Starches of Some Food Crops, Changes During Processing and Their Nutraceutical Potential



Starch is a polymer widely distributed in the nature and it is the principal component of cereals, tubers, legumes, and unripe fruits. Traditionally, starch has been isolated and used as raw material in diverse food products to produce or to improve specific functionalities and nowadays novel starches from unconventional sources have gained interest due to improved or due to different physicochemical and functional characteristics, especially for new food products. Recently, the potential nutraceutical characteristics of starchy products have increased the interest on this biopolymer. In this review, we describe the physicochemical and digestibility characteristics of starch present in diverse food crops namely maize and beans, and unconventional starch sources such as banana (Musa paradisiaca L.), mango (Mangifera indica L.), amaranth (Amaranthus hypochondriacus), and barley (Hordeum vulgare), among others. The starch after cooking, the storage of starchy products and the potential of starch isolated from unconventional sources to produce resistant starch-rich products using different treatments are emphasized.


Resistant starch Nixtamalization Undigestible carbohydrates Glycemic index Thermal properties 



We acknowledge the financial support from the National Council of Science and Technology (CONACYT). O. Paredes-Lόpez also recognizes the projects received from Concyteg-Gto and FOMIX-Gto.


  1. 1.
    Agama-Acevedo E, Ottenhof MA, Farhat IM et al (2004) Efecto de la nixtamalización sobre las características moleculares del almidón de variedades pigmentadas de maíz. Interciencia 29:643–648Google Scholar
  2. 2.
    Agama-Acevedo E, Barba de la Rosa AP, Méndez-Montealvo G et al (2008) Physicochemical and biochemical characterization of starch granules isolated of pigmented maize hybrids. Starch/Stärke 60:433–441Google Scholar
  3. 3.
    Aguirre-Cruz A, Méndez-Montealvo G, Solorza-Feria J et al (2005) Effect of carboxymethylcellulose and xanthan gum on the thermal, functional and rheological properties of dried nixtamalised maize masa. Carbohydr Polym 62:222–231Google Scholar
  4. 4.
    Agustiniano-Osornio JC, Gonzalez-Soto RA, Flores-Huicochea E et al (2005) Resistant starch production from mango starch using a single-screw extruder. J Sci Food Agric 85:2105–2110Google Scholar
  5. 5.
    Annison G, Illman RJ, Topping DL (2003) Acetylated, propionylated or butyrylated starches raise large bowel short-chain fatty acids preferentially when fed to rats. J Nutr 133:3523–3528Google Scholar
  6. 6.
    Aparicio-Saguilan A, Flores-Huicochea E, Tovar J (2005) Resistant starch-rich powders prepared by autoclaving of native and lintnerized banana starch: partial characterization. Starch/Stärke 57:405–412Google Scholar
  7. 7.
    Arambula-Villa VG, Mauricio SRA, Figueroa CJD et al (1999) Corn masa and tortillas from extruded instant corn flour containing hydrocolloids and lime. J Food Sci 64:120–124Google Scholar
  8. 8.
    Asp NG (1992) Resistant starch. Proceedings from the second plenary meeting of EURESTA. Eur J Clin Nutr 46:S1Google Scholar
  9. 9.
    Asp NG, Van Amelsvoort JMM, Hautvas JGAJ (1996) Nutritional implications of resistant starch. Nutr Res Rev 9:1–31Google Scholar
  10. 10.
    Bello-Pérez LA, Ottenhof MA, Agama-Acevedo E et al (2005) Effect of storage time on the retrogradation of banana starch extrudate. J Agric Food Chem 53:1081–1086Google Scholar
  11. 11.
    Bello-Pérez LA, Rendón-Villalobos R, Agama-Acevedo E et al (2006) In vitro starch digestibility of tortillas elaborated by different masa preparation procedures. Cereal Chem 83:188–193Google Scholar
  12. 12.
    Bello-Pérez LA, Sayago-Ayerdi SG, Chávez-Murillo CE et al (2007) Proximal composition and in vitro digestibility of starch in lima bean (Phaseolus lunatus) varieties. J Sci Food Agric 87:2570–2575Google Scholar
  13. 13.
    Biliaderis CG (1991) The structure and interactions of starch with food constituents. Can J Physiol Pharmacol 69:60–78Google Scholar
  14. 14.
    Birkett Am, Brown IL (2008) Resistant starch and health. In: Hamaker Br (ed) Technology of functional cereal products. CRC Press, New YorkGoogle Scholar
  15. 15.
    Björck I, Gunnarson A, Östergård K (1989) A study of native and chemically modified potato starch.2. digestibility in the rat intestinal-tract. Starch/Stärke 41:128–134Google Scholar
  16. 16.
    Björck IM, Granfeldt Y, Liljeberg H et al (1994) Food properties affecting the digestion and absorption of carbohydrates. Am J Clin Nutr 59:699S–705SGoogle Scholar
  17. 17.
    Bornet F (1993) Technological treatments of cereals—repercussions on the physiological-properties of starch. Carbohydr Polym 21:195–203Google Scholar
  18. 18.
    Bravo L, Siddhuraju P, Saura-Calixto F (1998) Effect of various processing methods on the in vitro starch digestibility and resistant starch content of Indian pulses. J Agric Food Chem 46:4667–4674Google Scholar
  19. 19.
    Bravo L, Siddhuraju P, Saura-Calixto F (1999) Composition of underexploited Indian pulses. Comparison with common legumes. Food Chem 64:185–192Google Scholar
  20. 20.
    Brouns F, Ketttlizt B, Arrigoni F (2002) Resistant starch and the butyrate revolution. Trends Food Sci Technol 13:251–261Google Scholar
  21. 21.
    Campus-Baypoli ON, Rosas-Burgos EC, Torres-Chavez PI et al (1999) Physicochemical changes of starch during maize tortilla production. Starch/Stärke 51:173–177Google Scholar
  22. 22.
    Campus-Baypoli ON, Rosas-Burgos EC, Torres-Chávez P et al (2002) Physicochemical changes of starch in maize tortillas during storage at room and refrigeration temperatures. Starch/Stärke 54:358–363Google Scholar
  23. 23.
    Carmona-García R, Osorio-Díaz P, Agama-Acevedo E et al (2007) Composition and effect of soaking on starch digestibility of Phaseolus vulgaris (L.) cv. ‘Mayocoba’. Int J Food Sci Technol 42:296–302Google Scholar
  24. 24.
    Cassidy A, Bingham SA, Cummings JH (1994) Starch intake and colorectal-cancer risk—an international comparison. Br J Cancer 69:937–942Google Scholar
  25. 25.
    Champ M, Langkilde AM, Brouns F et al (2003) Advances in dietary fibre characterisation. 2. Consumption, chemistry, physiology and measurement of resistant starch; implications for health and food labeling. Nutr Res Rev 16:143–161Google Scholar
  26. 26.
    Chavez-Murillo C, Wang YJ, Bello-Perez LA (2008) Morphological, physicochemical and structural characteristics of oxidized barley and corn starches. Starch/Stärke 60:634–645Google Scholar
  27. 27.
    Chiu CW, Henley M, Alteri P (1998) US Pat. 5,281,276Google Scholar
  28. 28.
    Chung HJ, Shin DH, Lim ST (2008) In vitro starch digestibility and estimated glycemic index of chemically modified corn starches. Food Res Int 41:579–585Google Scholar
  29. 29.
    Colonna P, Leloup V, Buleon A (1992) Limiting factors of starch hydrolysis. Eur J Clin Nutr 46:S17–S32Google Scholar
  30. 30.
    Cummings JH, Beathy ER, Kingman SM et al (1996) Digestion and physiological properties of resistant starch in the human large bowel. Br J Nutr 75:733–747Google Scholar
  31. 31.
    De Deckere EAM, Kloots WJ, Van Amelsvoort JMM (1995) Both raw and retrograded starch decrease serum triacylglycerol concentration and fat accretion in the rat. Br J Nutr 73:287–298Google Scholar
  32. 32.
    De Sinibaldi BAC, Bressani R (2001) Características de cocción de once variedades de maíz. Arch Lat Nutr 51:86–94Google Scholar
  33. 33.
    Dong HZ, Hou HX, Liu CF et al (2008) Relationships Between Some Physicochemical Properties of Starches from Maize Cultivars Grown in East China. Starch/Stärke 60:305–314Google Scholar
  34. 34.
    Donovan JW (1979) Phase transitions of starch-water system. Biopolymer 18:263–275Google Scholar
  35. 35.
    Doublier JL, Paton D, Llamas GA (1987) A rheological investigation of oat starch pastes. Cereal Chem 64:21–26Google Scholar
  36. 36.
    Englyst HN, Cummings JH (1987) Digestion of polysaccharides of potato in the small intestine of man. Am J Clin Nutr 45:423–431Google Scholar
  37. 37.
    Englyst HN, Kingman SM, Cummings JH (1992) Classification and measurement of nutritionally important starch fractions. Eur J Clin Nutr 46:S33–S50Google Scholar
  38. 38.
    Espinosa-Solis V (2008) Estudios estructurales de almidón de fuentes no convencionales: mango (Mangifera indica L.) y plátano (Musa paradisiaca L.). MSc thesis, Ceprobi-IPN, Morelos, MexicoGoogle Scholar
  39. 39.
    Faisant N, Buleon A, Colonna P et al (1995) Digestion of raw banana starch in the small intestine of healthy humans: structural features of resistant starch. Br J Nutr 73:111–123CrossRefGoogle Scholar
  40. 40.
    Faisant N, Gallant DJ, Bouchet B et al (1995) Banana starch breakdown in the human small-intestine studied by electron-microscopy. Eur J Clin Nutr 49:98–104Google Scholar
  41. 41.
    Foster-Powell K, Miller B (1995) International tables of glycemic index. Am J Clin Nutr 62:871S–893SGoogle Scholar
  42. 42.
    Foster-Powell K, Holt SH, Brand-Miller JC (2002) International table of glycemic index and glycemic load values: 2002. Am J Clin Nutr 75:5–56Google Scholar
  43. 43.
    Gimeno E, Mararu CI, Kokini JL (2004) Effect of xanthan gum and CMC on the structure and texture of corn flour pellets expanded by microwave heating. Cereal Chem 81:100–107Google Scholar
  44. 44.
    Gomez MH, Rooney LW, Waniska RD et al (1987) Dry corn masa flours for tortilla and snack food-production. Cereal Foods World 32:372–375Google Scholar
  45. 45.
    Goñi I, Gracía-Alonso A, Saura-Calixto F (1997) A starch hydrolysis procedure to estimate glycemic index. Nutr Res 17:427–437Google Scholar
  46. 46.
    Granfeldt Y, Björck I, Drews A, Tovar J (1992) An in-vitro procedure based on chewing to predict metabolic response to starch in cereal and legume products. Eur J Clin Nutr 46: 649–660Google Scholar
  47. 47.
    Han JA, BeMiller JN (2007) Preparation and physical characteristics of slowly digesting modified food starches. Carbohydr Polym 67:366–374Google Scholar
  48. 48.
    Heijnen ML, Van Amelsvoort JM, Deurenberg P et al (1998) Limited effect of consumption of uncooked (RS2) or retrograded (RS3) resistant starch on putative risk factors for colon cancer in healthy men. Am J Clin Nutr 67:322–331Google Scholar
  49. 49.
    Hernández-Lauzardo AN, Méndez-Montealvo G, Velázquez del Valle MG et al (2004) Isolation and partial characterization of Mexican Oxalis tuberosa starch. Starch/Stärke 56:357–363Google Scholar
  50. 50.
    Hoover R (2001) Composition, molecular structure, and physicochemical properties of tuber and root starches: a review. Carbohydr Polym 45:253–267Google Scholar
  51. 51.
    Hoover R, Ratnayaque WS (2002) Starch characteristics of black bean, chick pea, lentil, navy bean and pinto bean cultivars grown in Canada. Food Chem 78:489–498Google Scholar
  52. 52.
    Hoover R, Sosulski F (1986) Effect of cross-linking on functional-properties of legume starches. Starch/Stärke 38:149–155Google Scholar
  53. 53.
    Hoover R, Vasanthan T (1992) Studies on isolation and characterization of starch from oat (avena-nuda) grains. Carbohydr Polym 19:285–297Google Scholar
  54. 54.
    Hoover R, Zhou Y (2003) In vitro and in vivo hydrolysis of legume starches by alpha-amylase and resistant starch formation in legumes—a review. Carbohydr Polym 54:401–417Google Scholar
  55. 55.
    Hylla S, Gostner A, Dusel G et al (1998) Effects of resistant starch on the colon in healthy volunteers: possible implications for cancer prevention. Am J Clin Nutr 67:136–142Google Scholar
  56. 56.
    Iyengar, R, Zaks A, Gross A (1991) US Pat 5,051,271Google Scholar
  57. 57.
    Jacobs H, Delcour J (1998) Hydrothermal modifications of granular starch, with retention of the granular structure: a review. J Agric Food Chem 46:2895–2905Google Scholar
  58. 58.
    Janzen GJ (1969) Verdaulichkeit von Stärken und phosphatierten Stärken mittels Pankreatin. Stärke 21:231–237Google Scholar
  59. 59.
    Jenkins DJA, Thorne MJ, Camelon K et al (1982) Effect of processing on digestibility and the blood-glucose response—a study of lentils. Am J Clin Nutr 36:1093–1101Google Scholar
  60. 60.
    Jenkins DJA, Wolever TMS, Collier GR et al (1987) Metabolic effects of a low-glycemic-index diet. Am J Clin Nutr 46:968–975Google Scholar
  61. 61.
    Ji Y, Seetharaman K, Wong KM et al (2003) Thermal and structural properties of unusual starches from developmental corn lines. Carbohydr Polym 51:439–450Google Scholar
  62. 62.
    Ji Y, Ao Z, Han JA et al (2004) Waxy maize starch subpopulations with different gelatinization temperatures. Carbohydr Polym 57:177–190Google Scholar
  63. 63.
    Kim YS, Wiesenborn DP, Grant LA (1997) Pasting and thermal properties of potato and bean starches. Starch/Stärke 49:97–102Google Scholar
  64. 64.
    Lang JJ (2007) Banana cultures: agriculture, consumption, and environmental change in Honduras and the United States. Technol Cult 48:429–431Google Scholar
  65. 65.
    Lehmann U, Jacobash G, Schmiedl D (2002) Characterization of resistant starch type III from banana (Musa acuminata). J Agric Food Chem 50:5236–5240Google Scholar
  66. 66.
    Lehmann U, Rössler C, Schmiedl D et al (2003) Production and physicochemical characterization of resistant starch type III derived from pea starch. Nahrung 47:60–63Google Scholar
  67. 67.
    Li X, Wen Q, Chen L (2002) Biodegradability of cross-linked tapioca starches with POCl3. Huaxue Gongcheng 30:45–48Google Scholar
  68. 68.
    Li X, Chen L, Wen Q (2002) Study on biodegradability of tapioca starch crosslinked with phosphorus oxychloride. Shipin Kexue 23:25–28Google Scholar
  69. 69.
    Mali S, Ferrero C, Redigonda V et al (2003) Influence of pH and hydrocolloids addition on yam (Dioscorea alata) starch pastes stability. Lebensm Wiss Technol 36:475–481Google Scholar
  70. 70.
    Méndez-Montealvo MG, Solorza-Feria J, Velázquez del Valle M et al (2005) Composición química y caracterización calorimétrica de híbridos y variedades de maíz cultivadas en México. Agrociencia 39:267–274Google Scholar
  71. 71.
    Méndez-Montealvo G, Sánchez-Rivera MM, Paredes-López O et al (2006) Thermal and rheological properties of nixtamalized maize starch. Int J Biol Macromol 40:59–63Google Scholar
  72. 72.
    Méndez-Montealvo MG, Trejo-Espino JL, Paredes-Lopez O, Bello-Perez LA (2007) Physicochemical and morphological characteristics of nixtamalized maize starch. Starch/Stärke 59:277–283Google Scholar
  73. 73.
    Mondragon M, Bello-Perez LA, Agama-Acevedo E et al (2004) Effect of cooking time, steeping and lime concentration on starch gelatinization of corn during nixtamalization. Starch/Stärke 56:248–253Google Scholar
  74. 74.
    Ng KY, Pollak LM, Duvic SA et al (1997) Thermal properties of starch from 62 exotic maize (Zea mays L.) lines grown in two locations. Cereal chem 74:837–841Google Scholar
  75. 75.
    Noah L, Guillon F, Bouchet B et al (1998) Digestion of carbohydrate from white beans (Phaseolus vulgaris L.) in healthy humans. J Nutr 128:977–985Google Scholar
  76. 76.
    Noda T, Takahata Y, Sato T et al (1998) Relationships between chain length distribution of amylopectin and gelatinization properties within the same botanical origin for sweet potato and buckwheat. Carbohydr Polym 37:153–158Google Scholar
  77. 77.
    Paredes-López O, Saharopulos-Paredes ME (1983) A review of tortilla production technology. Bakers Dig 13:16–25Google Scholar
  78. 78.
    Paredes-López O, Bello-Pérez LA, López MG (1994) Amylopectin: structural, gelatinisation and retrogradation studies. Food Chem 50:411–417Google Scholar
  79. 79.
    Phillips J, Muir JG, Birkett A et al (1995) Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. Am J Clin Nutr 62:121–130Google Scholar
  80. 80.
    Pollak LM, White PJ (1997) Thermal starch properties in corn belt and exotic corn inbred lines and their crosses. Cereal Chem 74:412–416Google Scholar
  81. 81.
    Rehman ZU, Salariya AM, Zafar SI (2001) Effect of processing on available carbohydrate content and starch digestibility of kidney beans (Phaseolus vulgaris L.). Food Chem 73:351–355Google Scholar
  82. 82.
    Rendón-Villalobos R, Bello-Pérez LA, Osorio-Díaz P et al (2002) Effect of storage time on in vitro digestibility and resistant starch content of nixtamal, masa, and tortilla. Cereal Chem 79:340–344Google Scholar
  83. 83.
    Rendon-Villalobos R, Agama-Acevedo E, Islas-Hernandez JJ, Sanchez- Muñoz J, Bello-Perez LA (2006) In vitro starch bioavailability of corn tortillas with hydrocolloids. Food Chem 97:631–637Google Scholar
  84. 84.
    Robles RR, Murray ED, Paredes-López O (1988) Physicochemical changes of maize starch during the lime-heat treatment for tortilla making. Int J Food Sci Technol 23:91–98Google Scholar
  85. 85.
    Rooney LW, Suhendro EL (1999) Perspectives on nixtamalization (alkaline cooking) of maize for tortillas and snacks. Cereal Foods World 44:466–470Google Scholar
  86. 86.
    Salinas-Moreno Y, Martínez-Bustos F, Soto-Hernández M et al (2003) Effect of alkaline cooking process on anthocyanins in pigmented maize grain. Agrociencia 37:617–628Google Scholar
  87. 87.
    Sandhu KS, Lim ST (2008) Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr Polym 71:245–252Google Scholar
  88. 88.
    Sayago-Ayerdi SG, Tovar J, Osorio-Díaz P et al (2005) In vitro starch digestibility and predicted glycemic index of corn tortilla, black beans, and tortilla-bean mixture: effect of cold storage. J Agric Food Chem 53:1281–1285Google Scholar
  89. 89.
    Schulz AGM, Van Amelsvoort JMM, Beynen AC (1993) Dietary native resistant starch but not retrograded resistant starch raises magnesium and calcium-absorption in rats. J Nutr 123:1724–1731Google Scholar
  90. 90.
    Seib PA, Woo K (1999) US Pat 5,855,946Google Scholar
  91. 91.
    Sharp R, Macfarlane GT (2000) Chemostat enrichments of human faeces with resistant starch are selective for adherent butyrate-producing clostridia at high dilution rates. Appl Environ Microbiol 66:4212–4221Google Scholar
  92. 92.
    Shin M, Woo K, Seib P (2003) Hot-water solubilities and water sorptions of resistant starches at 25 degrees C. Cereal Chem 80:564–566Google Scholar
  93. 93.
    Singh N, Singh J, Kaur L et al (2003) Morphological, thermal and rheological properties of starches from different botanical sources. Food Chem 81:219–231Google Scholar
  94. 94.
    Singh N, Kaur M, Sandhu KS et al (2004) Physicochemical, thermal, morphological and pasting properties of starches from some Indian black gram (Phaseolus mungo L.) cultivars. Starch/Stärke 56:535–544Google Scholar
  95. 95.
    Singh N, Nakaura Y, Inouchi N et al (2008) Structure and viscoelastic properties of starches separated from different legumes. Starch/Stärke 60:349–357Google Scholar
  96. 96.
    Snow P, O’Dea K (1981) Factors affecting the rate of hydrolysis of starch in food. Am J Clin Nutr 34:2721–2727Google Scholar
  97. 97.
    Stevenson DG, Domoto PA, Jane J (2006) Structures and functional properties of apple (Malus domestica Borkh) fruit starch. Carbohydr Polym 63:432–441Google Scholar
  98. 98.
    Szajdek A, Borowska EJ (2008) Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr 63:147–156Google Scholar
  99. 99.
    Tester RF, Morrison WR (1990) Swelling and gelatinization of cereal starches. 1. Effects of amylopectin, amylose, and lipids. Cereal Chem 67:551–559Google Scholar
  100. 100.
    Thebaudin JY, Lefebvre AC, Doublier JL (1998) Rheology of starch pastes from starches of different origins: applications to starch-based sauces. Lebensm Wiss Technol 31:354–360Google Scholar
  101. 101.
    Thomas DJ, Atwell WA (1999) Starch modifications. Eagan Press, St Paul, MNGoogle Scholar
  102. 102.
    Thompson DB (2007) Resistant starch. In: Biliaderis CJ, Izydorczyk MA (eds) Functional food carbohydrates. CRC Press, New YorkGoogle Scholar
  103. 103.
    Topping DL, Fukushima M, Bird AR (2003) Resistant starch as a prebiotic and symbiotic: state of the art. Proc Nutr Soc 62:171Google Scholar
  104. 104.
    Tovar J, Melito C (1996) Steam-cooking and dry heating produce resistant starch in legumes. J Agric Food Chem 44:2642–2645Google Scholar
  105. 105.
    Tovar J, Björck IM, Asp NG (1992) Incomplete digestion of legume starches in rats –a study of precooked flours containing retrograded and physically inaccessible starch fractions. J Nutr 122:1500–1507Google Scholar
  106. 106.
    Tovar J, Granfeldt Y, Björck IM (1992) Effect of processing on blood-glucose and insulin responses to starch in legumes. J Agric Food Chem 40:1846–1851Google Scholar
  107. 107.
    Unlu E, Faller JF (1998) Formation of resistant starch by a twin-screw extruder. Cereal Chem 75:346–350Google Scholar
  108. 108.
    Van Munster IP, De Boer HM, Jansen MC et al (1994) Effect of resistant starch on breath-hydrogen and methane excretion in healthy volunteers. Am J Clin Nutr 59:626–630Google Scholar
  109. 109.
    Vargas-Torres A, Osorio-Díaz P, Islas-Hernández JJ et al (2004) Starch digestibility of five cooked black bean (Phaseolus vulgaris L.) varieties. J Food Compost Anal 17:605–612Google Scholar
  110. 110.
    Vargas-Torres A, Osorio-Díaz P, Tovar J et al (2004) Chemical composition, starch bioavailability and indigestible fraction of common beans (Phaseolus vulgaris L.). Starch/Stärke 56:74–78Google Scholar
  111. 111.
    Vargas-Torres A, Osorio-Díaz P, Agama-Acevedo E et al (2006) Starch digestibility in different bean (Phaseolus vulgaris L.) varieties. Interciencia 31:881–884Google Scholar
  112. 112.
    Velasco ZI, Rascón A, Tovar J (1997) Enzymic availability of starch in cooked black beans (Phaseolus vulgaris L.) and cowpeas (Vigna sp.). J Agric Food Chem 45:1548–1551Google Scholar
  113. 113.
    Wang LZ, White PJ (1994) Functional-properties of oat starches and relationships among functional and structural characteristics. Cereal Chem 71:451–458Google Scholar
  114. 114.
    Watson SA (1987) In: Watson AS, Ramstad PE (eds) Corn: chemistry and technology, AACC, St Paul, MNGoogle Scholar
  115. 115.
    Wolf BW, Bauer LL, Fahey GC Jr (1999) Effects of chemical modification on in vitro rate and extent of food starch digestion: an attempt to discover a slowly digested starch. J Agric Food Chem 47:4178–4183Google Scholar
  116. 116.
    Wolf BW, Wolever TMS, Bolognesi C et al (2001) Glycemic response to a food starch esterified by 1-octenyl succinic anhydride in humans. J Agric Food Chem 49:2674–2678Google Scholar
  117. 117.
    Woo KS, Seib PA (2002) Cross-linked resistant starch: preparation and properties. Cereal Chem 79:819–825Google Scholar
  118. 118.
    Wootton M, Chaudhry MA (1979) Enzymic degestibility of modified starches. Starch/Stärke 31:224–228Google Scholar
  119. 119.
    Wursch P, Del Vedovo S, Koellreuter B (1986) Cell structure and starch nature as key determinants of the digestion rate of starch in legume. Am J Clin Nutr 43:25–29Google Scholar
  120. 120.
    Xie X, Liu Q (2004) Development and physicochemical characterization of new resistant citrate starch from different corn starches. Starch/Stärke 56:364–370Google Scholar
  121. 121.
    Yao LH, Jiang YM, Shi J, Tomás-Barberán FA, Datta N, Singanusong R, Chen SS (2004) Flavonoids in food and their health benefits. Plant Foods Hum Nutr 59:113–122Google Scholar
  122. 122.
    Younes H, Demigny C, Remesy C (1996) Acidic fermentation in the caecum increases absorption of calcium and magnesium in the large intestine of the rat. Br J Nutr 75:301–314Google Scholar
  123. 123.
    Yuan RC, Thompson DB, Boyer CD (1993) Fine-structure of amylopectin in relation to gelatinization and retrogradation behavior of maize starches from 3 wx-containing genotypes in 2 inbred lines. Cereal Chem 70:81–89Google Scholar
  124. 124.
    Zhou Y, Hoover R, Liu Q (2004) Relationship between alpha-amylase degradation and the structure and physicochemical properties of legume starches. Carbohydr Polym 57:299–317Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2009

Authors and Affiliations

  1. 1.Centro de Desarrollo de Productos Bióticos del IPNYautepecMéxico
  2. 2.Centro de Investigación y de Estudios Avanzados–IPNIrapuatoMéxico

Personalised recommendations