Skip to main content

Advertisement

Log in

A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products

  • Published:
Food Engineering Reviews Aims and scope Submit manuscript

Abstract

Given the complexity in composition and the various environmental conditions to which foods and pharmaceuticals are exposed during processing and storage, stability, functionality, and quality are key attributes that deserve careful attention. Quality and stability of foods and pharmaceuticals are mainly affected by environmental conditions such as temperature, humidity, and time, and for processing conditions (e.g., shear, pressure) under which they may undergo physical and chemical transformations. Glass transition is a key phenomenon which is useful to understand how external conditions affect physical changes on materials. Consequently, theories that predict and describe the glass transition phenomenon are of a great interest not only for the food industry but also it extends to the pharmaceutical and polymer industries. It is important to emphasize that the materials of relevance in these industries are interchangeably sharing similar issues on functionality and their association with the glass transition phenomenon. Development of new materials and understanding the physicochemical behavior of existing ones require a scientific foundation that translates into safe and high-quality foods, improved quality of pharmaceuticals and nutraceuticals with lower risk to patients, and functional efficacy of polymers used in food and medicinal products. This review addresses the glass transition phenomenon from a kinetics and thermodynamics standpoint by presenting existing models that are able to estimate the glass transition temperature. It also explores traditional and novel methods used for the characterization of the glass transition phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Abiad MG (2009) PhD Dissertation. Purdue University, West Lafayette, IN

  2. Ablett S, Darke AH, Izzard MJ, Lillford PJ (1993) Studies of the glass transition in malto-oligomers. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Leicestershire

    Google Scholar 

  3. Adam G, Gibbs JH (1965) On the temperature dependence of cooperative relaxation properties in glass-forming liquids. J Chem Phys 43:139–146

    Article  CAS  Google Scholar 

  4. Alie J, Menegotto J, Cardon P, Duplaa H, Caron A, Lacabanne C, Bauer M (2004) Dielectric study of the molecular mobility and the isothermal crystallization kinetics of an amorphous pharmaceutical drug substance. J Pharm Sci 93:218–233

    Article  CAS  Google Scholar 

  5. Al-Muhtaseb AH, McMinn WAM, Magee TRA (2002) Moisture sorption isotherm characteristics of food products: a review. Food Bioprod Process 80:118–128

    Article  CAS  Google Scholar 

  6. Ambarkhane AV, Pincott K, Buckton G (2005) The use of inverse gas chromatography and gravimetric vapour sorption to study transitions in amorphous lactose. Int J Pharm 294:129–135

    Article  CAS  Google Scholar 

  7. Andronis V, Zografi G (1998) The molecular mobility of supercooled amorphous indomethacin as a function of temperature and relative humidity. Pharm Res 15:835–842

    Article  CAS  Google Scholar 

  8. Anese M, Shtylla I, Torreggiani D, Maltini E (1996) Water activity and viscosity—relations with glass transition temperatures in model food systems. Thermochim Acta 275(1):131–137

    Article  CAS  Google Scholar 

  9. Angell CA (1997) Why C1 = 16–17 in the WLF equation is physical—and the fragility of polymers. Polymer 38:6261–6266

    Article  CAS  Google Scholar 

  10. Angell CA, Sare JM, Sare EJ (1978) Glass transition temperatures for simple molecular liquids and their binary solutions. J Phys Chem 82:2622–2629

    Article  CAS  Google Scholar 

  11. Attenburrow G, Davies AP (1993) The mechanical properties of cereal based foods in and around the glassy state. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Leicestershire, pp 317–331

    Google Scholar 

  12. Backfolk K, Holmes R, Ihalainen P, Sirvio P, Triantafillopoulos N, Peltonen J (2007) Determination of the glass transition temperature of latex films: comparison of various methods. Polym Test 26:1031–1040

    Article  CAS  Google Scholar 

  13. Baeurle SA, Hotta A, Gusev AA (2006) On the glassy state of multiphase and pure polymer materials. Polymer 47:6243–6253

    Article  CAS  Google Scholar 

  14. Ball P (1999) Glasses go critical. Nature 399:207

    Article  CAS  Google Scholar 

  15. Becker O, Simon GP, Rieckmann T, Forsythe J, Rosu R, Völker S, O’Shea M (2001) Dielectric relaxation spectroscopy of reactively blended amorphous poly(ethylene terephthalate)–poly(ethylene naphthalate) films. Polymer 42:1921–1929

    Article  CAS  Google Scholar 

  16. Bemiller JN, Whistler RL (2004) Carbohydrates. In: Fennema OR (ed) Food chemistry, 3rd edn. Marcel Dekker, New York

    Google Scholar 

  17. Bengtzelius U, Gotze W, Sjolander A (1984) Dynamics of supercooled liquids and the glass transition. J Phys C Solid State Phys 17:5915–5934

    Article  CAS  Google Scholar 

  18. Bianchi U (1971) Pressure dependence of glass transition temperature in polymers. Rheol Acta 10:213

    Article  Google Scholar 

  19. Bianchi U, Turturro A, Basile G (1967) Pressure effects on glass transition in polymers. II. A study of the factors affecting dTg/dP values. J Phys Chem 71:3555–3558

    Article  CAS  Google Scholar 

  20. Binnig G, Quate CF, Gerber C (1986) Atomic force microscope. Phys Rev Lett 56:930–934

    Article  Google Scholar 

  21. Blanchard L-P, Hesse J, Malhotra SL (1974) Effect of molecular weight on glass transition by differential scanning calorimetry. Can J Chem 52:3170–3175

    Article  CAS  Google Scholar 

  22. Bliznyuk VN, Assender HE, Briggs GAD (2002) Surface glass transition temperature of amorphous polymers. A new insight with SFM. Macromolecules 35:6613–6622

    Article  CAS  Google Scholar 

  23. Boller A, Schick C, Wunderlich B (1995) Modulated differential scanning calorimetry in the glass transition region. Thermochim Acta 266:97–111

    Article  CAS  Google Scholar 

  24. Boonyai P, Bhandari B, Howes T (2005) Measurement of glass–rubber transition temperature of skim milk powder by static mechanical test. Dry Technol 23:1499–1514

    Article  Google Scholar 

  25. Boonyai P, Howes T, Bhandari B (2007) Instrumentation and testing of a thermal mechanical compression test for glass-rubber transition analysis of food powders. J Food Eng 78:1333–1342

    Article  Google Scholar 

  26. Bouchaud J-P, Biroli G (2004) On the Adam-Gibbs-Kirkpatrick-Thirumalai-Wolynes scenario for the viscosity increase in glasses. J Chem Phys 121:7347–7354

    Article  CAS  Google Scholar 

  27. Boyd RH (1985) Relaxation processes in crystalline polymers: experimental behaviour—a review. Polymer 26:323–347

    Article  CAS  Google Scholar 

  28. Boyd RH (1985) Relaxation processes in crystalline polymers: molecular interpretation—a review. Polymer 26:1123–1133

    Article  CAS  Google Scholar 

  29. Boyer RF, Spencer RS (1945) Thermal expansion and second-order transition effects in high polymers: part II. Theory. J Appl Phys 16:594–607

    Article  CAS  Google Scholar 

  30. Boyer RF, Spencer RS (1946) Second-order transition effects in rubber and other high polymers. In: Mark H, Whitby GS (eds) Scientific progress in the field of rubber and synthetic elastomers. Interscience, New York, pp 1–55

    Google Scholar 

  31. Brown ME (1988) Introduction to thermal analysis: techniques and applications. Chapman and Hall, London

    Google Scholar 

  32. Bucci C, Fieschi R (1964) Ionic thermoconductivity: method for the investigation of polarization in insulators. Phys Rev Lett 12:16–19

    Article  Google Scholar 

  33. Bucci C, Fieschi R, Guidi G (1966) Ionic thermocurrents in dielectrics. Phys Rev 148:816–823

    Article  CAS  Google Scholar 

  34. Butler MF, Cameron RE (2000) A study of the molecular relaxations in solid starch using dielectric spectroscopy. Polymer 41:2249–2263

    Article  CAS  Google Scholar 

  35. Campanella OH, Peleg M (2002) Squeezing flow viscometry for nonelastic semiliquid foods—theory and applications. Crit Rev Food Sci Nutr 42:241–264

    Article  Google Scholar 

  36. Cengel YA, Boles MA (1994) Thermodynamics: an engineering approach, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  37. Chan RK, Pathmanathan K, Johari GP (1986) Dielectric relaxations in the liquid and glassy states of glucose and its water mixtures. J Phys Chem 90:6358–6362

    Article  CAS  Google Scholar 

  38. Chung HJ, Lim ST (2006) Physical aging of amorphous starches (a review). Starch 58(12):599–610

    Article  CAS  Google Scholar 

  39. Coburn JC, Boyd RH (1986) Dielectric relaxation in poly (ethylene terephthalate). Macromolecules 19:2238–2245

    Article  CAS  Google Scholar 

  40. Comte S, Calvet R, Dodds JA, Balard H (2005) Surface properties of low specific surface powders using inverse gas chromatography. Powder Technol 157:39–47

    Article  CAS  Google Scholar 

  41. Correia NT, Ramos JJM, Descamps M, Collins G (2001) Molecular mobility and fragility in indomethacin: a thermally stimulated depolarization current study. Pharm Res 18:1767–1774

    Article  CAS  Google Scholar 

  42. Couchman PR, Karasz FE (1978) A classical thermodynamic discussion of the effect of composition on glass-transition temperatures. Macromolecules 11:117–119

    Article  CAS  Google Scholar 

  43. Dammert RM, Maunu SL, Maurer FHJ, Neelov IM, Niemel S, Sundholm F, Wästlund C (1999) Free volume and tacticity in polystyrenes. Macromolecules 32:1930–1938

    Article  CAS  Google Scholar 

  44. Debenedetti PG, Stillinger FH (2001) Supercooled liquids and the glass transition. Nature 410:259–267

    Article  CAS  Google Scholar 

  45. del-Val JJ, Alegria A, Colmenero J, Barandiarán JM (1986) Thermally stimulated depolarization current (TSDC) study of molecular motions in the glass-transition region of polyarylate (PAr). Polymer 27:1771–1776

    Article  CAS  Google Scholar 

  46. DiMarzio EA (1990) The glass temperature of polymer blends. Polymer 31:2294–2298

    Article  CAS  Google Scholar 

  47. DiMarzio EA, Gibbs JH (1958) Chain stiffness and the lattice theory of polymer phases. J Chem Phys 28:807–813

    Article  CAS  Google Scholar 

  48. DiMarzio EA, Gibbs JH (1959) Glass temperature of copolymers. J Polym Sci 40:121–131

    Article  CAS  Google Scholar 

  49. DiMarzio EA, Gibbs JH (1963) Molecular interpretation of glass temperature depression by plasticizers. J Polym Sci A Gen Pap 1:1417–1428

    Article  CAS  Google Scholar 

  50. Dinelli F, Buenviaje C, Overney RM (2000) Glass transitions of thin polymeric films: speed and load dependence in lateral force microscopy. J Chem Phys 113:2043–2048

    Article  CAS  Google Scholar 

  51. Ding X-z, Liu X-h, Wu Q-c, He Y-z (1999) Thermodynamic and kinetic characteristics of glass transition in an amorphous alloy Pd77.5Ni6.~Si16.5. Chin Phys Lett 16:358–360

    Article  CAS  Google Scholar 

  52. Diogo HP, Ramos JJM (2008) Slow molecular mobility in the crystalline and amorphous solid states of glucose as studied by thermally stimulated depolarization currents (TSDC). Carbohydr Res 343:2797–2803

    Article  CAS  Google Scholar 

  53. Donnet JB, Custodero E, Wang TK, Hennebert G (2002) Energy site distribution of carbon black surfaces by inverse gas chromatography at finite concentration conditions. Carbon 40:163–167

    Article  CAS  Google Scholar 

  54. Donth EJ (2001) The glass transition. Springer, New York

  55. Doolittle AK (1951) Studies in Newtonian flow. II. The dependence of the viscosity of liquids on free-space. J Appl Phys 22:1471–1475

    Article  CAS  Google Scholar 

  56. Duddu S, Monte PD (1997) Effect of glass transition temperature on the stability of lyophilized formulations containing a chimeric therapeutic monoclonal antibody. Pharm Res 14:591–595

    Article  CAS  Google Scholar 

  57. Faivre A, Niquet G, Maglione M, Fornazero J, Jal JF, David L (1999) Dynamics of sorbitol and maltitol over a wide time-temperature range. Eur Phys J B Condens Matter Complex Syst 10:277–286

    Article  CAS  Google Scholar 

  58. Ferry JD (1980) Viscoelastic properties of polymers, 3rd edn. Wiley, New York

    Google Scholar 

  59. Ferry JD, Stratton RA (1960) The free volume interpretation of the dependence of viscosities and viscoelastic relaxation times on concentration, pressure, and tensile strain. J Colloid Polym Sci 171:107–111

    CAS  Google Scholar 

  60. Flory PJ (1956) Statistical thermodynamics of semi-flexible chain molecules. Proc R Soc Lond A Math Phys Sci 234:60–73

  61. Folmer JCW, Franzen S (2003) Study of polymer glasses by modulated differential scanning calorimetry in the undergraduate physical chemistry laboratory. J Chem Educ 80:813–818

    CAS  Google Scholar 

  62. Fox TG (1956) Influence of diluent and of copolymer composition on the glass temperature of a polymer system. Bull Am Phys Soc 1:123

    CAS  Google Scholar 

  63. Fox TG, Flory PJ (1950) Second-order transition temperatures and related properties of polystyrene. I. Influence of molecular weight. J Appl Phys 21:581–591

    Article  CAS  Google Scholar 

  64. Fox TG, Flory PJ (1951) Intrinsic viscosity relations for polystyrene. J Am Chem Soc 73:1915–1920

    Article  CAS  Google Scholar 

  65. Fox TG, Flory PJ (1954) The glass temperature and related properties of polystyrene. Influence of molecular weight. J Polym Sci 14:315–319

    Article  CAS  Google Scholar 

  66. Fox TG, Loshaek S (1955) Influence of molecular weight and degree of crosslinking on the specific volume and glass temperature of polymers. J Polym Sci 15:371–390

    Article  CAS  Google Scholar 

  67. Fredrickson GH, Andersen HC (1984) Kinetic Ising model of the glass transition. Phys Rev Lett 53:1244–1247

    Article  Google Scholar 

  68. Fujita H, Rishimoto A (1958) Diffusion-controlled stress relaxation in polymers. II. Stress relaxation in swollen polymers. J Polym Sci 28:547–567

    Article  CAS  Google Scholar 

  69. Galop M (1997) Characterization of polymers using the thermally stimulated current technique. J Therm Anal 49:107–114

    Article  CAS  Google Scholar 

  70. Ge S, Pu Y, Zhang W, Rafailovich M, Sokolov J, Buenviaje C, Buckmaster R, Overney RM (2000) Shear modulation force microscopy study of near surface glass transition temperatures. Phys Rev Lett 85:2340–2343

    Article  CAS  Google Scholar 

  71. Genin N, René F (1995) Analyse du Rôle de la Transition Vitreuse dans les Procédés de Conservation Agro-alimentaires. J Food Eng 26:391–408

    Article  Google Scholar 

  72. Gibbs JH, DiMarzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28:373–383

    Article  CAS  Google Scholar 

  73. Gil-Zambrano JL, Juhasz C (1981) Thermally stimulated discharge currents in polyvinyl butyral films. J Phys D Appl Phys 14:1661–1670

    Article  CAS  Google Scholar 

  74. Glans JH, Turner DT (1981) Glass transition elevation of polystyrene by crosslinks. Polymer 22:1540–1543

    Article  CAS  Google Scholar 

  75. Glass AS, Larsen JW (1993) Inverse gas chromatography of glassy polymer surfaces. Macromolecules 26:6354–6358

    Article  CAS  Google Scholar 

  76. Goldstein M (1985) Glass temperature mixing relations and thermodynamics. Macromolecules 18:277–280

    Article  CAS  Google Scholar 

  77. Gordon M, Taylor JS (1952) Ideal copolymers and the second-order transitions of synthetic rubbers I. Non-crystalline copolymers. J Appl Chem 2:493–500

    Article  CAS  Google Scholar 

  78. Gotze W, Sjogren L (1987) The glass transition singularity. Z Phys B Condens Matter 65:415–427

    Article  Google Scholar 

  79. Gotze W, Sjogren L (1992) Relaxation processes in supercooled liquids. Rep Prog Phys 55:241–370

    Article  Google Scholar 

  80. Gugenberger F, Heid R, Meingast C, Adelmann P, Braun M, Wühl H, Haluska M, Kuzmany H (1992) Glass transition in single-crystal C-60 studied by high-resolution dilatometry. Phys Rev Lett 69:3774–3777

    Article  CAS  Google Scholar 

  81. Hammerschmidt JA, Gladfelter WL, Haugstad G (1999) Probing polymer viscoelastic relaxations with temperature-controlled friction force microscopy. Macromolecules 32:3360–3367

    Article  CAS  Google Scholar 

  82. Hancock BC, Zografi G (1994) The relationship between the glass transition temperature and the water content of amorphous pharmaceutical solids. Pharm Res 11:471–477

    Article  CAS  Google Scholar 

  83. Hancock BC, Shamblin SL, Zografi G (1995) Molecular mobility of amorphous pharmaceutical solids below their glass transition temperatures. Pharm Res 12(6):799–806

    Article  CAS  Google Scholar 

  84. Haynie DT (2008) Biological thermodynamics, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  85. Hill VL, Craig DQM, Feely LC (1998) Characterisation of spray-dried lactose using modulated differential scanning calorimetry. Int J Pharm 161:95–107

    Article  CAS  Google Scholar 

  86. Hutchinson JM (1995) Physical aging of polymers. Prog Polym Sci 20(4):703–760

    Article  CAS  Google Scholar 

  87. Hutchinson JM, Montserrat S (1996) The application of modulated differential scanning calorimetry to the glass transition of polymers. I. A single-parameter theoretical model and its predictions. Thermochim Acta 286:263–296

    Article  CAS  Google Scholar 

  88. Ihalainen P, Backfolk K, Sirviö P, Peltonen J (2007) Thermal analysis and topographical characterization of latex films by scanning probe microscopy. J Appl Phys 102:029901

    Article  CAS  Google Scholar 

  89. Jean YC, Mallon PE, Schrader DM (2003) Introduction to positron and positron chemistry. In: Jean YC, Mallon PE, Schrader DM (eds) Principles and applications of positron & positronium chemistry. World Scientific, Singapore, pp 1–16

    Google Scholar 

  90. Jenckel E, Heusch R (1953) Lowering the freezing temperature of organic glasses with solvents. Kolloid-Z 130:89–105

    Article  CAS  Google Scholar 

  91. Kalichevsky MT, Blanshard JMV (1992) A study of the effect of water on the glass transition of 1:1 mixtures of amylopectin, casein and gluten using DSC and DMTA. Carbohydr Polym 19:271–278

    Article  Google Scholar 

  92. Kalichevsky MT, Jaroszkiewicz EM, Ablett S, Blanshard JMV (1992) The glass transition of amylopectin measured by DSC, DMTA and NMR. Carbohydr Polym 18:77–88

    Article  CAS  Google Scholar 

  93. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV (1992) Glass transition of gluten. 1: gluten and gluten-sugar mixtures. Int J Biol Macromol 14:257–266

    Article  CAS  Google Scholar 

  94. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV (1992) Glass transition of gluten. 2: The effect of lipids and emulsifiers. Int J Biol Macromol 14:267–273

    Article  CAS  Google Scholar 

  95. Kalichevsky MT, Blanshard JMV, Marsh RDL (1993) Applications of mechanical spectroscopy to the study of glassy biopolymers and related systems. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Leicestershire, pp 133–156

    Google Scholar 

  96. Kalichevsky MT, Jaroszkiewicz EM, Blanshard JMV (1993) A study of the glass transition of amylopectin—sugar mixtures. Polymer 34:346–358

    Article  CAS  Google Scholar 

  97. Karel M, Anglea S, Buera P, Karmas R, Levi G, Roos Y (1994) Stability-related transitions of amorphous foods. Thermochim Acta 246:249–269

    Article  CAS  Google Scholar 

  98. Kaufmann S, Wefing S, Schaefer D, Spiess HW (1990) Two-dimensional exchange nuclear magnetic resonance of powder samples. III. Transition to motional averaging and application to the glass transition. J Chem Phys 93:197–214

    Article  CAS  Google Scholar 

  99. Kauzmann W (1948) The nature of the glassy state and the behavior of liquids at low temperatures. Chem Rev 43:219–256

    Article  CAS  Google Scholar 

  100. Kauzmann W, Eyring H (1940) The viscous flow of large molecules. J Am Chem Soc 62:3113–3125

    Article  CAS  Google Scholar 

  101. Kegel WK (2000) Crystallization in glassy suspensions of colloidal hard spheres. Langmuir 16:939–941

    Article  CAS  Google Scholar 

  102. Kelley FN, Bueche F (1961) Viscosity and glass temperature relations for polymer-diluent systems. J Polym Sci 50:549–556

    Article  CAS  Google Scholar 

  103. Khalloufi S, El-Maslouhi Y, Ratti C (2000) Mathematical model for prediction of glass transition temperature of fruit powders. J Food Sci 65:842–848

    Article  CAS  Google Scholar 

  104. Kim SH, Chung JW, Kang TJ, Kwak S-Y, Suzuki T (2007) Determination of the glass transition temperature of polymer/layered silicate nanocomposites from positron annihilation lifetime measurements. Polymer 48:4271–4277

    Article  CAS  Google Scholar 

  105. Kobayashi Y (1991) Quenching of positronium atoms by nitrobenzene in various solutions. J Chem Soc Faraday Trans 87:3641–3645

    Article  CAS  Google Scholar 

  106. Kobayashi Y, Haraya K, Kamiya Y, Hattori S (1992) Correlation between the ortho-positronium pick-off annihilation lifetime and the free volume in molecular liquids and polymers. Bull Chem Soc Jpn 65:160–163

    Article  CAS  Google Scholar 

  107. Kwei TK (1984) The effect of hydrogen bonding on the glass transition temperature of polymer mixtures. J Polym Sci 22:307–313

    CAS  Google Scholar 

  108. Labuza TP, Hyman CR (1998) Moisture migration and control in multi-domain foods. Trends Food Sci Technol 9(2):47–55

    Article  CAS  Google Scholar 

  109. Langer J (2007) The mysterious glass transition. Phys Today 60(2):8–9

    Article  CAS  Google Scholar 

  110. Lechuga-Ballesteros D, Miller DP, Zhang J (2002) Residual water in amorphous solids: measurement and effects on stability. In: Levine H (ed) Amorphous food and pharmaceutical systems. Athenaeum, Manchester, UK, pp 275–316

    Chapter  Google Scholar 

  111. Lechuga-Ballesteros D, Miller DP, Zhang J (2002) Residual water in amorphous solids: measurement and effects on stability. In: Levine H (ed) Amorphous food and pharmaceutical systems. Athenaeum, Manchester, UK, pp 1–8

    Google Scholar 

  112. Leutheusser E (1984) Dynamical model of the liquid-glass transition. Phys Rev A 29:2765–2773

    Article  CAS  Google Scholar 

  113. Levine H, Slade L (1986) A polymer physico-chemical approach to the study of commercial starch hydrolysis products (SHPs). Carbohydr Polym 6:213–244

    Article  CAS  Google Scholar 

  114. Lin AA, Kwei TK, Reiser A (1989) On the physical meaning of the Kwei equation for the glass transition temperature of polymer blends. Macromolecules 22:4112–4119

    Article  CAS  Google Scholar 

  115. Liu J, Deng Q, Jean YC (1993) Free-volume distributions of polystyrene probed by positron annihilation: comparison with free-volume theories. Macromolecules 26:7149–7155

    Article  CAS  Google Scholar 

  116. Lloyd RJ, Chen XD, Hargreaves JB (1996) Glass transition and caking of spray-dried lactose. Int J Food Sci Technol 31:305–311

    Article  CAS  Google Scholar 

  117. Loshaek S (1955) Crosslinked polymers. II. Glass temperatures of copolymers of methyl methacrylate and glycol dimethacrylates. J Polym Sci 15:391–404

    Article  CAS  Google Scholar 

  118. Ma C-Y, Harwalkar VR, Maurice TJ (1990) Instrumentation and techniques of thermal analysis in food research. In: Harwalkar VR, Ma C-Y (eds) Thermal analysis of foods. Elsevier, London, pp 1–15

    Google Scholar 

  119. Madani M, Maziad NA, Khafagy RM (2007) Thermally stimulated depolarization current and thermal analysis studies of gamma irradiated lithium-salt/polymer electrolyte blends. J Macromol Sci B Phys 46:1191–1203

    Article  CAS  Google Scholar 

  120. Mallon PE (2003) Application to polymer. In: Jean YC, Mallon PE, Schrader DM (eds) Principles and applications of positron & positronium chemistry. World Scientific, Singapore, pp 253–280

    Google Scholar 

  121. Mandelkern L, Martin GM, Quinn FA (1957) Glassy state transitions of poly-(chlorotrifluoroethylene), poly-(vinylidene fluoride) and their copolymers. J Res Natl Bureau Stand 58:137–143

    CAS  Google Scholar 

  122. Mansfield ML (1993) An overview of theories of the glass transition. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Leicestershire, pp 103–122

    Google Scholar 

  123. McKinney JE, Goldstein M (1974) PVT relationships for liquid and glassy poly(vinyl acetate). J Res Natl Bureau Stand A Phys Chem 78:331–353

    CAS  Google Scholar 

  124. McPhillips H, Craig DQM, Royall PG, Hill VL (1999) Characterisation of the glass transition of HPMC using modulated temperature differential scanning calorimetry. Int J Pharm 180:83–90

    Article  CAS  Google Scholar 

  125. Meares P (1957) The second-order transition of polyvinyl acetate. Trans Faraday Soc 53:31–40

    Article  CAS  Google Scholar 

  126. Meincken M, Balk LJ, Sanderson RD (2001) Improved sensitivity in the thermal investigation of polymeric nanophases by measuring the resonance frequency shift using an atomic force microscope. Macromol Mater Eng 286:412–420

    Article  CAS  Google Scholar 

  127. Meincken M, Graef S, Mueller-Nedebock K, Sanderson RD (2002) Thermal transitions of polymers measured by atomic force microscopy. Appl Phys A Mater Sci Process 74:371–375

    Article  CAS  Google Scholar 

  128. Meincken M, Balk LJ, Sanderson RD (2003) Measurement of thermal parameters and mechanical properties of polymers by atomic force microscopy. Surf Interface Anal 35:1034–1040

    Article  CAS  Google Scholar 

  129. Menard KP (1999) Dynamic mechanical analysis: a practical introduction. CRC Press, Boca Raton

    Google Scholar 

  130. Mert B, Campanella OH (2008) The study of the mechanical impedance of foods and biomaterials to characterize their linear viscoelastic behavior at high frequencies. Rheol Acta 47:727–737

    Article  CAS  Google Scholar 

  131. Misra S, Mattice WL (1993) Atomistic models of amorphous polybutadienes. 3. Static free volume. Macromolecules 26:7274–7281

    Article  CAS  Google Scholar 

  132. Morrison FA (2001) Understanding rheology. Oxford University Press, New York

    Google Scholar 

  133. Mukhopadhyay P, Schreiber HP (1993) Inverse gas chromatography for polymer surface characterization above and below Tg. Macromolecules 26:6391–6396

    Article  CAS  Google Scholar 

  134. Nastasovic AB, Onjia AE (2008) Determination of glass transition temperature of polymers by inverse gas chromatography. J Chromatogr A 1195:1–15

    Article  CAS  Google Scholar 

  135. Neagu E, Pissisz P, Apekisz L, Gomez-Ribellesx JL (1997) Dielectric relaxation spectroscopy of polyethylene terephthalate (PET) films. J Phys D Appl Phys 30:1551–1560

    Article  CAS  Google Scholar 

  136. Newell HE, Buckton G, Butler DA, Thielmann F, Williams DR (2001) The use of inverse gas chromatography to study the change of surface energy of amorphous lactose as a function of relative humidity and the processes of collapse and crystallisation. Int J Pharm 217:45–56

    Article  CAS  Google Scholar 

  137. Nicholls RJ, Appelqvist IAM, Davies AP, Ingman SJ, Lillford PJ (1995) Glass transitions and the fracture behaviour of gluten and starches within the glassy state. J Cereal Sci 21:25–36

    Article  CAS  Google Scholar 

  138. Noel TR, Ring SG, Whittam MA (1993) Relaxations in supercooled carbohydrate liquids. In: Blanshard JMV, Lillford PJ (eds) The glassy state in foods. Nottingham University Press, Leicestershire, pp 173–187

    Google Scholar 

  139. Noel TR, Parker R, Ring SG (2000) Effect of molecular structure and water content on the dielectric relaxation behaviour of amorphous low molecular weight carbohydrates above and below their glass transition. Carbohydr Res 329:839–845

    Article  CAS  Google Scholar 

  140. Noel TR, Parker R, Brownsey GF, Farhat IA, MacNaughtan W, Stephen G, Ring SG (2005) Physical aging of starch, maltodextrin, and maltose. J Agric Food Chem 53(22):8580–8585

    Article  CAS  Google Scholar 

  141. O’Reilly J (1962) The effect of pressure on glass temperature and dielectric relaxation time of polyvinyl acetate. J Polym Sci 57:429–444

    Article  Google Scholar 

  142. Ollet AL, Parker P (1990) The viscosity of supercooled fructose and its glass transition temperature. J Texture Stud 21:355–362

    Article  Google Scholar 

  143. Orford PD, Parker R, Ring SG (1990) Aspects of the glass transition behaviour of mixtures of carbohydrates of low molecular weight. Carbohydr Res 196:11–18

    Article  CAS  Google Scholar 

  144. Oulevey F, Burnham NA, Gremaud G, Kulik AJ, Pollock HM, Hammiche A, Reading M, Song M, Hourston DJ (2000) Dynamic mechanical analysis at the submicron scale. Polymer 41:3087–3092

    Article  CAS  Google Scholar 

  145. Paul W (2004) Molecular dynamics simulations of the glass transition in polymer melts. Polymer 45:3901–3905

    Article  CAS  Google Scholar 

  146. Peleg M (1992) On the use of the WLF model in polymers and foods. Crit Rev Food Sci Nutr 32:59–66

    Article  CAS  Google Scholar 

  147. Peleg M (1994) Mathematical characterization and graphical presentation of the stiffness-temperature-moisture relationship of gliadin. Biotechnol Prog 70:652–654

    Article  Google Scholar 

  148. Peleg M (1994) A model of mechanical changes in biomaterials at and around their glass transition. Biotechnol Prog 10:385–388

    Article  CAS  Google Scholar 

  149. Penzel E, Rieger J, Schneider HA (1997) The glass transition temperature of random copolymers: 1. Experimental data and the Gordon-Taylor equation. Polymer 38:325–337

    Article  CAS  Google Scholar 

  150. Pinal R (2008) Entropy of mixing and the glass transition of amorphous mixtures. Entropy 10:207–223

    Article  CAS  Google Scholar 

  151. Pochan JM, Beatty CL, Pochan DF (1979) Different approach for the correlation of the Tg of mixed amorphous systems. Polymer 20:879–886

    Article  CAS  Google Scholar 

  152. Pollock HM, Hammiche A (2001) Micro-thermal analysis: techniques and applications. J Phys D Appl Phys 34:R23–R53

    Article  CAS  Google Scholar 

  153. Rahman MS, Al-Marhubi IM, Al-Mahrouqi A (2007) Measurement of glass transition temperature by mechanical (DMTA), thermal (DSC and MDSC), water diffusion and density methods: a comparison study. Chem Phys Lett 440:372–377

    Article  CAS  Google Scholar 

  154. Reading M (1993) Modulated differential scanning calorimetry—a new way forward in materials characterization. Trends Polym Sci 1:248–253

    CAS  Google Scholar 

  155. Reading M, Luget A, Wilson R (1994) Modulated differential scanning calorimetry. Thermochim Acta 238:295–307

    Article  CAS  Google Scholar 

  156. Roos YH (1993) Water activity and physical state effects on amorphous food stability. J Food Process Preserv 16:433–447

    Article  Google Scholar 

  157. Roos YH (1993) Melting and glass transition of low molecular weight carbohydrates. Carbohydr Res 238:39–48

    Article  CAS  Google Scholar 

  158. Roos YH (1995) Characterization of food polymers using state diagrams. J Food Eng 24:339–360

    Article  Google Scholar 

  159. Roos YH (2008) The glassy state. In: Aguilera JM, Lillford PJ (eds) Food materials science: principles and practice. Springer, New York, pp 67–81

    Google Scholar 

  160. Roos Y, Karel M (1990) Differential scanning calorimetry study of phase transitions affecting the quality of dehydrated materials. Biotechnol Prog 6:159–163

    Article  CAS  Google Scholar 

  161. Ruan RR, Long Z, Song A, Chen PL (1998) Determination of the glass transition temperature of food polymers using low field NMR. Lebensm Wiss Technol 31:516–521

    Article  CAS  Google Scholar 

  162. Ruan R, Long Z, Chen P, Huang V, Almaer S, Taub I (1999) Pulse NMR study of glass transition in maltodextrin. J Food Sci 64:6–9

    Article  CAS  Google Scholar 

  163. Rubinstein M, Colby RH (2003) Polymer physics. Oxford University Press, New York, p 337

    Google Scholar 

  164. Sablani SS, Kasapis S, Rahman MS, Al-Jabri A, Al-Habsi N (2004) Sorption isotherms and the state diagram for evaluating stability criteria of abalone. Food Res Int 37:915–924

    Article  Google Scholar 

  165. Sablani SS, Kasapis S, Rahman MS (2007) Evaluating water activity and glass transition concepts for food stability. J Food Eng 78:115266–115271

    Article  Google Scholar 

  166. Sahin S, Sumnu SG (2006) Physical properties of foods. Springer, New York

    Google Scholar 

  167. Santen L, Krauth W (2000) Absence of thermodynamic phase transition in a model glass former. Nature 405:550–551

    Article  CAS  Google Scholar 

  168. Schneider HA (1989) Glass transition behaviour of compatible polymer blends. Polymer 30:771–779

    Article  CAS  Google Scholar 

  169. Schneider HA (1997) Conformational entropy contributions to the glass temperature of blends of miscible polymers. J Res Natl Inst Stand Technol 102:229–248

    CAS  Google Scholar 

  170. Schneider HA, DiMarzio EA (1992) The glass temperature of polymer blends: comparison of both the free volume and the entropy predictions with data. Polymer 33:3453–3461

    Article  CAS  Google Scholar 

  171. Schneider HA, Rieger J, Penzel E (1997) The glass transition temperature of random. Copolymers: 2. Extension of the Gordon-Taylor equation for asymmetric Tg vs composition curves. Polymer 38:1323–1337

    Article  CAS  Google Scholar 

  172. Seo JA, Kim SJ, Kwon HJ, Yang YS, Kim HK, Hwang YH (2006) The glass transition temperatures of sugar mixtures. Carbohydr Res 341:2516–2520

    Article  CAS  Google Scholar 

  173. Seyler RJ (ed) (1994) Assignment of the glass transition. ASTM, Philadelphia

    Google Scholar 

  174. Shen MC, Tobolsky AV (1965) Glass transition temperature of polymers. Effect of plasticizer, chain ends and comonomer. In: Platzer NAJ (ed) Advances in chemistry series. American Chemical Society, Washington, DC, pp 27–34

    Google Scholar 

  175. Shmeis RA, Wang Z, Krill SL (2004) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part I: a comparative analysis by thermally stimulated depolarization current and differential scanning calorimetry. Pharm Res 21:2025–2030

    Article  CAS  Google Scholar 

  176. Shmeis RA, Wang Z, Krill SL (2004) A mechanistic investigation of an amorphous pharmaceutical and its solid dispersions, part II: molecular mobility and activation thermodynamic parameters. Pharm Res 21:2031–2039

    Article  CAS  Google Scholar 

  177. Simha R, Boyer RF (1962) On a general relation involving the glass temperature and coefficients of expansion of polymers. J Chem Phys 37:1003

    Article  CAS  Google Scholar 

  178. Simha R, Wilson PS (1973) Thermal expansion of amorphous polymers at atmospheric pressure. II. Theoretical considerations. Macromolecules 6:908–914

    Article  Google Scholar 

  179. Slade L, Levine H (1991) Beyond water activity: recent advances based on an alternative approach to the assessment of food quality and safety. Crit Rev Food Sci Nutr 30:115–360

    Article  CAS  Google Scholar 

  180. Slade L, Levine H (1993) Water relationships in starch transitions. Carbohydr Polym 21:105–131

    Article  CAS  Google Scholar 

  181. Slade L, Levine H (1995) Water and the glass transition—dependence of the glass transition on composition and chemical structure: special implications for flour functionality in cookie baking. J Food Eng 24:431–509

    Article  Google Scholar 

  182. Smith G, Duffy AP, Shen J, Olliff CJ (1995) Dielectric relaxation spectroscopy and some applications in the pharmaceutical sciences. J Pharm Sci 84:1029–1044

    Article  CAS  Google Scholar 

  183. Song M, Hammiche A, Pollock HM, Hourston DJ, Reading M (1995) Modulated differential scanning calorimetry: 1. A study of the glass transition behaviour of blends of poly(methyl methacrylate) and poly(styrene-co-acrylonitrile). Polymer 36:3313–3316

    Article  CAS  Google Scholar 

  184. Song M, Hammiche A, Pollock HM, Hourston DJ, Reading M (1996) Modulated differential scanning calorimetry: 4. Miscibility and glass transition behaviour in poly(methyl methacrylate) and poly(epichlorohydrin) blends. Polymer 37:5661–5665

    Article  CAS  Google Scholar 

  185. Sopade PA, Halley P, Bhandaria B, D’Arcya B, Doeblerb C, Caffin N (2002) Application of the Williams–Landel–Ferry model to the viscosity–temperature relationship of Australian honeys. J Food Eng 56:67–75

    Article  Google Scholar 

  186. Speedy RJ (1994) On the reproducibility of glasses. J Chem Phys 100:6684–6691

    Article  CAS  Google Scholar 

  187. Speedy RJ (2003) Kauzmann’s paradox and the glass transition. Biophys Chem 105:411–420

    Article  CAS  Google Scholar 

  188. Sperling LH (2006) Introduction to physical polymer science, 4th edn. Wiley, Hoboken

    Google Scholar 

  189. Stillinger FH (1988) Supercooled liquids, glass transitions, and the Kauzmann paradox. J Chem Phys 88:7818–7825

    Article  CAS  Google Scholar 

  190. Suwonsichon T, Peleg M (1998) Instrumental and sensory detection of simultaneous brittleness loss and moisture toughening in three puffed cereals. J Texture Stud 29:255–274

    Article  Google Scholar 

  191. Tanaka K, Taura A, Ge S-R, Takahara A, Kajiyama T (1996) Molecular weight dependence of surface dynamic viscoelastic properties for the monodisperse polystyrene film. Macromolecules 29:3040–3042

    Article  CAS  Google Scholar 

  192. Teixeira EM, Da Róz AL, Carvalho AJF, Curvelo AAS (2007) The effect of glycerol/sugar/water and sugar/water mixtures on the plasticization of thermoplastic cassava starch. Carbohydr Polym 69(4):619–624

    Article  CAS  Google Scholar 

  193. Tester RF, Karkalas J, Xin Qi X (2004) Review, starch-composition, fine structure and architecture. J Cereal Sci 39:151–165

    Article  CAS  Google Scholar 

  194. Thomas L (2008) Use of TGA, DSC and MDSC. TA Instrument Report

  195. Tijburg I, Jagiello J, Vidal A, Papirer E (1991) Inverse gas chromatographic studies on silica: infinite dilution and finite concentration measurements. Langmuir 7:2243–2247

    Article  CAS  Google Scholar 

  196. Topić M, Moguš-Milanković A, Katović Z (1991) The study of glass transition in epoxy resin using thermally stimulated depolarization current measurements. Polymer 32:2892–2897

    Article  Google Scholar 

  197. Torquato S (2000) Glass transition: hard knock for thermodynamics. Nature 405:521–523

    Article  CAS  Google Scholar 

  198. Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125

    Article  CAS  Google Scholar 

  199. van der Plaats G (1984) A theoretical evaluation of a heat-flow differential scanning calorimeter. Thermochim Acta 72:77–82

    Article  Google Scholar 

  200. Volkov AA, Prokhorov AS (2003) Broadband dielectric spectroscopy of solids. Radiophys Quantum Electron 46:657–665

    Article  Google Scholar 

  201. Webb SL, Knoche R, Dingwell DB (1992) Determination of silicate liquid thermal expansivity using dilatometry and calorimetry. Eur J Mineral 4:95–104

    CAS  Google Scholar 

  202. Weisenhorn AL, Maivald P, Butt HJ, Hansma PK (1992) Measuring adhesion, attraction, and repulsion between surfaces in liquids with an atomic-force microscope. Phys Rev B 45:11226–11232

    Article  Google Scholar 

  203. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77:3701–3707

    Article  CAS  Google Scholar 

  204. Wilson PS, Simha R (1973) Thermal expansion of amorphous polymers at atmospheric pressure. I. Experimental. Macromolecules 6:902–908

    Article  CAS  Google Scholar 

  205. Woodcock LV (1976) Glass transition in the hard-sphere model. J Chem Soc Faraday Trans 2:1667–1672

    Google Scholar 

  206. Wunderlich B (2005) Thermal analysis of polymeric materials. Springer, Dordrecht

    Google Scholar 

  207. Xia X, Wolynes PG (2000) Fragilities of liquids predicted from the random first order transition theory of glasses. Proc Natl Acad Sci USA 97:2990–2994

    Article  CAS  Google Scholar 

  208. Yildiz ME, Kokini JL (2001) Determination of Williams–Landel–Ferry constants for a food polymer system: effect of water activity and moisture content. J Rheol 45(4):903–912

    Article  CAS  Google Scholar 

  209. Yla-Maihaniemi PP, Heng JYY, Thielmann F, Williams DR (2008) Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particulates. Langmuir 24:9551–9557

    Article  CAS  Google Scholar 

  210. Yu L, Christie G (2001) Measurement of starch thermal transitions using differential scanning calorimetry. Carbohydr Polym 46:179–184

    Article  CAS  Google Scholar 

  211. Yu Z, Yahsi U, McGervey JD, Jamieson AM, Simha R (1994) Molecular weight-dependence of free volume in polystyrene studied by positron annihilation measurements. J Polym Sci B Polym Phys 32:2637–2644

    Article  CAS  Google Scholar 

  212. Zakin JL, Simha R, Hershey HC (1966) Low-temperature thermal expansivities of polyethylene, polypropylene, mixtures of polyethylene and polypropylene, and polystyrene. J Appl Polym Sci 10:1455–1473

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. H. Campanella.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abiad, M.G., Carvajal, M.T. & Campanella, O.H. A Review on Methods and Theories to Describe the Glass Transition Phenomenon: Applications in Food and Pharmaceutical Products. Food Eng. Rev. 1, 105–132 (2009). https://doi.org/10.1007/s12393-009-9009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12393-009-9009-1

Keywords

Navigation