Advertisement

Food Engineering Reviews

, Volume 6, Issue 4, pp 150–162 | Cite as

Stevia rebaudiana Bertoni: An alternative Sugar Replacer and Its Application in Food Industry

  • Mohammed Abdalbasit A. Gasmalla
  • Ruijin YangEmail author
  • Xiao Hua
Review Article

Abstract

Stevia rebaudiana Bertoni is a branched bushy shrub of the Asteraceae family, native to the Amambay region in the northeast of Paraguay. Stevioside and rebaudioside A are the main sweetening compounds of interest, which are commercially produced by both chemical and physical processes. S. rebaudiana has a great potential as a new agricultural crop since consumer demand for health promoting foods is increasing, and proximate analysis has shown that Stevia also contains substantial amounts of proteins, potassium, and other essential nutrients. Stevia can be taken in as a carbohydrate diet source without calories. This paper provides an overview of structure and properties of stevioside, various extraction techniques, applicability in food industry, and recent technological advances achieved.

Keywords

Steviol glycosides Extraction Structure Application Sweetener Industry 

Notes

Acknowledgments

This work was supported by the Key Project of National Natural Science Fund (31230057), the National Key Technology R&D Program in the 12th Five year Plan of China (2011BAD23B03), the Open Research Project of Key Laboratory of Carbohydrate Chemistry and Biotechnology Ministry of Education (KLCCB-KF201206), and the Natural Science Foundation of Jiangsu Province (BK2011149).

References

  1. 1.
    Pól J, Hohnová B, Hyötyläinen T (2007) Characterisation of Stevia Rebaudiana by comprehensive two-dimensional liquid chromatography time-of-flight mass spectrometry. J Chromatogr 1150:85–92Google Scholar
  2. 2.
    Fukushima S, Arai M, Nakanowatari J, Hibino T, Okuda M, Ito N (1983) Differences in susceptibility to sodium saccharin among various strains of rats and other animal species. Gann 74:8–20Google Scholar
  3. 3.
    Whysner J, Williams GM (1996) Saccharin mechanistic data and risk assessment: urine composition, enhanced cell proliferation, and tumor promotion. Pharmacol Ther 71:225–252Google Scholar
  4. 4.
    Dybing E (2002) Development and implementation of the IPCS conceptual framework for evaluating mode of action of chemical carcinogens. Toxicol 181:121–125Google Scholar
  5. 5.
    Authority EFS (2011) Statement of EFSA on the scientific evaluation of two studies related to the safety of artificial sweeteners. EFSA Journal 9: 16 www.efsa.europa.eu/efsajournal
  6. 6.
    Allam A, Nassar A, Besheit S (2001) Nitrogen fertilizer requirements of Stevia rebaudiana bertoni, under Egyptian conditions. Egypt J Agric Res 79:1005–1018Google Scholar
  7. 7.
    Gasmalla MAA, Yang R, Amadou I, Hua X (2014) Nutritional composition of Stevia rebaudiana Bertoni leaf: effect of drying method. Trop J Pharm Res 13:61–65Google Scholar
  8. 8.
    Abou-Arab AE, Abou-Arab AA, Abu-Salem MF (2010) Physico-chemical assessment of natural sweeteners steviosides produced from Stevia rebaudiana Bertoni plant. Afr J Food Sci 4:269–281Google Scholar
  9. 9.
    Hansen H-J (2010) Future use of steviol glycosides: results of a survey in the German beverage industry. J Verbr Lebensm 5:237–239Google Scholar
  10. 10.
    Kienle U (2007) Stevia rebaudiana. Natural sweetness in the bureaucratic jungle. J Culin 5:59–69Google Scholar
  11. 11.
    Kienle U (2010) A natural fabric makes career. J Verbr Lebensm 5:199–203Google Scholar
  12. 12.
    Kroyer G (2010) Stevioside and Stevia-sweetener in food: application, stability and interaction with food ingredients. J Verbr Lebensm 5:225–229Google Scholar
  13. 13.
    Herranz-Lopez M, Barrajon-Catalan E, Beltran-Debon R, Joven J, Micol V (2010) Stevia is a source for alternative sweeteners: potential medicinal effects. Agro Food Ind Hi Tech 21:38–42Google Scholar
  14. 14.
    Crammer B, Ikan R (1986) Sweet glycosides from the stevia plant. Chem Br 22:915Google Scholar
  15. 15.
    Kohda H, Kasai R, Yamasaki K, Murakami K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochemistry 15:981–983Google Scholar
  16. 16.
    Wölwer-Rieck U (2012) The leaves of Stevia rebaudiana (Bertoni), their constituents and the analyses thereof: a review. J Agric Food Chem 60:886–895Google Scholar
  17. 17.
    Carakostas M, Curry L, Boileau A, Brusick D (2008) Overview: the history, technical function and safety of rebaudioside A, a naturally occurring steviol glycoside, for use in food and beverages. Food Chem Toxicol 46:S1–S10Google Scholar
  18. 18.
    Schiffman SS, Sattely-Miller EA, Graham BG, Bennett JL, Booth BJ, Desai N, Bishay I (2000) Effect of temperature, pH, and ions on sweet taste. Physiol Behav 68:469–481Google Scholar
  19. 19.
    Kovylyaeva G, Bakaleinik G, Strobykina IY, Gubskaya V, Sharipova R, Al’Fonsov V, Kataev V, Tolstikov A (2007) Glycosides from Stevia rebaudiana. Chem Nat Compd 43:81–85Google Scholar
  20. 20.
    Joint F WHO Expert Committee on Food Additives (JECFA). Steviol glycosides. In: Compendium of food additive specifications, 73th meeting, FAO JECFA Monographs, vol 10, pp 17–22Google Scholar
  21. 21.
    Kienle U (2010) What is Stevia would you like? Cultivation and production prospects world wide. J Verbr Lebensm 5:241–250Google Scholar
  22. 22.
    Purkayastha S, Markosyan A, Malsagov M (2012) Process for manufacturing a sweetener and use thereof. In: Google Patents No. 8,334,006Google Scholar
  23. 23.
    Magomet M, Tomov T, Somann T, Abelyan VH (2011) Process for manufacturing a sweetener and use thereof. In: Google Patents No. 7,862,845B2Google Scholar
  24. 24.
    Dacome AS, Da Silva CC, Da Costa CE, Fontana JD, Adelmann J, Da Costa SC (2005) Sweet diterpenic glycosides balance of a new cultivar of Stevia rebaudiana (Bert.) Bertoni: isolation and quantitative distribution by chromatographic, spectroscopic, and electrophoretic methods. Proc Biochem 40:3587–3594Google Scholar
  25. 25.
    Bridel M, Lavieille R (1931) The principle of sweetness (Stevia rebaudiana Bertoni) III. Diastatic hydrolysis of steviol and acid hydrolysis of isosteviol. Bull Soc Chem Biol 13:409–412Google Scholar
  26. 26.
    Bridel M, Lavieille R (1931) The principle of sweetness (Stevia rebaudiana Bertoni). Bull Soc Chem Biol 13:636–655Google Scholar
  27. 27.
    Kennelly E (2002) Sweet and non-sweet constituents of Stevia rebaudiana (Bertoni) Bertoni. Stevia, the Genus Stevia. Med Arom Plants Ind Profiles 19:68–85Google Scholar
  28. 28.
    Kolb N, Herrera J, Ferreyra D, Uliana R (2001) Analysis of sweet diterpene glycosides from Stevia rebaudiana: improved HPLC method. J Agric Food Chem 49:4538–4541Google Scholar
  29. 29.
    Geuns J (2003) Stevioside. Phytochemistry 64:913–921Google Scholar
  30. 30.
    Kaneda N, Kasai R, Yamasaki K, Tanaka O (1977) Chemical studies on sweet diterpene-glycosides of Stevia rebaudiana: conversion of stevioside into rebaudioside-A. Chem Pharm Bull 25:2466–2467Google Scholar
  31. 31.
    Kohda H, Kasai R, Yamasaki K, Murakami K, Tanaka O (1976) New sweet diterpene glucosides from Stevia rebaudiana. Phytochem 15:981–983Google Scholar
  32. 32.
    Sakamoto I, Yamasaki K, Tanaka O (1977) Application of 13C NMR spectroscopy to chemistry of natural glycosides: rebaudioside-C, a new sweet diterpene glycoside of Stevia rebaudiana. Chem Pharm Bull 25:844–846Google Scholar
  33. 33.
    Kobayashi M, Horikawa S, Degrandi IH, Mitsuhashi H, Ueno J (1977) Dulcosides A and B, new diterpene glycosides from Stevia rebaudiana. Phytochem 16:1405–1408Google Scholar
  34. 34.
    Ogawa T, Nozaki M, Matsui M (1980) Total synthesis of stevioside. Tetrahedron 36:2641–2648Google Scholar
  35. 35.
    Tanaka O (1982) Steviol-glycosides: new natural sweeteners. Trends Anal Chem 1:246–248Google Scholar
  36. 36.
    Kinghorn A, Nanayakkara NPD, Soejarto D, Medon P, Kamath S (1982) Potential sweetening agents of plant origin: I. Purification of Stevia rebaudiana sweet constituents by droplet counter-current chromatography. J Chromatogr 237:478–483Google Scholar
  37. 37.
    Fullas F, Kim J, Compadre CM, Douglas Kinghorn A (1989) Separation of natural product sweetening agents using overpressured layer chromatography. J Chromatogr 464:213–219Google Scholar
  38. 38.
    Liu J, Li S (1995) Separation and determination of Stevia sweeteners by capillary electrophoresis and high performance liquid chromatography. J Liq Chromatogr 18:1703–1719Google Scholar
  39. 39.
    Mizukami H, Shiiba K, Ohashi H (1982) Enzymatic determination of stevioside in Stevia rebaudiana. Phytochem 21:1927–1930Google Scholar
  40. 40.
    Nikolova-Damyanova B, Bankova V, Popov S (1994) Separation and quantitation of stevioside and rebaudioside a in plant extracts by normal-phase high performance liquid chromatography and thin-layer chromatography: a comparison. Phytochem Anal 5:81–85Google Scholar
  41. 41.
    Kasai R, Yamaguchi H, Tanaka O (1987) High-performance liquid chromatography of glycosides on a new type of hydroxyapatite column. J Chromatogr 407:205–210Google Scholar
  42. 42.
    Hashimoto Y, Moriyasu M, Nakamura S, Ishiguro S, Komuro M (1978) High-performance liquid chromatographic determination Stevia components on a hydrophilic packed column. J Chromatogr 161:403–405Google Scholar
  43. 43.
    Ahmed M, Dobberstein R (1982) Stevia rebaudiana: II. High–performance liquid chromatographic separation and quantitation of stevioside, rebaudioside A and rebaudioside C. J Chromatogr 236:519–522Google Scholar
  44. 44.
    Ahmed M, Dobberstein R, Farnsworth N (1980) Stevia rebaudiana: I. Use of p-bromophenacyl bromide to enhance ultraviolet detection of water-soluble organic acids (steviolbioside and rebaudioside B) in high-performance liquid chromatographic analysis. J Chromatogr 192:387–393Google Scholar
  45. 45.
    Chang SS, Cook JM (1983) Stability studies of stevioside and rebaudioside A in carbonated beverages. J Agric Food Chem 31:409–412Google Scholar
  46. 46.
    Kolb N, Herrera J, Ferreyra D, Uliana R (2001) Analysis of sweet diterpene glycosides from Stevia rebaudiana: Improved HPLC method. J Agric Food Chem 49:4538–4541Google Scholar
  47. 47.
    Vaněk T, Nepovím A, Valíček P (2001) Determination of stevioside in plant material and fruit teas. J Food Compos Anal 14:383–388Google Scholar
  48. 48.
    Choi YH, Kim I, Yoon KD, Lee SJ, Kim CY, Yoo K-P, Choi Y-H, Kim J (2002) Supercritical fluid extraction and liquid chromatographic-electrospray mass spectrometric analysis of stevioside from Stevia rebaudiana leaves. Chromatographia 55:617–620Google Scholar
  49. 49.
    Minne VJ, Compernolle F, Toppet S, Geuns JM (2004) Steviol quantification at the picomole level by high-performance liquid chromatography. J Agric Food Chem 52:2445–2449Google Scholar
  50. 50.
    Rajasekaran T, Ramakrishna A, Udaya Sankar K, Giridhar P, Ravishankar G (2008) Analysis of predominant steviosides in Stevia rebaudiana Bertoni by liquid chromatography/electrospray ionization-mass spectrometry. Food Biotechnol 22:179–188Google Scholar
  51. 51.
    Jaitak V, Bandna BS, Kaul V (2009) An efficient microwave-assisted extraction process of stevioside and rebaudioside-A from Stevia rebaudiana (Bertoni). Phytochem Anal 20:240–245Google Scholar
  52. 52.
    EdP Moraes, Machado NRCF (2008) Clarification of Stevia rebaudiana (Bert.) Bertoni extract by adsorption in modified zeolites. Acta SciTechnol 23:1375–1380Google Scholar
  53. 53.
    Yoda SK, Marques MO, Petenate AJ, Meireles MAA (2003) Supercritical fluid extraction from Stevia rebaudiana Bertoni using CO and CO+ water: extraction kinetics and identification of extracted components. J Food Eng 57:125–134Google Scholar
  54. 54.
    Pól J, Ostrá EV, Karásek P, Roth M, Benešová K, Kotlaříková P, Čáslavský J (2007) Comparison of two different solvents employed for pressurised fluid extraction of stevioside from Stevia rebaudiana: methanol versus water. Anal Bioanal Chem 388:1847–1857Google Scholar
  55. 55.
    Teo CC, Tan SN, Yong JWH, Hew CS, Ong ES (2009) Validation of green-solvent extraction combined with chromatographic chemical fingerprint to evaluate quality of Stevia rebaudiana Bertoni. J Sep Sci 32:613–622Google Scholar
  56. 56.
    Huang X-Y, Fu J-F, Di D-L (2010) Preparative isolation and purification of steviol glycosides from Stevia rebaudiana Bertoni using high-speed counter-current chromatography. Sep Purif Technol 71:220–224Google Scholar
  57. 57.
    Liu J, J-w Li, Tang J (2010) Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts. Food Bioprod Process 88:215–221Google Scholar
  58. 58.
    Puri M, Sharma D, Tiwari AK (2011) Downstream processing of stevioside and its potential applications. Biotech adv 29:781–791Google Scholar
  59. 59.
    Choudhari SM, Ananthanarayan L (2007) Enzyme aided extraction of lycopene from tomato tissues. Food Chem 102:77–81Google Scholar
  60. 60.
    Li S, Li W, Xiao Q-y, Xia Y (2012) Transglycosylation of stevioside to improve the edulcorant quality by lower substitution using cornstarch hydrolyzate and CGTase. Food Chem 138:2064–2069Google Scholar
  61. 61.
    Ye F, Yang R, Hua X, Shen Q, Zhao W, Zhang W (2012) Modification of stevioside using transglucosylation activity of Bacillus amyloliquefaciens α-amylase to reduce its bitter aftertaste. LWT-Food Science and Technology 51:524–530Google Scholar
  62. 62.
    Musa A, Miao M, Zhang T, Jiang B (2014) Biotransformation of stevioside by Leuconostoc citreum SK24. 002 alternansucrase acceptor reaction. Food Chem 146:23–29Google Scholar
  63. 63.
    Elkins R (1997) Stevia: nature’s sweetener. Woodland Publishing, CaliforniaGoogle Scholar
  64. 64.
    Kroyer G (2010) Stevioside and Stevia-sweetener in food: application, stability and interaction with food ingredients. J. Verbr. Lebensm. 5:225–229Google Scholar
  65. 65.
    Parpinello GP, Versari A, Castellari M, Galassi S (2001) Stevioside as a replacement of sucrose in peach juice: sensory evaluation. J Sens Stud 16:471–484Google Scholar
  66. 66.
    Prakash I, Upreti M, Dubois G, King G, Klucik J, San Miguel R (2008) Sweetness enhancers, sweetness enhanced sweetener compositions, methods for their formulation, and uses. In: WO Patent 2,008,147,727Google Scholar
  67. 67.
    Prakash I, Upreti M (2008) Stevioside polymorphic and amorphous forms, methods for their formulation, and uses. In: WO Patent 2,008,147,725Google Scholar
  68. 68.
    De S, Mondal S, Banerjee S (2013) Stevioside: technology, applications and health. Wiley, New YorkGoogle Scholar
  69. 69.
    Lindsay R (2007) Coke teams up with Cargill to launch new sweetener. Times, online, May 31Google Scholar
  70. 70.
    Goyal S, Goyal R (2010) Stevia (Stevia rebaudiana) a bio-sweetener: a review. Int J Food Sci Nutr 61:1–10Google Scholar
  71. 71.
    Jayaraman S, Manoharan MS, Illanchezian S (2008) In-vitro antimicrobial and antitumor activities of Stevia rebaudiana (Asteraceae) leaf extracts. Trop J Pharmaceut Res 7:1143–1149Google Scholar
  72. 72.
    Tadhani M, Subhash R (2006) Preliminary studies on Stevia rebaudiana leaves: proximal composition, mineral analysis and phytochemical screening. J. Med. Sci 6:321–326Google Scholar
  73. 73.
    Koyama E, Kitazawa K, Ohori Y, Izawa O, Kakegawa K, Fujino A, Ui M (2003) In vitro metabolism of the glycosidic sweeteners, stevia mixture and enzymatically modified stevia in human intestinal microflora. Food Chem Toxicol 41:359–374Google Scholar
  74. 74.
    Hossain MA, Siddique A, Mizanur Rhaman S, Hossain A (2010) Chemical composition of the essential oils of Stevia rebaudiana Bertoni leaves. Asian J Trad Med 5:56–61Google Scholar
  75. 75.
    Puri M, Sharma D (2011) Antibacterial activity of stevioside towards food-borne pathogenic bacteria. Eng Life Sci 11:326–329Google Scholar
  76. 76.
    Tadhani MB, Subhash R (2006) In vitro antimicrobial activity of Stevia Rebaudiana Bertoni leaves. Trop J Pharm Res 5:557–560Google Scholar
  77. 77.
    Jayaraman S, Manoharan MS, Illanchezian S (2008) In-vitro antimicrobial and antitumor activities of Stevia Rebaudiana (Asteraceae) leaf extracts trop. J Pharm Res 7:1143–1149Google Scholar
  78. 78.
    Ghosh S, Subudhi E, Nayak S (2008) Antimicrobial assay of Stevia rebaudiana Bertoni leaf extracts against 10 pathogens. Int J Integr Biol 2:27Google Scholar
  79. 79.
    Lisak K, Lenc M, Jeličić I, Božanić R (2012) Sensory evaluation of the strawberry flavored yoghurt with stevia and sucrose addition. Hrvatski časopis za prehrambenu tehnologiju, biotehnologiju i nutricionizam 7:39–43Google Scholar
  80. 80.
    Saniah K, Samsiah MS (2012) The application of Stevia as sugar substitute in carbonated drinks using response surface methodology. J Trop Agric and Fd Sc 40:23–34Google Scholar
  81. 81.
    Carvalho ACGd, Oliveira RCGd, Navacchi MFP, Costa CEMd, Mantovani D, Dacôme AS, Seixas FAV, Costa SCd (2013) Evaluation of the potential use of rebaudioside-A as sweetener for diet jam. Food Sci Technol (Campinas) 33:555–560Google Scholar
  82. 82.
    Palazzo A, Carvalho M, Efraim P, Bolini H (2011) The determination of isosweetness concentrations of sucralose, rebaudioside and neotame as sucrose substitutes in new diet chocolate formulations using the time-intensity analysis. J Sens Stud 26:291–297Google Scholar
  83. 83.
    Ramakrishna A, Ravishankar GA (2013) Diterpene Sweeteners (Steviosides). In: Ramawat KG, Mérillon JM (eds) Natural products. Springer, Berlin, pp 3193–3203Google Scholar
  84. 84.
    Geuns J, Augustijns P, Mols R, Buyse JG, Driessen B (2003) Metabolism of stevioside in pigs and intestinal absorption characteristics of stevioside, rebaudioside A and steviol. Food Chem Toxicol 41:1599–1607Google Scholar
  85. 85.
    Geuns JM, Malheiros RD, Moraes VM, Decuypere EM-P, Compernolle F, Buyse JG (2003) Metabolism of stevioside by chickens. J Agric Food Chem 51:1095–1101Google Scholar
  86. 86.
    Koyama E, Sakai N, Ohori Y, Kitazawa K, Izawa O, Kakegawa K, Fujino A, Ui M (2003) Absorption and metabolism of glycosidic sweeteners of stevia mixture and their aglycone, steviol, in rats and humans. Food Chem Toxicol 41:875–883Google Scholar
  87. 87.
    Wasuntarawat C, Temcharoen P, Toskulkao C, Mungkornkarn P, Suttajit M, Glinsukon T (1998) Developmental toxicity of steviol, a metabolite of stevioside, in the hamster. Drug Chem Toxicol 21:207–222Google Scholar
  88. 88.
    Chan P, Tomlinson B, Chen YJ, Liu JC, Hsieh MH, Cheng JT (2000) A double-blind placebo-controlled study of the effectiveness and tolerability of oral stevioside in human hypertension. Br J Clin Pharmacol 50:215–220Google Scholar
  89. 89.
    Liu J-C, Kao P-K, Chan P, Hsu Y-H, Hou C-C, Lien G-S, Hsieh M-H, Chen Y-J, Cheng J-T (2002) Mechanism of the antihypertensive effect of stevioside in anesthetized dogs. Pharmacology 67:14–20Google Scholar
  90. 90.
    Jeppesen PB, Gregersen S, Alstrup K, Hermansen K (2002) Stevioside induces antihyperglycaemic, insulinotropic and glucagonostatic effects in vivo: studies in the diabetic Goto-Kakizaki (GK) rats. Phytomed 9:9–14Google Scholar
  91. 91.
    Hsieh M-H, Chan P, Sue Y-M, Liu J-C, Liang TH, Huang T-Y, Tomlinson B, Chow MSS, Kao P-F, Chen Y-J (2003) Efficacy and tolerability of oral stevioside in patients with mild essential hypertension: a two-year, randomized, placebo-controlled study. Clin Ther 25:2797–2808Google Scholar
  92. 92.
    Lee C-N, Wong K-L, Liu J-C, Chen Y-J, Cheng J-T, Chan P (2001) Inhibitory effect of stevioside on calcium influx to produce antihypertension. Planta Med 67:796–799Google Scholar
  93. 93.
    Jeppesen PB, Gregersen S, Poulsen C, Hermansen K (2000) Stevioside acts directly on pancreatic β cells to secrete insulin: actions independent of cyclic adenosine monophosphate and adenosine triphosphate—sensitive K+-channel activity. Metabolism 49:208–214Google Scholar
  94. 94.
    Yasukawa K, Kitanaka S, Seo S (2002) Inhibitory effect of stevioside on tumor promotion by 12-O-tetradecanoylphorbol-13-acetate in two-stage carcinogenesis in mouse skin. Biol Pharm Bull 25:1488–1490Google Scholar
  95. 95.
    Atteh J, Onagbesan O, Tona K, Decuypere E, Geuns J, Buyse J (2008) Evaluation of supplementary stevia (Stevia rebaudiana, bertoni) leaves and stevioside in broiler diets: effects on feed intake, nutrient metabolism, blood parameters and growth performance. J Anim Physiol Anim Nutr 92:640–649Google Scholar
  96. 96.
    Geeraert B, Crombe F, Hulsmans M, Benhabiles N, Geuns J, Holvoet P (2009) Stevioside inhibits atherosclerosis by improving insulin signaling and antioxidant defense in obese insulin-resistant mice. Int J Obes 34:569–577Google Scholar
  97. 97.
    de Slavutzky SMB (2010) Stevia and sucrose effect on plaque formation. J Verbr Lebensm 5:213–216Google Scholar
  98. 98.
    Geuns J (2002) Safety evaluation of Stevia and stevioside. Stud Nat Prod Chem 27:299–319Google Scholar
  99. 99.
    Huxtable RJ (2002) Pharmacology and toxicology of stevioside, rebaudioside A, and steviol. Stevia: The Genus Stevia. Taylor and Francis, London, Engl/New York (NY), pp 160–177Google Scholar
  100. 100.
    Mitsuhashi H (1976) Safety of stevioside. Tama biochemical Co. Ltd. Report on safety of Stevia, pp 9–10Google Scholar
  101. 101.
    Medon P, Pezzuto J, Hovanec-Brown J, Nanayakkara N, Soejarto D, Kamath S, Kinghorn A (1982) Safety assessment of some Stevia rebaudiana sweet principles. In: Fed Proc 41:1568Google Scholar
  102. 102.
    Toskulkac C, Chaturat L, Temcharoen P, Glinsukon T (1997) Acute toxicity of stevioside, a natural sweetener, and its metabolite, steviol, in several animal species. Drug Chem Toxicol 20:31–44Google Scholar
  103. 103.
    Akashi H, Yokoyama Y (1975) Dried-leaf extracts of stevia, toxicological test. Shokuhin Kogyo 18:34–43Google Scholar
  104. 104.
    Aze Y, Toyoda K, Imaida K, Hayashi S, Imazawa T, Hayashi Y, Takahashi M (1991) Subchronic oral toxicity study of stevioside in F344 rats. Bull Nat Inst Hyg Sc 109:48–54Google Scholar
  105. 105.
    Yodyingyuad V, Bunyawong S (1991) Effect of stevioside on growth and reproduction. Hum Rep 6:158–165Google Scholar
  106. 106.
    Yamada A, Ohgaki S, Noda T, Shimizu M (1985) Chronic toxicity study of dietary stevia extracts in F344 rats. J Food Hyg Soc Jpn 26:169–183Google Scholar
  107. 107.
    Xili L, Chengjiany B, Eryi X, Reiming S, Yuengming W, Haodong S, Zhiyian H (1992) Chronic oral toxicity and carcinogenicity study of stevioside in rats. Food Chem Toxicol 30:957–965Google Scholar
  108. 108.
    Toyoda K, Matsui H, Shoda T, Uneyama C, Takada K, Takahashi M (1997) Assessment of the carcinogenicity of stevioside in F344 rats. Food ChemToxicol 35:597–603Google Scholar
  109. 109.
    Additives WF (1999) Series 42: safety evaluation of certain food additives “Stevioside’’. In: Genf, pp 119–143Google Scholar
  110. 110.
    Mishra P, Singh R, Kumar U, Prakash V (2010) Stevia rebaudiana–A magical sweetener. Global J Biotech & Biochem 5:62–74Google Scholar
  111. 111.
    Serio L (2010) The Stevia rebaudiana, an alternative sugar. Phytothérapie 8:26–32Google Scholar
  112. 112.
    Kaushik R, Narayanan P, Vasudevan V, Muthukumaran G, Usha A (2010) Nutrient composition of cultivated stevia leaves and the influence of polyphenols and plant pigments on sensory and antioxidant properties of leaf extracts. J Food Sci Technol 47:27–33Google Scholar
  113. 113.
    Wood JRHB, Allerton R, Diehl HW, Fletcher HG Jr (1955) Stevioside. I. The structure of the glucose moieties. J Org Chem 20:875–883Google Scholar
  114. 114.
    Erkucuk A, Akgun I, Yesil-Celiktas O (2009) Supercritical CO2 extraction of glycosides from Stevia rebaudiana leaves: identification and optimization. J Supercrit Fluids 51:29–35Google Scholar
  115. 115.
    Liu J, Ong C, Li S (1997) Subcritical fluid extraction of Stevia sweeteners from Stevia rebaudiana. J Chromatogr Sci 35:446–450Google Scholar
  116. 116.
    Puri M, Kaur A, Schwarz WH, Singh S, Kennedy J (2011) Molecular characterization and enzymatic hydrolysis of naringin extracted from kinnow peel waste. Int J Biol Macromol 48:58–62Google Scholar
  117. 117.
    Jung S-W, Kim T-K, Lee K-W, Lee Y-H (2007) Catalytic properties of β-cyclodextrin glucanotransferase from alkalophilicBacillus sp. BL-12 and intermolecular transglycosylation of stevioside. Biotechnol Bioprocess Eng 12:207–212Google Scholar
  118. 118.
    Ye F, Yang R, Hua X, Shen Q, Zhao W, Zhang W (2014) Modification of steviol glycosides using α-amylase. LWT—Food Sci Technol. doi: 10.1016/j.lwt.2013.12.045
  119. 119.
    Kochikyan V, Markosyan A, Abelyan L, Balayan A, Abelyan V (2006) Combined enzymatic modification of stevioside and rebaudioside A. Appl Biochem Microbiol 42:31–37Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Mohammed Abdalbasit A. Gasmalla
    • 1
    • 2
  • Ruijin Yang
    • 1
    Email author
  • Xiao Hua
    • 1
  1. 1.State Key Laboratory of Food Science and TechnologyJiangnan UniversityWuxiChina
  2. 2.Department of Nutrition and Food Technology, Faculty of Science and TechnologyOmdurman Islamic UniversityKhartoumSudan

Personalised recommendations