Skip to main content
Log in

Better Nutrients and Therapeutics Delivery in Food Through Nanotechnology

  • Review Article
  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

The efficacy of nutraceuticals or therapeutics is primarily a function of their conserved biological activity and availability. As changing the size of fabricated materials into nanoscale, the stability and the solubility of valuable nutrients can tremendously be improved; and their effective and controlled delivery via nano-vehicles can be provided. In this review, we addressed the latest approaches for nano-encapsulation and entrapment of hydrophobic bioactive molecules and other nano-vehicles that proved their success in drug delivery applications and summarized their applications in the food industry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Acosta E (2009) Bioavailability of nanoparticles in nutrient and nutraceutical delivery. Curr Opin Colloid Interface Sci 14(1):3–15

    Article  CAS  Google Scholar 

  2. Agnihotri SA, Mallikarjuna NN, Aminabhavi TM (2004) Recent advances on chitosan-based micro- and nanoparticles in drug delivery. J Control Release 100(1):5–28

    Article  CAS  Google Scholar 

  3. Aquanova (2011) NovaSOL solutions, Germany. http://www.aquanova.de/. Accessed 7 July 2011

  4. Banville C, Vuillemard JC, Lacroix C (2000) Comparison of different methods for fortifying Cheddar cheese with vitamin D. Int Dairy J 10(5–6):375–382

    Article  CAS  Google Scholar 

  5. Barauskas J, Johnsson M, Tiberg F (2005) Self-assembled lipid superstructures: beyond vesicles and liposomes. Nano Lett 5(8):1615–1619

    Article  CAS  Google Scholar 

  6. BASF Company (2011) LycoVit, Germany. http://www.basf.com. Accessed 20 August 2011

  7. Benech RO, Kheadr EE, Laridi R, Lacroix C, Fliss I (2002) Inhibition of Listeria innocua in cheddar cheese by addition of nisin Z in liposomes or by in situ production in mixed culture. Appl Environ Microbiol 68(8):3683–3690

    Article  CAS  Google Scholar 

  8. Betancourt T, Doiron A, Homan KA, Brannon-Peppas L (2009) Controlled release and nanotechnology. In: de Villiers MM, Aramwit P, Kwon GS (eds) Nanotechnology in drug delivery. Springer, New York, pp 283–313

    Chapter  Google Scholar 

  9. Bianco A, Prato M (2003) Can carbon nanotubes be considered useful tools for biological applications? Adv Mater 15(20):1765–1768

    Article  CAS  Google Scholar 

  10. BioDelivery Sciences International (2011) http://www.bdsi.com. In: New BiogeodeTM cochleates could make healthy nutrients more available in processed foods.PR Newsvire (September 30, 2003).http://www.prnewswire.com/news-releases/new-biogeodetm-cochleates-could-make-healthy-nutrients-more-available-in-processed-foods-71192402.html. Accessed 20 August 2011

  11. Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R, Watkins R (2008) Applications and implications of nanotechnologies for the food sector. Food Addit Contam 25(3):241–258

    Article  CAS  Google Scholar 

  12. Chen HD, Weiss JC, Shahidi F (2006) Nanotechnology in nutraceuticals and functional foods. Food Technol 60(3):30–36

    CAS  Google Scholar 

  13. Chen LY, Remondetto GE, Subirade M (2006) Food protein-based materials as nutraceutical delivery systems. Trends Food Sci Technol 17(5):272–283

    Article  CAS  Google Scholar 

  14. Cryo Microscopy Group (2011) Liposome picture, UK. http://www.cryomicroscopygroup.org.uk/. Accessed 7 July 2011

  15. Dagani R (2002) Sugary ways to make nanotubes dissolve. Chem Eng News 80(28):38–39

    Google Scholar 

  16. de Kruif CG (1998) Supra-aggregates of casein micelles as a prelude to coagulation. J Dairy Sci 81(11):3019–3028

    Article  Google Scholar 

  17. de Kruif CG, Tuinier R (2005) Stabilization of food colloids by polymers. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. The Royal Society of Chemistry, Cambridge, pp 61–73

    Google Scholar 

  18. Degnan AJ, Luchansky JB (1992) Influence of beef tallow and muscle on the antilisterial activity of pediocin ach and liposome-encapsulated pediocin ach. J Food Protect 55(7):552–554

    CAS  Google Scholar 

  19. Desai KG, Liu C, Park HJ (2006) Characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres as affected by chitosan molecular weight. J Microencapsul 23(1):79–90

    Article  CAS  Google Scholar 

  20. Desai KG, Park HJ (2006) Effect of manufacturing parameters on the characteristics of vitamin C encapsulated tripolyphosphate-chitosan microspheres prepared by spray-drying. J Microencapsul 23(1):91–103

    Article  CAS  Google Scholar 

  21. Desai KGH, Park HJ (2005) Encapsulation of vitamin C in tripolyphosphate cross-linked chitosan microspheres by spray drying. J Microencapsul 22(2):179–192

    Article  CAS  Google Scholar 

  22. Drusch S (2007) Sugar beet pectin: A novel emulsifying wall component for microencapsulation of lipophilic food ingredients by spray-drying. Food Hydrocoll 21(7):1223–1228

    Article  CAS  Google Scholar 

  23. Esmaili M, Ghaffari SM, Moosavi-Movahedi Z, Atri MS, Sharifizadeh A, Farhadi M, Yousefi R, Chobert JM, Haertle T, Moosavi-Movahedi AA (2011) Beta casein-micelle as a nano vehicle for solubility enhancement of curcumin; food industry application. LWT-Food Sci Technol 44(10):2166–2172

    Article  CAS  Google Scholar 

  24. Fendler JH (2001) Colloid chemical approach to nanotechnology. Korean J Chem Eng 18(1):1–13

    Article  CAS  Google Scholar 

  25. Feynman RP (1960) There’s plenty of room at the bottom. Eng Sci 23(5):22–36

    Google Scholar 

  26. Garti N, Amar-Yuli I, Spernath A, Hoffman RE (2005) Solubilization and bioavailability of nutraceuticals by new self-assembled nanosized liquid structures in food systems. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. Royal Society of Chemistry, Cambridge, pp 395–419

    Google Scholar 

  27. Garti N, Yuli-Amar I (2008) Micro- and nano-emulsions for delivery of functional food ingredients. In: Garti N (ed) Delivery and controlled release of bioactives in foods and nutraceuticals. Woodhead Publishing, Boca Raton, Fl, pp 149–183

    Chapter  Google Scholar 

  28. Graveland-Bikker JF, de Kruif CG (2005) Unique milk protein based nanotubes: food and nanotechnology meet. In: 1st international symposium on delivery of functionality in complex food systems, Lausanne, Switzerland, pp 196–203

  29. Graveland-Bikker JF, Ipsen R, Otte J, de Kruif CG (2004) Influence of calcium on the self-assembly of partially hydrolyzed alpha-lactalbumin. Langmuir 20(16):6841–6846

    Article  CAS  Google Scholar 

  30. Graveland-Bikker JF, Koning RI, Koerten HK, Geels RBJ, Heeren RMA, de Kruif CG (2009) Structural characterization of alpha-lactalbumin nanotubes. Soft Matter 5(10):2020–2026

    Article  CAS  Google Scholar 

  31. Graveland-Bikker JF, Schaap IAT, Schmidt CF, de Kruif CG (2006) Structural and mechanical study of a self-assembling protein nanotube. Nano Lett 6(4):616–621

    Article  CAS  Google Scholar 

  32. Gursoy RN, Benita S (2004) Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 58(3):173–182

    Article  Google Scholar 

  33. Hakansson A, Zhivotovsky B, Orrenius S, Sabharwal H, Svanborg C (1995) Apoptosis induced by a human-milk protein. Proc Nat Acad Sci USA 92(17):8064–8068

    Article  CAS  Google Scholar 

  34. Hiraoka Y, Segawa T, Kuwajima K, Sugai S, Murai N (1980) Alpha-lactalbumin—a calcium metalloprotein. Biochem Biophys Res Commun 95(3):1098–1104

    Article  CAS  Google Scholar 

  35. Holt C (1992) Structure and stability of bovine casein micelles. Adv Protein Chem 43:63–151

    Article  CAS  Google Scholar 

  36. Holt C (1998) Casein micelle substructure and calcium phosphate interactions studied by sephacryl column chromatography. J Dairy Sci 81(11):2994–3003

    Article  CAS  Google Scholar 

  37. Holt C, Horne DS (1996) The hairy casein micelle: evolution of the concept and its implications for dairy technology. Neth Milk Dairy J 50(2):85–111

    CAS  Google Scholar 

  38. Horne DS (1998) Casein interactions: casting light on the black boxes, the structure in dairy products. Int Dairy J 8(3):171–177

    Article  CAS  Google Scholar 

  39. Horne DS (2002) Casein structure, self-assembly and gelation. Curr Opin Colloid Interface Sci 7(5–6):456–461

    Article  CAS  Google Scholar 

  40. Hu M, Li Y, Decker EA, Xiao H, McClements DJ (2010) Influence of tripolyphosphate cross-linking on the physical stability and lipase digestibility of chitosan-coated lipid droplets. J Agric Food Chem 58(2):1283–1289. doi:10.1021/jf903270y

    Article  CAS  Google Scholar 

  41. Huang WJ, Taylor S, Fu KF, Lin Y, Zhang DH, Hanks TW, Rao AM, Sun YP (2002) Attaching proteins to carbon nanotubes via diimide-activated amidation. Nano Lett 2(4):311–314

    Article  CAS  Google Scholar 

  42. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354(6348):56–58

    Article  CAS  Google Scholar 

  43. Ipsen R, Otte J, Qvist KB (2001) Molecular self-assembly of partially hydrolysed alpha-lactalbumin resulting in strong gels with a novel microstructure. J Dairy Res 68(2):277–286

    Article  CAS  Google Scholar 

  44. Jakobsson M, Sivik B (1994) Oxidative stability of fish-oil included in a microemulsion. J Dispers Sci Technol 15(5):611–619

    Article  CAS  Google Scholar 

  45. Jo YS, Kim M-C, Kim DK, Kim CJ, Jeong Y-K, Kim KJ, Muhammed M (2004) Mathematical modelling on the controlled-release of indomethacin-encapsulated poly (lactic acid-co-ethylene oxide) nanospheres. Nanotechnology 15:1186–1194

    Article  CAS  Google Scholar 

  46. Joseph T, Morrison M (2006) Nanotechnology in agriculture and food. A Nanoforum report. Institute of Nanotechnology. http://www.nanoforum.org. Accessed 20 August 2011

  47. Kang S, Pinault M, Pfefferle LD, Elimelech M (2007) Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 23(17):8670–8673

    Article  CAS  Google Scholar 

  48. Kheadr EE, Vuillemard LC, El-Deeb SA (2002) Acceleration of cheddar cheese lipolysis by using liposome-entrapped lipases. J Food Sci 67(2):485–492

    Article  CAS  Google Scholar 

  49. Kirby C (1991) Microencapsulation and controlled delivery of food ingredients. Food Sci Technol Today 5:74–78

    Google Scholar 

  50. Kirby CJ, Brooker BE, Law BA (1987) Accelerated ripening of cheese using liposome-encapsulated enzyme. Int J Food Sci Technol 22(4):355–375

    CAS  Google Scholar 

  51. Klinkesorn U, McClements DJ (2010) Impact of lipase, bile salts, and polysaccharides on properties and digestibility of tuna oil multilayer emulsions stabilized by lecithin-chitosan. Food Biophys 5(2):73–81

    Article  Google Scholar 

  52. Law BA, King JS (1985) Use of liposomes for proteinase addition to cheddar cheese. J Dairy Res 52(1):183–188

    Article  CAS  Google Scholar 

  53. Leser ME, Michel M, Watzke HJ (2003) ‘Food goes nano’-new horizons for food structure research. Food colloids, biopolymers and materials. Royal Society of Chemistry, Cambridge

  54. Lin Y, Taylor S, Li HP, Fernando KAS, Qu LW, Wang W, Gu LR, Zhou B, Sun YP (2004) Advances toward bioapplications of carbon nanotubes. J Mater Chem 14(4):527–541

    Article  CAS  Google Scholar 

  55. Liu CG, Desai KGH, Chen XG, Park HJ (2005) Preparation and characterization of nanoparticles containing trypsin based on hydrophobically modified chitosan. J Agric Food Chem 53(5):1728–1733

    Article  CAS  Google Scholar 

  56. Moraru CI, Panchapakesan CP, Huang QR, Takhistov P, Liu S, Kokini JL (2003) Nanotechnology: a new frontier in food science. Food Technol 57(12):24–29

    Google Scholar 

  57. Mozafari MR, Flanagan J, Matia-Merino L, Awati A, Omri A, Suntres ZE, Singh H (2006) Recent trends in the lipid-based nanoencapsulation of antioxidants and their role in foods. J Sci Food Agric 86(13):2038–2045

    Article  CAS  Google Scholar 

  58. Mozafari MR, Johnson C, Hatziantoniou S, Demetzos C (2008) Nanoliposomes and their applications in food nanotechnology. J Liposome Res 18(4):309–327

    Article  Google Scholar 

  59. National Nanotechnology Initiative-NNI (2011). What is Nanotechnology, USA. http://www.nano.gov/nanotech-101/what/definition. Accessed 20 August 2011

  60. Nepal D, Geckeler KE (2007) Proteins and carbon nanotubes: close encounter in water. Small 3(7):1259–1265

    Article  CAS  Google Scholar 

  61. NSSL ingredients (2011) NutraLease, Israel. http://www.nutralease.com. Accessed 20 August 2011

  62. Permyakov EA, Berliner LJ (2000) alpha-Lactalbumin: structure and function. FEBS Lett 473(3):269–274

    Article  CAS  Google Scholar 

  63. Pompeo F, Resasco DE (2002) Water solubilization of single-walled carbon nanotubes by functionalization with glucosarnine. Nano Lett 2(4):369–373

    Article  CAS  Google Scholar 

  64. Roco MC (2005) International perspective on government nanotechnology funding in 2005. J Nanoparticle Res 7(6):707–712

    Article  Google Scholar 

  65. Roco MC, Mirkin CA, Hersam MC (2010) Nanotechnology research directions for societal needs in 2020. NSF, WTEC report, Berlin & Boston, Springer. http://www.wtec.org/nano2/Nanotechnology_Research_Directions_to_2020/. Accessed 20 August 2011

  66. Rusli JK, Sanguansri L, Augustin MA (2006) Stabilization of oils by microencapsulation with heated protein-glucose syrup mixtures. J Am Oil Chem Soc 83(11):965–972

    Article  CAS  Google Scholar 

  67. Sagar GH, Arunagirinathan MA, Bellare JR (2007) Self-assembled surfactant nano-structures important in drug delivery: a review. Indian J Exp Biol 45(2):133–159

    CAS  Google Scholar 

  68. Schmidt DG (1980) Colloidal aspects of casein. Neth Milk Dairy J 34(1):42–64

    CAS  Google Scholar 

  69. Semo E, Kesselman E, Danino D, Livney YD (2007) Casein micelle as a natural nano-capsular vehicle for nutraceuticals. Food Hydrocol 21(5–6):936–942

    Article  CAS  Google Scholar 

  70. Shemen Industries (2011) Shemen Industries Ltd., Israel. http://www.shemen.co.il. Accessed 20 August 2011

  71. Shu B, Yu WL, Zhao YP, Liu XY (2006) Study on microencapsulation of lycopene by spray-drying. J Food Eng 76(4):664–669

    Article  CAS  Google Scholar 

  72. Singh H (2005) Milk protein functionality in food colloids. In: Dickinson E (ed) Food colloids: interactions, microstructure and processing. The Royal Society of Chemistry, Cambridge, pp 179–193

    Google Scholar 

  73. Singh P, Campidelli S, Giordani S, Bonifazi D, Bianco A, Prato M (2009) Organic functionalisation and characterisation of single-walled carbon nanotubes. Chem Soc Rev 38(8):2214–2230

    Article  CAS  Google Scholar 

  74. Singh R, Pantarotto D, McCarthy D, Chaloin O, Hoebeke J, Partidos CD, Briand JP, Prato M, Bianco A, Kostarelos K (2005) Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors. J Am Chem Soc 127(12):4388–4396

    Article  CAS  Google Scholar 

  75. Sozer N, Kokini JL (2009) Nanotechnology and its applications in the food sector. Trends Biotechnol 27(2):82–89

    Article  CAS  Google Scholar 

  76. Spernath A, Yaghmur A, Aserin A, Hoffman RE, Garti N (2002) Food-grade microemulsions based on nonionic emulsifiers: media to enhance lycopene solubilization. J Agric Food Chem 50(23):6917–6922

    Article  CAS  Google Scholar 

  77. Takhistov P (2006) Nanotechnology and its application for the food industry. In: Hui YH (ed) Handbook of food science, technology, and engineering, vol 3. Taylor & Francis., Boca Raton, pp 127–121–118

  78. Taylor TM, Davidson PM, Bruce BD, Weiss J (2005) Liposomal nanocapsules in food science and agriculture. Crit Rev Food Sci Nutr 45(7–8):587–605

    Article  CAS  Google Scholar 

  79. Thompson AK, Couchoud A, Singh H (2009) Comparison of hydrophobic and hydrophilic encapsulation using liposomes prepared from milk fat globule-derived phospholipids and soya phospholipids. Dairy Sci Technol 89(1):99–113

    Article  CAS  Google Scholar 

  80. Vauther C, Couvreau P (2000) Development of polysaccharide nanoparticles as novel drug carrier systems. In: Wise DL (ed) Handbook of pharmaceutical controlled release technology. Marcel Dekker, New York, pp 413–430

    Google Scholar 

  81. Walstra P, Geurts TJ, Noomen A, Jellma A, van Boekel MAJS (1999) Dairy technology: principles of milk properties and processes. Marcel Dekker, New York

    Google Scholar 

  82. Wang X, Zhu KX, Zhou HM (2011) Immobilization of glucose oxidase in alginate-chitosan microcapsules. Int J Mol Sci 12(5):3042–3054

    Article  CAS  Google Scholar 

  83. Weiss J, Takhistov P, McClements J (2006) Functional materials in food nanotechnology. J Food Sci 71(9):R107–R116

    Article  CAS  Google Scholar 

  84. Were LM, Bruce BD, Davidson PM, Weiss J (2003) Size, stability, and entrapment efficiency of phospholipid nanocapsules containing polypeptide antimicrobials. J Agric Food Chem 51(27):8073–8079

    Article  CAS  Google Scholar 

  85. Zhang Y, Bai YH (2010) Functionalized carbon nanotubes for potential medicinal applications. Drug Discov Today 15(11–12):428–435

    Article  CAS  Google Scholar 

  86. Zimet P, Rosenberg D, Livney YD (2011) Re-assembled casein micelles and casein nanoparticles as nano-vehicles for omega-3 polyunsaturated fatty acids. Food Hydrocol 25(5):1270–1276

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kumar Mallikarjunan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaya-Celiker, H., Mallikarjunan, K. Better Nutrients and Therapeutics Delivery in Food Through Nanotechnology. Food Eng Rev 4, 114–123 (2012). https://doi.org/10.1007/s12393-012-9050-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-012-9050-3

Keywords

Navigation