer emulsions under simulated oral conditions. Food Chem 140:124–134

    Article  CAS  Google Scholar 

  4. Bonnaire L, Sandra S, Helgason T, Decker EA, Weiss J, McClements DJ (2008) Influence of lipid physical state on the in vitro digestibility of emulsified lipids. J Agric Food Chem 56:3791–3797

    Article  CAS  Google Scholar 

  5. Boon CS, Xu Z, Yue X, McClements DJ, Weiss J, Decker EA (2008) Factors affecting lycopene oxidation in oil-in-water emulsions. J Agric Food Chem 56:1408–1414

    Article  CAS  Google Scholar 

  6. Chanamai R, McClements DJ (2000) Impact of weighting agents and sucrose on gravitational separation of beverage emulsions. J Agric Food Chem 48:5561–5565

    Article  CAS  Google Scholar 

  7. Charcosset C, Limayem I, Fessi H (2004) The membrane emulsification process—a review. J Chem Technol Biotechnol 79:209–218

    Article  CAS  Google Scholar 

  8. Chevalier Y, Bolzinger MA (2013) Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids Surf A 439:23–34

    Article  CAS  Google Scholar 

  9. Claesson PM, Blomberg E, Poptoshev E (2004) Surface forces and emulsion stability. In: Friberg SE, Larsson K, Sjöblom J (eds) Food emulsions, 4th edn. Marcel Dekker, New York, pp 257–297

    Google Scholar 

  10. Day L, Xu M, Hoobin P, Burgar I, Augustin MA (2007) Characterization of fish oil emulsions stabilized by sodium caseinate. Food Chem 105:469–479

    Article  CAS  Google Scholar 

  11. Dickinson E (2010) Flocculation of protein-stabilized oil-in-water emulsions. Colloids Surf B 81:130–140

    Article  CAS  Google Scholar 

  12. Dickinson E (2011) Mixed biopolymers at interface: competitive adsorption and multilayer structure. Food Hydrocoll 25:1966–1983

    Article  CAS  Google Scholar 

  13. Dickinson E (2012) Use of nanoparticles and microparticles in the formation and stabilization of food emulsions. Trends Food Sci Tech 24:4–12

    Article  CAS  Google Scholar 

  14. Djordjevic D, Cercaci L, Alamed J, McClements DJ, Decker EA (2007) Chemical and physical stability of citral and limonene in sodium dodecyl sulfate-chitosan and gum arabic-stabilized oil-in-water emulsions. J Agric Food Chem 55:3585–3591

    Article  CAS  Google Scholar 

  15. Dresselhuis DM, de Hoog EHA, Cohen Stuart MA, Vingerhoeds MH, van Aken GA (2009) The occurrence of in-mouth coalescence of emulsion droplets in relation to perception of fat. Food Hydrocoll 22:1170–1183

    Article  Google Scholar 

  16. Ficheux MF, Bonakdar L, Leal-Calderon F, Bibette J (1998) Some stability criteria for double emulsions. Langmuir 14:2702–2706

    Article  CAS  Google Scholar 

  17. Frank K, Walz E, Gräf V, Greiner R, Köhler K, Schuchmann HP (2012) Stability of anthocyanin-rich W/O/W-emulsions designed for intestinal release in gastrointestinal environment. J Food Sci 77:N51–N58

    Article  CAS  Google Scholar 

  18. Frasch-Melnik S, Norton IT, Spyropoulos F (2010) Fat-crystal stabilised W/O emulsions for controlled salt release. J Food Eng 98:437–442

    Article  CAS  Google Scholar 

  19. Frede K, Henze A, Khalil M, Baldermann S, Schweigert F (2014) Stability and cellular uptake of lutein-loaded emulsions. J Funct Foods 8:118–127

    Article  CAS  Google Scholar 

  20. Garti N, Bisperink C (1998) Double emulsions: progress and applications. Curr Opin Colloid Interface Sci 3:657–667

    Article  CAS  Google Scholar 

  21. Ghouchi-Eskandar N, Simovic S, Prestidge CA (2012) Solid-state nanoparticle coated emulsions for encapsulation and improving the chemical stability of all-trans-retinol. Int J Pharm 423:384–391

    Article  CAS  Google Scholar 

  22. Golding M, Wooster TJ (2010) The influence of emulsion structure and stability on lipid digestion. Curr Opin Colloid Interface Sci 15:90–101

    Article  CAS  Google Scholar 

  23. Gu YS, Decker EA, McClements DJ (2004) Influence of pH and iota-carrageenan concentration on physicochemical properties and stability of beta-lactoglobulin-stabilized oil-in-water emulsions. J Agric Food Chem 52:3626–3632

    Article  CAS  Google Scholar 

  24. Gudipati V, Sandra S, McClements DJ, Decker EA (2010) Oxidative stability and in vitro digestibility of fish oil-in-water emulsions containing multilayered membranes. J Agric Food Chem 58:8093–8099

    Article  CAS  Google Scholar 

  25. Guo Q, Ye A, Lad M, Dalgleish D, Singh H (2013) The breakdown properties of heat-set whey protein emulsion gels in the human mouth. Food Hydrocoll 33:215–224

    Article  CAS  Google Scholar 

  26. Guo Q, Ye A, Lad M, Dalgleish D, Singh H (2014) Behaviour of whey protein emulsion gel during oral and gastric digestion. Soft Matter 10:4173–4183

    Article  CAS  Google Scholar 

  27. Guzey D, McClements DJ (2006) Formation, stability and properties of multilayer emulsions for application in the food industry. Adv Colloid Interface Sci 128–130:227–248

    Article  Google Scholar 

  28. Hou Z, Gao Y, Yuan F, Liu Y, Li C, Xu D (2011) Investigation into the physicochemical stability and rheological properties of β-carotene emulsion stabilized by soybean soluble polysaccharides and chitosan. J Agric Food Chem 58:8604–8611

    Article  Google Scholar 

  29. Humphrey SP, Williamson RT (2001) A review of saliva: normal composition, flow, and function. J Prosthet Dent 85:162–169

    Article  CAS  Google Scholar 

  30. Hunter RJ (1986) Foundations of colloid science. Oxford Science, Oxford

    Google Scholar 

  31. Hur SJ, Lim BO, Decker EA, McClements JD (2011) In vitro human digestion models for food applications. Food Chem 125:1–12

    Article  CAS  Google Scholar 

  32. Ivanov IB, Danov K, Kralchevsky PA (1999) Flocculation and coalescence of micron-size emulsion droplets. Colloids Surf A 152:161–182

    Article  CAS  Google Scholar 

  33. Kaimainen M, Marze S, Järvenpää E, Anton M, Huopalahti R (2014) Encapsulation of betalain into w/o/w double emulsion and release during in vitro intestinal lipid digestion. LWT-Food Sci Tech 60:899–904

    Article  Google Scholar 

  34. Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman J, Reppas C (2006) Characterization of the human upper gastrointestinal contents under conditions simulating bioavailability/bioequivalence studies. Pharm Res 23:165–176

    Article  CAS  Google Scholar 

  35. Kalashnikova I, Bizot H, Cathala B, Capron I (2011) New Pickering emulsions stabilized by bacterial cellulose nanocrystals. Langmuir 27:7471–7479

    Article  CAS  Google Scholar 

  36. Kim HJ, Decker EA, McClements DJ (2006) Preparation of multiple emulsions based on thermodynamic incompatibility of heat-denatured whey protein and pectin solutions. Food Hydrocoll 20:586–595

    Article  CAS  Google Scholar 

  37. Kumar Dey T, Ghosh S, Ghosh M, Koley H, Dhar P (2012) Comparative study of gastrointestinal absorption of EPA & DHA rich fish oil from nano and conventional emulsion formulation in rats. Food Res Int 49:72–79

    Article  Google Scholar 

  38. Lamprecht A, Schafer U, Lehr CM (2001) Influences of process parameters on preparation of microparticle used as a carrier system for omega-3 unsaturated fatty acid ethyl esters used in supplementary nutrition. J Microencapsul 18:347–357

    Article  CAS  Google Scholar 

  39. Liang L, Sok Line VL, Remondetto GE, Subirade M (2010) In vitro release of α-tocopherol from emulsion-loaded β-lactoglobulin gels. Int Dairy J 20:176–181

    Article  CAS  Google Scholar 

  40. Liu Y, Hou Z, Lei F, Chang Y, Gao Y (2012) Investigation into the bioaccessibility and microstructure changes of b-carotene emulsions during in vitro digestion. Innov Food Sci Emerg Technol 15:86–95

    Article  Google Scholar 

  41. Lobato-Calleros C, Rodriguez E, Sandoval-Castilla O, Vernon-Carter EJ, Alvarez-Ramirez J (2006) Reduced-fat white fresh cheese-like products obtained from W1/O/W2 multiple emulsions: viscoelastic and high-resolution image analyses. Food Res Int 39:678–685

    Article  CAS  Google Scholar 

  42. Luo Z, Murray BS, Yusoff A, Morgan MRA, Povey MJW, Day AJ (2011) Particle-stabilizing effects of flavonoids at the oil–water interface. J Agric Food Chem 59:2636–2645

    Article  CAS  Google Scholar 

  43. Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR (2009) Emulsification alters simulated gastrointestinal proteolysis of β-casein and β-lactoglobulin. Soft Matter 23:538–550

    Article  Google Scholar 

  44. Maldonado-Valderrama J, Woodward NC, Gunning AP, Ridout MJ, Husband FA, Mackie AR, Morris VJ, Wilde PJ (2008) Interfacial characterization of β-lactoglobulin networks: displacement by bile salts. Langmuir 24:6759–6767

    Article  CAS  Google Scholar 

  45. Malone ME, Appelqvist IAM (2003) Gelled emulsion particles for the controlled release of lipophilic volatiles during eating. J Control Release 90:227–241

    Article  CAS  Google Scholar 

  46. Mao L, Roos YH, O’Callaghan DJ, Miao S (2013) Volatile release from whey protein isolate-pectin multilayer stabilized emulsions: effect of pH, salt, and artificial salivas. J Agric Food Chem 61:6231–6239

    Article  CAS  Google Scholar 

  47. Mao L, Xu D, Yang J, Yuan F, Gao Y, Zhao J (2009) Effects of small and large molecule emulsifiers on the characteristics of β-carotene nanoemulsions prepared by high pressure homogenization. Food Technol Biotech 47:336–342

    CAS  Google Scholar 

  48. McClements DJ (2005) Food emulsions: principles, practices and techniques, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  49. McClements DJ (2010) Design of nano-laminated coatings to control bioavailability of lipophilic food components. J Food Sci 75:R30–R42

    Article  CAS  Google Scholar 

  50. McClements DJ (2010) Emulsion design to improve the delivery of functional lipophilic components. Annu Rev Food Sci Technol 1:241–269

    Article  CAS  Google Scholar 

  51. McClements DJ, Decker EA, Park Y (2009) Controlling lipid bioavailability through physicochemical and structural approaches. Crit Rev Food Sci Nutr 49:48–67

    Article  Google Scholar 

  52. McClements DJ, Li Y (2010) Structured emulsion-based delivery systems: controlling the digestion and release of lipophilic food components. Adv Colloid Interface Sci 159:213–228

    Article  CAS  Google Scholar 

  53. Mun S, Decker EA, McClements DJ (2007) Influence of emulsifier type on in vitro digestibility of lipid droplets by pancreatic lipase. Food Res Int 40:770–781

    Article  CAS  Google Scholar 

  54. Nik AM, Corredig M, Wright A (2011) Release of lipophilic molecules during in vitro digestion of soy protein-stabilized emulsions. Mol Nutr Food Res 55:S278–S289

    Article  CAS  Google Scholar 

  55. O’Regan J, Mulvihill DM (2009) Sodium caseinate-maltodextrin conjugate stabilized double emulsions: encapsulation and stability. Food Res Int 43:224–231

    Article  Google Scholar 

  56. Parada J, Aguilera JM (2007) Food microstructure affects the bioavailability of several nutrients. J Food Sci 72:R21–R32

    Article  CAS  Google Scholar 

  57. Pradhan M, Rousseau D (2012) A one-step process for oil-in-water-in-oil double emulsion formation using a single surfactant. J Colloid Interface Sci 386:398–404

    Article  CAS  Google Scholar 

  58. Rabe S, Krings U, Berger RG (2003) Influence of oil-in-water emulsion characteristics on initial dynamic flavor release. J Sci Food Agric 83:1124–1133

    Article  CAS  Google Scholar 

  59. Robins MM (2000) Emulsions–creaming phenomena. Curr Opin Colloid Interface Sci 5:265–272

    Article  CAS  Google Scholar 

  60. Ruiz-Rodriguez P, Meshulam D, Lesmes U (2014) Characterization of Pickering O/W emulsions stabilized by silica nanoparticles and their responsiveness to in vitro digestion conditions. Food Biophys 9:406–415

    Article  Google Scholar 

  61. Russel WB (1981) Brownian motion of small particles suspended in liquids. Annu Rev Fluid Mech 13:425–455

    Article  Google Scholar 

  62. Saberi AH, Fang Y, McClements DJ (2013) Fabrication of vitamin E-enriched nanoemulsions by spontaneous emulsification: effect of propylene glycol and ethanol on formation, stability, and properties. Food Res Int 54:812–820

    Article  CAS  Google Scholar 

  63. Sala G, van de Velde F, Cohen Stuart MA, van Aken GA (2007) Oil droplet release from emulsion filled gels in relation to sensory perception. Food Hydrocoll 21:977–985

    Article  CAS  Google Scholar 

  64. Sarkar A, Goh KKT, Singh H (2009) Colloidal stability and interactions of milk-protein-stabilized emulsions in an artificial saliva. Food Hydrocoll 23:1270–1278

    Article  CAS  Google Scholar 

  65. Sarkar A, Goh KKT, Singh H (2010) Properties of oil-in-water emulsions stabilized by β-lactoglobulin in simulated gastric fluid as influence by ionic strength and presence of mucin. Food Hydrocoll 24:534–541

    Article  CAS  Google Scholar 

  66. Sarkar A, Goh KKT, Singh RP, Singh H (2009) Behaviour of oil-in-water emulsion stabilized by β-lactoglobulin in an in vitro gastric model. Food Hydrocoll 23:1563–1569

    Article  CAS  Google Scholar 

  67. Sarkar A, Horne DS, Singh H (2010) Interactions of milk protein-stabilized oil-in-water emulsions with bile salts in a simulated upper intestinal model. Food Hydrocoll 24:142–151

    Article  CAS  Google Scholar 

  68. Scherman P, Parkinson C (1978) Mechanism of temperature induced phase inversion in O/W emulsions stabilised by O/W and W/O emulsifier blends. Prog Coll Polym Sci 63:10–14

    Google Scholar 

  69. Schultz S, Wagner G, Urban K, Ulrich J (2004) High-pressure homogenization as a process for emulsion formation. Chem Eng Technol 27:361–368

    Article  CAS  Google Scholar 

  70. Shima M, Morita Y, Yamashita M, Adachi S (2006) Protection of Lactobacillus acidophilus from the low pH of a model gastric juice by incorporation in a W/O/W emulsion. Food Hydrocoll 20:1164–1169

    Article  CAS  Google Scholar 

  71. Shima M, Morita Y, Yamashita M, Adachi S (2009) Protection of Lactobacillus acidophilus from bile salts in a model intestinal juice by incorporation in the inner-water phase of a W/O/W emulsion. Food Hydrocoll 23:281–285

    Article  CAS  Google Scholar 

  72. Shima M, Tanaka M, Kimura Y, Adachi S, Matsuno R (2004) Hydrolysis of the oil phase of a W/O/W emulsion by pancreatic lipase. J Control Release 94:53–61

    Article  CAS  Google Scholar 

  73. Shimoni G, Shani Levi C, Levi Tal S, Lesmes U (2013) Emulsions stabilization by lactoferrin nano-particles under in vitro digestion conditions. Food Hydrocoll 33:264–272

    Article  CAS  Google Scholar 

  74. Silletti E, Vingerhoeds MH, Norde W, van Aken GA (2007) Complex formation in mixtures of lysozyme-stabilized emulsions and saliva. J Colloid Interface Sci 313:485–496

    Article  CAS  Google Scholar 

  75. Singh H, Sarkar A (2011) Behaviour of protein-stabilised emulsions under various physiological conditions. Adv Colloid Interface Sci 165:47–57

    Article  CAS  Google Scholar 

  76. Singh H, Ye A, Horne D (2009) Structuring food emulsions in the gastrointestinal tract to modify lipid digestion. Prog Lipid Res 48:92–100

    Article  CAS  Google Scholar 

  77. Sugiura S, Nakajima M, Seki M (2002) Preparation of monodispersed emulsion with large droplets using microchannel emulsification. J Am Oil Chem Soc 79:515–519

    Article  CAS  Google Scholar 

  78. Tcholakova S, Denkov ND, Ivanov IB, Campbell B (2006) Coalescence stability of emulsions containing globular milk proteins. Adv Colloid Interface Sci 123–126:259–293

    Article  Google Scholar 

  79. Tikekar RV, Pan Y, Nitin N (2013) Fate of curcumin encapsulated in silica nanoparticle stabilized Pickering emulsion during storage and simulated digestion. Food Res Int 51:370–377

    Article  CAS  Google Scholar 

  80. Tippetts M, Martini S, Brothersen C, McMahon DJ (2012) Fortification of cheese with vitamin D3 using dairy protein emulsions as delivery systems. J Dairy Sci 95:4768–4774

    Article  CAS  Google Scholar 

  81. Tzoumaki MV, Moschakis T, Kiosseoglou V, Biliaderis CG (2011) Oil-in-water emulsions stabilized by chitin nanocrystal particles. Food Hydrocoll 25:1521–1529

    Article  CAS  Google Scholar 

  82. van Aken GA, Bomhof E, Zoet FD, Verbeek M, Oosterveld A (2011) Difference in in vitro gastric behavior between homogenized milk and emulsions stabilized by Tween 80, whey protein, or whey protein and caseinate. Food Hydrocoll 25:781–788

    Article  Google Scholar 

  83. van Aken GA, Vingerhoeds MH, de Hoog EHA (2005) Colloidal behaviour of food emulsions under oral conditions. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. Royal Society of Chemistry, Cambridge, pp 356–366

    Chapter  Google Scholar 

  84. Velikow KP, Pelan E (2008) Colloidal delivery systems for micronutrients and nutraceuticals. Soft Matter 4:1964–1980

    Article  Google Scholar 

  85. Wang MS, Chaudhari A, Pan Y, Young S, Nitin N (2014) Controlled release of natural polyphenols in oral cavity using starch Pickering emulsion. MRS Proceedings, 1688, mrss14-1688-y08-11 doi:10.1557/opl.2014.482

  86. Wang X, Wang Y, Huang Q (2009) Enhancing stability and oral bioavailability of polyphenols using nanoemulsions. In: Huang Q, Given P, Qian M (eds) Micro/nanoencapsulation of active food ingredients. American Chemical Society, Washington, pp 198–212

    Chapter  Google Scholar 

  87. Weinbreck F, Minor M, de Kruif CG (2004) Microencapsulation of oils using whey protein/gum arabic coacervates. J Microencapsul 21:667–679

    Article  CAS  Google Scholar 

  88. Xu D, Yuan F, Gao Y, Panya A, McClements DJ, Decker EA (2014) Influence of whey protein-beet pectin conjugate on the properties and digestibility of β-carotene during in vitro digestion. Food Chem 156:374–379

    Article  CAS  Google Scholar 

  89. Yang D, Wang X, Ji C, Lee K, Shin J et al (2014) Influence of Ginkgo biloba extracts and of their flavonoid glycosides fraction on the in vitro digestibility of emulsion systems. Food Hydrocoll 42:196–203

    Article  Google Scholar 

  90. Yi J, Lam TI, Yokoyama W, Cheng LW, Zhang F (2014) Cellular uptake of β-carotene from protein stabilized solid lipid nanoparticles prepared by homogenization–evaporation method. J Agric Food Chem 62:1096–1104

    Article  CAS  Google Scholar 

  91. Yusoff A, Murray BS (2011) Modified starch granules as particle stabilizers of oil-in-water emulsions. Food Hydrocoll 25:42–55

    Article  CAS  Google Scholar 

  92. Zhang Y, Zhong Q (2015) Multiple-layered coatings on l-glutamine solid microparticles for the retention during storage and enteric delivery during in vitro digestions. Food Hydrocoll 43:584–592

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Miao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mao, L., Miao, S. Structuring Food Emulsions to Improve Nutrient Delivery During Digestion. Food Eng Rev 7, 439–451 (2015). https://doi.org/10.1007/s12393-015-9108-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-015-9108-0

Keywords

Navigation