Skip to main content
Log in

Chemical Reactions in Food Systems at High Hydrostatic Pressure

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The combination of high hydrostatic pressure and temperature has become a valuable alternative to produce superior quality products in cases where the traditional thermal treatments have failed to deliver high-quality products. Unfortunately, the impact of pressure on chemical reactions in food systems is often overlooked. This review summarizes studies on chemical reactions in various food systems that have been qualitatively and quantitatively evaluated under high pressure at either ambient, moderate, or elevated temperatures. In addition, a critical discussion on the current approaches was used to evaluate the reaction rates, and therefore, the reaction mechanisms of some food systems are provided. Activation volume and activation energy of various food systems treated by high hydrostatic pressure are also provided. Finally, the need of kinetic studies in food systems is highlighted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor

b :

Constant for acids (9.2 × 10−4 MPa)

C :

Concentration of reactants or products

E a :

Activation energy (kJ mol−1)

HPP:

High-pressure processing

HPS:

High-pressure sterilization

K :

Equilibrium reaction constant

K w :

Water ionization equilibrium constant

k :

Reaction rate constant

K a :

Ionization equilibrium constant

n :

Reaction order

P :

Pressure (MPa)

PATS:

Pressure-assisted thermal sterilization

pK a :

Dissociation constant

(pK a)p :

Pressure-shifted dissociation constant

(pK a)o :

Dissociation constant at a reference pressure and temperature

r :

Reaction rate

R:

Gas constant (8.314 J mol−1 K or 8.308 × 10−6 MPa m3 mol−1 K)

t :

Time

T :

Absolute temperature (K)

ΔV :

Activation volume (cm3 mol−1)

ΔV int :

Intrinsic factors contributing to activation volume

ΔV m :

Medium or solvent contributions to activation volume

ΔV°:

Reaction volume

ΔV a :

Ionization apparent volume

\( \Delta V_{{{\text{H}}^{ + } }} \) :

Volume variations of one mole of H+

ΔOD:

Changes in optical density

z :

Collision frequency

References

  1. Al-Attabi Z, D’arcy BD, Deeth HC (2009) Volatile sulphur compounds in UHT milk. Crit Rev Food Sci Nutr 49(1):28–47

    CAS  Google Scholar 

  2. Alt N, Schieberle P (2005) Model studies on the influence of high hydrostatic pressure on the formation of glycated arginine modifications at elevated temperatures. J Agric Food Chem 53(14):5789–5797

    CAS  Google Scholar 

  3. Altuner EM, Alpas H, Erdem YK, Bozoglu F (2006) Effect of high hydrostatic pressure on physicochemical and biochemical properties of milk. Eur Food Res Technol 222(3–4):392–396

    CAS  Google Scholar 

  4. Andersen B, Gronlund F (1979) High pressure kinetics of glucose mutarotation studied by optical rotation. Acta Chem Scand A 33:275–280

    Google Scholar 

  5. Angsupanich K, Ledward DA (1998) High pressure treatment effects on cod (Gadus morhua) muscle. Food Chem 63(1):39–50

    CAS  Google Scholar 

  6. Arques JL, Garde S, Fernandez-Garcia E, Gaya P, Nunez M (2007) Volatile compounds, odor, and aroma of La Serena cheese high-pressure treated at two different stages of ripening. J Dairy Sci 90(8):3627–3639

    CAS  Google Scholar 

  7. Asano T, Le Noble WJ (1979) Activation and reaction volumes in solution. Chem Rev 78(4):407–489

    Google Scholar 

  8. Avila M, Garde S, Fernandez-Garcia E, Medina M, Nunez M (2006) Effect of high pressure and a bacteriocin-producing lactic culture on the odor and aroma of Hispano cheese: correlation of volatile compounds and sensory analysis. J Agric Food Chem 54(2):283–389

    Google Scholar 

  9. Balci AT, Wilbey RA (1999) High pressure processing of milk—the first 100 years in the development of a new technology. Int J Dairy Technol 52(4):149–155

    Google Scholar 

  10. Bartlett DH (2002) Pressure effects on in vivo microbial processes. BBA Protein Struct Mol Enzymol 1595(1–2):367–381

    CAS  Google Scholar 

  11. Black EP, Setlow P, Hocking AD, Stewart CM, Kelly AL, Hoover DG (2007) Response of spores to high-pressure processing. Compr Rev Food Sci Food Saf 6(4):103–119

    CAS  Google Scholar 

  12. Bristow M, Isaacs NS (1999) The effect of high pressure on the formation of volatile products in a model Maillard reaction. J Chem Soc Perkin Trans 2(10):2213–2218

    Google Scholar 

  13. Bolumar T, Skibsted LH, Orlien V (2012) Kinetics of the formation of radicals in meat during high-pressure processing. Food Chem 134(4):2114–2120

    CAS  Google Scholar 

  14. Buchheim W, Abouelnour AM (1992) Induction of milkfat crystallization in the emulsified state by high hydrostatic-pressure. FWT Fat Sci Technol 94(10):369–373

    CAS  Google Scholar 

  15. Buckow R, Heinz V (2008) High pressure processing—a database of kinetic information. Chem Ing Tech 80(8):1081–1095

    CAS  Google Scholar 

  16. Buckow R, Heinz V, Knorr D (2007) High pressure phase transition kinetics of maize starch. J Food Eng 81(2):469–475

    Google Scholar 

  17. Buckow R, Wendorff J, Hemar Y (2011) Conjugation of bovine serum albumin and glucose under combined high pressure and heat. J Agric Food Chem 59(8):3915–3923

    CAS  Google Scholar 

  18. Buckow R, Kastell A, Terefe NS, Versteeg C (2010) Pressure and temperature effects on degradation kinetics and storage stability of total anthocyanins in blueberry juice. J Agric Food Chem 58(18):10076–10084

    CAS  Google Scholar 

  19. Buckow R, Sikes A, Tume R (2013) Effect of high-pressure on physicochemical properties of meat. Crit Rev Food Sci Nutr 53(7):770–786

    Google Scholar 

  20. Buffa M, Trujillo AJ, Royo C, Guamis B (2000) Changes in chemical and microbiological characteristics of goat cheese made from raw, pasteurized or high-pressure-treated milk. High Press Res 19(1–6):417–422

    Google Scholar 

  21. Bull MK, Oliver SA, van Diepenbeek RJ, Kormelink F, Chapman B (2009) Synergistic inactivation of spores of proteolytic Clostridium botulinum strains by high pressure and heat is strain and product dependent. Appl Environ Microbiol 75(2):434–445

    CAS  Google Scholar 

  22. Burgess J, Guardado P, Hubbard CD (2010) Partial molar volumes for inorganic complexes. J Coord Chem 63(14–16):2461–2471

    CAS  Google Scholar 

  23. Butz P, Bognar A, Dieterich S, Tauscher B (2007) Effect of high-pressure processing at elevated temperatures on thiamin and riboflavin in pork and model systems. J Agric Food Chem 55(4):1289–1294

    CAS  Google Scholar 

  24. Butz P, Fernandez A, Fister H, Tauscher B (1997) Influence of high hydrostatic pressure on aspartame: instability at neutral pH. J Agric Food Chem 45(2):203–303

    Google Scholar 

  25. Butz P, Tauscher B (2000) Recent studies on pressure-induced chemical changes in food constituents. High Press Res 19(1):11–18

    Google Scholar 

  26. Butz P, Serfert Y, Garcia AF, Dieterich S, Lindauer R, Bognar A, Tauscher B (2004) Influence of high-pressure treatment at 25 degrees C and 80 degrees C on folates in orange juice and model media. J Food Sci 69(3):S117–S121

    Google Scholar 

  27. Butz P, Koller WD, Tauscher B, Wolf S (1994) Ultra-high pressure processing of onions—chemical and sensory changes. Food Sci Technol LWT 27(5):463–467

    CAS  Google Scholar 

  28. Campus M, Flores M, Martinez A, Toldra F (2008) Effect of high pressure treatment on colour, microbial and chemical characteristics of dry cured loin. Meat Sci 80(4):1174–1181

    CAS  Google Scholar 

  29. Chan JT, Omana DA, Betti M (2011) Application of high processing to improve the functional properties of pale, soft, and texture exudative (PSE)-like turkey meat. Innov Food Sci Emerg Technol 12(3):216–225

    CAS  Google Scholar 

  30. Claeys WL, Van Loey AM, Hendrickx ME (2003) Kinetics of hydroxymethylfurfural, lactulose and furosine formation in milk with different fat content. J Dairy Res 70(1):85–90

    CAS  Google Scholar 

  31. Corrales M, Butz P, Tauscher B (2008) Anthocyanin condensation reactions under high hydrostatic pressure. Food Chem 110(3):627–635

    CAS  Google Scholar 

  32. Cruz-Romero M, Kerry JP, Kelly AL (2008) Fatty acids, volatile compounds and colour changes in high-pressure treated oysters (Crassostrea gigas). Innov Food Sci Emerg Technol 9(1):54–61

    CAS  Google Scholar 

  33. Dalmadi I, Poyak-Feher K, Farkas J (2007) Effects of pressure- and thermal-pasteurization on volatiles of some berry fruits. High Press Res 27(1):169–172

    CAS  Google Scholar 

  34. Danielewicz-Ferchmin I, Ferchmin AR (1998) Hydration of ions at various temperatures: the role of electrostriction. J Chem Phys 109(6):2394–2402

    CAS  Google Scholar 

  35. De la Fuente MA, Olano A, Casal V, Juarez M (1999) Effects of high pressure and heat treatment on the mineral balance of goat’s milk. J Dairy Res 66(1):65–72

    Google Scholar 

  36. Dede S, Alpas H, Bayindirli A (2007) High hydrostatic pressure treatment and storage of carrot and tomato juices: antioxidant activity and microbial safety. J Sci Food Agric 87(5):773–782

    CAS  Google Scholar 

  37. de Roeck A, Duvetter T, Fraeye I, Van der Plancken I, Sila DN, Van Leoy A, Hendrickx M (2009) Effect of high-pressure/high-temperature processing on chemical pectin conversions in relation to fruit and vegetable texture. Food Chem 115(1):207–213

    Google Scholar 

  38. De Vleeschouwer K, Van der Plancken I, Van Loey A, Hendrickx ME (2010) The effect of high pressure-high temperature processing conditions on acrylamide formation and other Maillard reaction compounds. J Agric Food Chem 58(22):11740–11748

    Google Scholar 

  39. Disteche A (1959) pH measurements with a glass electrode withstanding 1500 kg/cm2 hydrostatic pressure. Rev Sci Instrum 30(6):474–478

    CAS  Google Scholar 

  40. Drude P, Nernst W (1894) Über elektrostriktion durch freie ionen. Phys Chem 15:79–85

    Google Scholar 

  41. Elyanov BS, Hamann SD (1975) Some quantitative relationships for ionization reactions at high-pressures. Aust J Chem 28(5):945–954

    CAS  Google Scholar 

  42. Evans MG, Polanyi M (1937) On the introduction of thermodynamic variables into reaction kinetics. Trans Faraday Soc 33(1):448–452

    CAS  Google Scholar 

  43. Eyring H (1935) The activated complex and the absolute rate of chemical reactions. Chem Rev 17(1):65–77

    CAS  Google Scholar 

  44. Famelart MH, Gaucheron F, Mariette F, Le Graet Y, Raulot K, Boyaval E (1997) Acidification of pressure-treated milk. Int Dairy J 7(5):325–330

    CAS  Google Scholar 

  45. Frank O, Heberle I, Schieberle P, Hofmann T (2002) Influence of high hydrostatic pressure on the formation of intense chromophores formed from pentoses and primary amino acids. Int Congr Ser 1245:387–388

    Google Scholar 

  46. Frey B, Janko C, Ebel N, Ebel N, Meister S, Schlucker E, Meyer-Pittroff R, Fietkau R, Hermann M, Gaipl US (2008) Cells under pressure—treatment of Eukaryotic cells with high hydrostatic pressure, from physiologic aspects to pressure induced cell death. Curr Med Chem 15(23):2329–2336

    CAS  Google Scholar 

  47. Frey B, Hartmann H, Hermann M, Mayer-Pittroff R, Sommer K, Bluemelhuber G (2006) Microscopy under pressure—an optical chamber system for fluorescence microscopic analysis of living cells under high hydrostatic pressure. Microsc Res Tech 69(2):65–72

    Google Scholar 

  48. Gupta R, Balasubramaniam VM, Schwartz SJ, Francis DM (2010) Storage stability of lycopene in tomato juice subjected to combined pressure-heat treatments. J Agric Food Chem 58(14):8305–8313

    CAS  Google Scholar 

  49. Gobert J, Glomb MA (2009) Degradation of glucose: reinvestigation of reactive α-dicarbonyl compounds. J Agric Food Chem 57(18):8591–8597

    CAS  Google Scholar 

  50. Hamann SD (1981) Properties of electrolyte solutions at high pressure and temperatures. Phys Chem Earth 13(4):89–111

    Google Scholar 

  51. Hamann SD (1982) The influence of pressure on ionization equilibria in aqueous-solutions. J Solution Chem 11(1):63–68

    CAS  Google Scholar 

  52. Hamann SD, Linton M (1974) Influence of pressure on the ionization of substituted phenols. J Chem Soc, Faraday Trans 1(70):2239–2249

    Google Scholar 

  53. Hartmann C, Mathmann K, Delgado A (2006) Mechanical stresses in cellular structures under high pressure. Innov Food Sci Emerg Technol 7(1–2):1–12

    Google Scholar 

  54. Hayert M, Perrier-Cornet JM, Gervais P (1999) A simple method of measuring the pH of acid solutions under high pressure. J Phys Chem A 103(12):1785–1789

    CAS  Google Scholar 

  55. Hendrickx ME, Ludikhuyze L, Van den Broeck I, Weemaes C (1998) Effects of high pressure on enzymes related to food quality. Trends Food Sci Technol 9(5):197–203

    CAS  Google Scholar 

  56. Hicks DT, Pivarnik LF, McDermott R, Richard N, Hoover DG, Kniel KE (2009) Consumer awareness and willingness to pay for high-pressure processing of ready-to-eat food. J Food Sci Educ 8(2):32–38

    Google Scholar 

  57. Hill VM, Ledward DA, Ames JM (1996) Influence of high hydrostatic pressure and pH on the rate of Maillard browning in a glucose–lysine system. J Agric Food Chem 44(2):594–598

    CAS  Google Scholar 

  58. Hill VM, Isaacs NS, Ledward DA, Ames JM (1999) Effects of high hydrostatic pressure on the volatile components of a glucose-lysine model system. J Agric Food Chem 47(9):3675–3681

    CAS  Google Scholar 

  59. Huang TC, Fu HY, Ho CT (1996) Mechanistic studies of tetramethylpyrazine formation under weak acidic conditions and high hydrostatic pressure. J Agric Food Chem 44(1):240–246

    CAS  Google Scholar 

  60. Indrawati O, Arroqui C, Messagie I, Nguyen MT, Van Loey A, Hendrickx M (2004) Comparative study on pressure and temperature stability of 5-methyltetrahydrofolic acid in model systems and in food products. J Agric Food Chem 52(3):485–492

    CAS  Google Scholar 

  61. Isaacs NS (1981) Liquid phase high pressure chemistry. Wiley, Toronto

    Google Scholar 

  62. Isaacs NS, Coulson M (1996) Effect of pressure on processes modelling the Maillard reaction. J Phys Org Chem 13:639–644

    Google Scholar 

  63. Jandhyala M, Barbosa-Canovas GV, Swanson BG (2002) Note: retention of ascorbic acid, thiamine and pyridoxal after high hydrostatic pressure or thermal treatment. Food Sci Technol Int 8(5):303–308

    CAS  Google Scholar 

  64. Jenner G (2002) Comparative activation modes in organic synthesis. The specific role of high pressure. Tetrahedron 58(26):5185–5202

    CAS  Google Scholar 

  65. Jenner G (2004) Role of the medium in high pressure organic reactions. A review. Mini-Rev Org Chem 1(1):9–26

    CAS  Google Scholar 

  66. Juan B, Barron LJR, Ferragut V, Guamis B, Trujillo AJ (2007) Changes in the volatile composition of a semihard ewe milk cheese induced by high-pressure treatment of 300 MPa. J Agric Food Chem 55(3):747–754

    CAS  Google Scholar 

  67. Khoshtariya DE, Zahl A, Dolidze TD, Neubrand A, van Eldik R (2004) Local dense structural heterogeneities in liquid water from ambient to 300 MPa pressure: evidence for multiple liquid–liquid transitions. Eur J Chem Phys PhysChem 5(9):1398–1404

    CAS  Google Scholar 

  68. Kim YS, Park SJ, Cho YH, Park J (2001) Effect of combined treatment of high hydrostatic pressure and mild heat on the quality of carrot juice. J Food Sci 66(9):1355–1360

    CAS  Google Scholar 

  69. Kim HY, Kim SH, Choi MJ, Min SG, Kwak HS (2008) The effect of high pressure-low temperature treatment on physicochemical properties in milk. J Dairy Sci 91(11):4176–4182

    CAS  Google Scholar 

  70. Kitamura Y, Itoh T (1987) Reaction volume of protonic ionization for buffering agents. Prediction of pressure dependence of pH and pOH. J Solution Chem 16(9):715–725

    CAS  Google Scholar 

  71. Kowalczyk W, Hartmann C, Luscher C, Pohl M, Delgado A, Knorr D (2005) Determination of thermophysical properties of foods under high hydrostatic pressure in combined experimental and theoretical approach. Innov Food Sci Emerg Technol 6(3):318–326

    Google Scholar 

  72. Laidler K (2002) Kinetics (chemistry). In: Meyers RA (ed) Encyclopedia of physical science and technology. Academic Press, New York, pp 177–198

  73. Lambert Y, Demazeau G, Largeteau A, Bouvier JM (1999) Changes in aromatic volatile composition of strawberry after high pressure treatment. Food Chem 67(1):7–16

    CAS  Google Scholar 

  74. Leadley C, Tucker G, Fryer P (2008) A comparative study of high pressure sterilization and conventional thermal sterilization: quality effects in green beans. Innov Food Sci Emerg Technol 9(1):70–79

    CAS  Google Scholar 

  75. Lewis CA, Wolfende R (1973) Influence of pressure on equilibrium of hydration of aliphatic aldehydes. J Am Chem Soc 95(20):6685–6688

    CAS  Google Scholar 

  76. Ludikhuyze L, Van Loey A, Indrawati O, Smout C, Hendrickx M (2003) Effects of combined pressure and temperature on enzymes related to quality of fruits and vegetables: from kinetic information to process engineering aspects. Crit Rev Food Sci Nutr 43(5):527–586

    CAS  Google Scholar 

  77. Marcus Y (2005) Electrostriction, ion solvation, and solvent release on ion pairing. J Phys Chem B 109(39):18541–18549

    CAS  Google Scholar 

  78. Marshall WL, Franck EU (1981) Ion product of water substance, 1–10000 bars new international formulation and its background. J Phys Chem Ref Data 10(2):295–304

    CAS  Google Scholar 

  79. Martínez-Monteagudo SI, Gänzle MG, Saldaña MDA (2014) High-pressure and temperature effects on the inactivation of Bacillus amyloliquefaciens, alkaline phosphatase and storage stability of conjugated linoleic acid in milk. Innov Food Sci Emerg Technol. doi:10.1016/j.ifset.2014.05.003

  80. Martinez-Monteagudo SI (2013) Kinetics studies of chemical reactions and quality changes in conjugated linoleic acid (CLA) enriched milk treated with high-pressure sterilization. PhD dissertation, University of Alberta

  81. Martinez-Monteagudo SI, Saldaña MDA, Torres JA, Kennelly JJ (2012) Effect of pressure-assisted thermal sterilization on conjugated linoleic acid (CLA) content in CLA-enriched milk. Innov Food Sci Emerg Technol. 16:291–297

    CAS  Google Scholar 

  82. Martinez-Monteagudo SI, Saldaña MDA (2014) Modeling the retention kinetics of conjugated linoleic acid during high-pressure sterilization of milk. Food Res Int 22:169–176

    Google Scholar 

  83. Martins SF, Jongen WF, van Boekel MJ (2001) A review of Maillard reaction in food and implication to kinetic modelling. Trends Foods Sci Technol 11(9–10):364–373

    Google Scholar 

  84. Mathys A, Knorr D (2009) The properties of water in the pressure–temperature landscape. Food Biophys 4(2):77–82

    Google Scholar 

  85. Mathys A, Reineke K, Heinz V, Knorr D (2009) High pressure thermal sterilization—development and application of temperature controlled spore inactivation studies. High Press Res 29(1):3–7

    Google Scholar 

  86. Matser AA, Krebbers B, van den Berg RW, Bartels PV (2004) Advantages of high pressure sterilisation on quality of food products. Trends Food Sci Technol 15(2):79–85

    CAS  Google Scholar 

  87. Medina-Meza IG, Barnaba C, Barbosa-Canovas GV (2013) Effects of high pressure processing on lipid oxidation: a review. Innov Food Sci Emerg Techol 22:1–10

    Google Scholar 

  88. Molina-Guitierrez A, Stippl V, Delgado A, Ganzle MG, Vogel R (2002) In situ determination of the intercellular pH of Lactococcus lactis and Lactobacillus plantarum during pressure treatment. Appl Environ Microbiol 68(9):4399–4406

    Google Scholar 

  89. Moreno FJ, Villamiel M, Olano A (2003) Effect of high pressure on isomerization and degradation of lactose in alkaline media. J Agric Food Chem 51(7):1894–1896

    CAS  Google Scholar 

  90. Moreno FJ, Molina E, Olano A, Lopez-Fandino R (2003) High-pressure effects on Maillard reaction between glucose and lysine. J Agric Food Chem 51(2):394–400

    CAS  Google Scholar 

  91. Navarro M, Verret C, Pardon P, Moueffak A (2002) Changes in volatile aromatic compounds of strawberry puree treated by high-pressure during storage. High Press Res 22(3–4):693–696

    Google Scholar 

  92. Needs EC, Stenning RA, Gill AL, Ferragut V, Rich GT (2000) High-pressure treatment of milk: effects on casein micelle structure and on enzymic coagulation. J Dairy Res 67(1):31–42

    CAS  Google Scholar 

  93. Neuman RC, Kauzmann W, Zipp A (1973) Pressure-dependence of weak acid ionization in aqueous buffers. J Phys Chem 77(22):2687–2691

    CAS  Google Scholar 

  94. Nguyen MT, Indrawati O, Hendrickx M (2003) Model studies on the stability of folic acid and 5-methyltetrahydrofolic acid degradation during thermal treatment in combination with high hydrostatic pressure. J Agric Food Chem 51(11):3352–3357

    CAS  Google Scholar 

  95. Nguyen MT, Oey I, Hendrickx M, Van Loey A (2006) Kinetics of (6R, 5) 5-formyltetrahydrofolic acid isobaric-isothermal degradation in a model system. Eur Food Res Technol 223(3):325–331

    CAS  Google Scholar 

  96. Oley I, Verlinde P, Hendrickx ME, Van Loey A (2006) Temperature and pressure stability of L-ascorbic acid and/or 6 s 5-methyltetrahydrofolic acid: a kinetic study. Eur Food Res Technol 223(1):71–77

    Google Scholar 

  97. Olsen NV, Grunert KG, Sonne AM (2010) Consumer acceptance of high-pressure and pulsed-electric field: a review. Trends Food Sci Technol 21(9):464–472

    CAS  Google Scholar 

  98. Otero L, Sanz PD (2003) Modelling heat transfer in high pressure food processing: a review. Innov Food Sci Emerg Technol 4(2):121–134

    Google Scholar 

  99. Polanyi M (1937) The transition state in chemical reactions. J Chem Soc 629–635

  100. Polydera AC, Stofores NG, Taoukis PS (2005) Quality degradation kinetics of pasteurized and high pressure processed fresh Naval orange juice: nutritional parameters and shelf life. Innov Food Sci Emerg Technol 6(1):1–9

    Google Scholar 

  101. Polydera AC, Stofores NG, Taoukis PS (2003) Comparative shelf life study and vitamin C loss kinetics in pasteurised and high pressure processed reconstituted orange juice. J Food Eng 6(1):1–9

    Google Scholar 

  102. Porretta S, Birzi A, Ghizzoni C, Vicini E (1995) Effects of ultra-high hydrostatic pressure treatments on the quality of tomato juice. Food Chem 52(1):35–41

    CAS  Google Scholar 

  103. Rajan S, Ahn J, Balasubramaniam VM, Yousef AE (2006) Combined pressure-thermal inactivation kinetics of Bacillus amyloliquefaciens spores in egg patty mince. J Food Prot 69(4):853–860

    CAS  Google Scholar 

  104. Ramirez R, Ramirez J, Perez-Lamela C, Torres JA (2009) Reaction kinetics analysis of chemical changes in pressure-assisted thermal processing. Food Eng Rev 1(1):16–30

    CAS  Google Scholar 

  105. Rastogi N, Raghavarao KMS, Balasubramaniam VM, Niranjan K, Knorr D (2007) Opportunities and challenges in high pressure processing of foods. Crit Rev Food Sci 47:69–112

    CAS  Google Scholar 

  106. Rivas-Cañedo A, Juez-Ojeda C, Nuñez M, Fernández-García E (2011) Effects of high-pressure processing on the volatile compounds of sliced cooked pork shoulder during refrigerated storage. Food Chem 124(1):749–758

    Google Scholar 

  107. Samaranayake CP, Sastry SK (2010) In situ measurement of pH under high pressure. J Phys Chem B 114(42):13326–13332

    CAS  Google Scholar 

  108. Sancho F, Lambert Y, Demazeau G, Largeteau A, Boovier JM, Narbonne JF (1999) Effect of ultra-high hydrostatic pressure on hydrosoluble vitamins. J Food Eng 39(3):247–253

    Google Scholar 

  109. Sander FV (1943) The effects of high pressure on the inversion of sucrose and the mutarotation of glucose. J Biol Chem 148(2):311–319

    CAS  Google Scholar 

  110. Schindler S, Krings U, Berger RG, Orlien V (2010) Aroma development in high pressure treated beef and chicken meat compared to raw and heat treated. Meat Sci 86(2):317–323

    CAS  Google Scholar 

  111. Schrader K, Buchheim W, Morr CV (1997) High pressure effect on the colloidal phosphate and the structural integrity of micellar casein in milk. 1. High pressure dissolution of colloidal calcium phosphate in heated milk systems. Nahrung-Food 41(3):133–138

    CAS  Google Scholar 

  112. Schwarzenbolz U, Henle T (2010) Non-enzymatic modifications of proteins under high-pressure treatment. High Press Res 30(4):458–465

    CAS  Google Scholar 

  113. Schwarzenbolz U, Klostermeyer H, Henle T (2000) Maillard-type reactions under high hydrostatic pressure: formation of pentosidine. Eur Food Res Technol 211(3):208–210

    CAS  Google Scholar 

  114. Schwarzenbolz U, Klostermeyer H, Henle T (2002) Maillard reaction under high hydrostatic pressure: studies on the formation of protein-bound amino acid derivatives. Int Congr Ser 1245:223–227

    CAS  Google Scholar 

  115. Serrano J, Velazquez G, Lopetcharat K, Ramirez JA, Torres JA (2004) Effect of moderate pressure treatments on microstructure, texture, and sensory properties of stirred-curd cheddar shreds. J Dairy Sci 87(10):3172–3182

    CAS  Google Scholar 

  116. Simonin H, Duranton F, de Lamballerie M (2012) New insights into high-pressure processing of meat and meat products. Compr Rev Food Sci Food 11(3):285–306

    CAS  Google Scholar 

  117. Sizer CE, Balasubramaniam VM, Ting E (2002) Validating high-pressure processes for low-acid foods. Food Technol Chic 56(2):36–38

    Google Scholar 

  118. Smeller L (2002) pressure–temperature phase diagrams of biomolecules. BBA Protein Struct Mol Enzymol 1595(1–2):11–29

    CAS  Google Scholar 

  119. Smelt JP (1998) Recent advances in the microbiology of high pressure processing. Trends Food Sci Technol 9(4):152–158

    CAS  Google Scholar 

  120. Stippl VM, Delgado A, Becker TM (2005) Ionization equilibria at high pressure. Eur Food Res Technol 221(1–2):151–156

    CAS  Google Scholar 

  121. Tamaoka T, Itoh N, Hayashi R (1991) High pressure effect on Maillard reaction. Agric Biol Chem 55(8):2071–2074

    CAS  Google Scholar 

  122. Tauscher B (1995) Pasteurization of food by hydrostatic high-pressure—chemical aspects. Eur Food Res Technol 200(1):3–13

    CAS  Google Scholar 

  123. Terefe NS, Matthies K, Simons L, Versteeg C (2009) Combined high pressure-mild temperature processing for optimal retention of physicochemical and nutritional quality of strawberries (Fragaria × ananassa). Innov Food Sci Emerg Technol 10(3):297–307

    CAS  Google Scholar 

  124. Torres JA, Velazquez G (2005) Commercial opportunities and research challenges in the high pressure processing of foods. J Food Eng 67(1–2):95–112

    Google Scholar 

  125. Torres B, Tiwari BK, Patras A, Cullen PJ, Brunton N, O’Donnell CP (2011) Stability of anthocyanins and ascorbic acid of high pressure processed blood orange juice during storage. Innov Food Sci Emerg Technol 12(2):93–97

    CAS  Google Scholar 

  126. van Boekel MAJS (2008) Kinetic modeling of reactions in foods. CRC Press, Boca Raton, Florida

  127. van Boekel MAJS (2001) Kinetic aspects of the Maillard reaction: a critical review. Nahrung/Food 45(3):150–159

    Google Scholar 

  128. Van Loey A, Ooms V, Weemaes C, Van den Broeck I, Ludikhuyze L, Indrawati O, Denis S, Hendrickx M (1998) Thermal and pressure–temperature degradation of chlorophyll in broccoli (Brassica oleracea L. italica) juice: a kinetic study. J Agric Food Chem 46(12):5289–5294

    Google Scholar 

  129. Van den Broeck I, Ludikhuyze L, Weemaes C, Van Loey A, Hendrickx M (1998) Kinetics for isobaric-isothermal degradation of L-ascorbic acid. J Agric Food Chem 46(5):2001–2006

    Google Scholar 

  130. Vazquez-Landaverde PA, Qian MC, Torres JA (2007) Kinetic analysis of volatile formation in milk subjected to pressure-assisted thermal treatments. J Food Sci 72(7):E389–E398

    CAS  Google Scholar 

  131. Vazquez-Landaverde PA, Torres JA, Qian MC (2006) Effect of high-pressure-moderate-temperature processing on the volatile profile of milk. J Agric Food Chem 54(24):9184–9192

    CAS  Google Scholar 

  132. Verbeyst L, Bogaerts R, Van der Plancken I, Hendrickx M, Van Loey A (2013) Modelling of vitamin C degradation during thermal and high-pressure treatments of red fruits. Food Bioprocess Technol 6(4):1015–1023

    CAS  Google Scholar 

  133. Verbeyst L, Oey I, Van der Plancken I, Hendrickx M, Van Loey A (2010) Kinetic study on the thermal and pressure degradation of anthocyanins in strawberries. Food Chem 123(2):269–274

    CAS  Google Scholar 

  134. Verbeyst L, Van Crombruggen K, Van der Plancken I, Hendrickx ME, Van Loey A (2011) Anthocyanin degradation kinetics during thermal and high pressure treatments of raspberries. J Food Eng 105(3):513–521

    CAS  Google Scholar 

  135. Verlinde P, Indrawati O, Hendrickx M, Van Loey A (2008) High-pressure treatments induce folate polyglutamate profile changes in intact broccoli (Brassica oleracea L. cv. Italica) tissue. Food Chem 111(1):220–229

    CAS  Google Scholar 

  136. Viljanen K, Lille M, Heinio RL, Buchert J (2011) Effect of high-pressure processing on volatile composition and odour of cherry tomato puree. Food Chem 129(4):1759–1765

    CAS  Google Scholar 

  137. Walstra P (2002) Physical chemistry of foods. Publisher Routledge, New York

    Google Scholar 

  138. Weemaes C, Ooms V, Indrawati O, Ludikhuyze L, Van den Broeck I, Van Loey A, Hendrickx M (1999) Pressure–temperature degradation of green color in broccoli juice. J Foods Sci 64(3):504–508

    CAS  Google Scholar 

  139. Wentorf RH, De Vries RC (2001) High-pressure synthesis (chemistry). In: Meyers RA (ed) Encyclopedia of physical science and technology. Academic Press, New York, pp 365–379

Download references

Acknowledgments

The authors thank to Natural Sciences and Engineering Research Council of Canada (NSERC) and Alberta Livestock and Meat Agency (ALMA) for funding this project, and Martinez-Monteagudo expresses his gratitude to CONACYT (Mexico) and I2T2 (Mexico) for the financial support (nr. 187497).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marleny D. A. Saldaña.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Monteagudo, S.I., Saldaña, M.D.A. Chemical Reactions in Food Systems at High Hydrostatic Pressure. Food Eng Rev 6, 105–127 (2014). https://doi.org/10.1007/s12393-014-9087-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-014-9087-6

Keywords

Navigation