Skip to main content
Log in

Defective Quiescent Center/AtTRS85 Encoding a TRAPPIII-specific Subunit Required for the Trans-golgi Network/Early Endosome Integrity is Essential for the Proper Root Development in Arabidopsis

  • Research Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Tethering factors mediate the initial contact between donor and acceptor membranes. Transport protein particle (TRAPP)III, a multisubunit tethering complex, controls both secretory pathway and autophagy in yeast. However, the roles of TRAPPIII is poorly understood in plants. We have isolated a recessive mutant displaying retarded root growth, defective root hair elongation, and compromised organization of quiescent center by introducing UAS tag in Arabidopsis thaliana and named defective quiescent center (dqc)-1. The tag localized in the 25th exon of At5g16280 encoding AtTRS85 specifying the TRAPPIII complex. Three additional T-DNA insertion mutants of dqc/attrs85 exhibited the defective gravitropic responses in addition to the weak dqc-1-like phenotypes. In dqc-2, the auxin-responsive DR5 expression in the columella was extended and an auxin efflux carrier PIN-FORMED1-GFP abnormally aggregated in the vacuole-like subcellular compartments. In the root epidermis of dqc-2, an early endosome (EE) marker was dispersed in the cytoplasm, a trans-Golgi network (TGN) marker localized in tonoplast, and a vacuole marker localized in the fragmented tonoplast. Furthermore, the endocytosis of FM4-64 in dqc-2 was compromised as evidenced by the decrease in the EE punctum formation, the rapid accumlation into the tonoplast, and the infrequent brefeldin A body formation. Together, DQC/AtTRS85 is essential for the integrity of TGN/EE and the vacuole fusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bassham DC, Brandizzi F, Otegui MS, Sanderfoot AA (2008) The secretory system of Arabidopsis. The Arabidopsis Book/American Society of Plant Biologists 6

  • Bröcker C, Engelbrecht-Vandré S, Ungermann C (2010) Multisubunit tethering complexes and their role in membrane fusion. Curr Biol 20:R943–R952

    PubMed  Google Scholar 

  • Cui Y, Shen J, Gao C, Zhuang X, Wang J, Jiang L (2016) Biogenesis of plant prevacuolar multivesicular bodies. Molecular plant 9:774–786

    PubMed  CAS  Google Scholar 

  • Dettmer J, Hong-Hermesdorf A, Stierhof Y-D, Schumacher K (2006) Vacuolar H+-ATPase activity is required for endocytic and secretory trafficking in Arabidopsis. Plant Cell 18:715–730

    PubMed  PubMed Central  CAS  Google Scholar 

  • Drakakaki G, Van De Ven W, Pan S, Miao Y, Wang J, Keinath NF, Weatherly B, Jiang L, Schumacher K, Hicks G (2012) Isolation and proteomic analysis of the SYP61 compartment reveal its role in exocytic trafficking in Arabidopsis. Cell Res 22:413

    PubMed  CAS  Google Scholar 

  • Feraru E, Paciorek T, Feraru MI, Zwiewka M, De Groodt R, De Rycke R, Kleine-Vehn J, Friml J (2010) The AP-3 β adaptin mediates the biogenesis and function of lytic vacuoles in Arabidopsis. Plant Cell 22:2812–2824

    PubMed  PubMed Central  CAS  Google Scholar 

  • Geldner N, Anders N, Wolters H, Keicher J, Kornberger W, Muller P, Delbarre A, Ueda T, Nakano A, Jürgens G (2003) The Arabidopsis GNOM ARF-GEF mediates endosomal recycling, auxin transport, and auxin-dependent plant growth. Cell 112:219–230

    PubMed  CAS  Google Scholar 

  • Geldner N, Dénervaud-Tendon V, Hyman DL, Mayer U, Stierhof YD, Chory J (2009) Rapid, combinatorial analysis of membrane compartments in intact plants with a multicolor marker set. Plant J 59:169–178

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grebe M, Xu J, Möbius W, Ueda T, Nakano A, Geuze HJ, Rook MB, Scheres B (2003) Arabidopsis sterol endocytosis involves actin-mediated trafficking via ARA6-positive early endosomes. Curr Biol 13:1378–1387

    PubMed  CAS  Google Scholar 

  • Heard W, Sklenář J, Tome DF, Robatzek S, Jones AM (2015) Identification of regulatory and cargo proteins of endosomal and secretory pathways in Arabidopsis thaliana by proteomic dissection. Mol Cell Proteomics 14:1796–1813

    PubMed  PubMed Central  CAS  Google Scholar 

  • Heisler MG, Ohno C, Das P, Sieber P, Reddy GV, Long JA, Meyerowitz EM (2005) Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem. Curr Biol 15:1899–1911

    PubMed  CAS  Google Scholar 

  • Jaber E, Thiele K, Kindzierski V, Loderer C, Rybak K, Jürgens G, Mayer U, Söllner R, Wanner G, Assaad FF (2010) A putative TRAPPII tethering factor is required for cell plate assembly during cytokinesis in Arabidopsis. New Phytol 187:751–763

    PubMed  CAS  Google Scholar 

  • Jahn R, Scheller RH (2006) SNAREs—engines for membrane fusion. Nat Rev Mol Cell Biol 7:631

    PubMed  CAS  Google Scholar 

  • Jones S, Newman C, Liu F, Segev N (2000) The TRAPP complex is a nucleotide exchanger for Ypt1 and Ypt31/32. Mol Biol Cell 11:4403–4411

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kleine-Vehn J, Ding Z, Jones AR, Tasaka M, Morita MT, Friml J (2010) Gravity-induced PIN transcytosis for polarization of auxin fluxes in gravity-sensing root cells. Proc Natl Acad Sci 107:22344–22349

    PubMed  CAS  Google Scholar 

  • Langhans M, Förster S, Helmchen G, Robinson DG (2011) Differential effects of the brefeldin A analogue (6R)-hydroxy-BFA in tobacco and Arabidopsis. J Exp Bot 62:2949–2957

    PubMed  CAS  Google Scholar 

  • Lee MM, Schiefelbein J (1999) WEREWOLF, a MYB-related protein in Arabidopsis, is a position-dependent regulator of epidermal cell patterning. Cell 99:473–483

    PubMed  CAS  Google Scholar 

  • Lee MM, Schiefelbein J (2002) Cell pattern in the Arabidopsis root epidermis determined by lateral inhibition with feedback. Plant Cell 14:611–618

    PubMed  PubMed Central  CAS  Google Scholar 

  • Lipatova Z, Majumdar U, Segev N (2016) Trs33-containing TRAPP IV: a novel autophagy-specific Ypt1 GEF. Genetics 204:1117–1128

    PubMed  PubMed Central  CAS  Google Scholar 

  • Liu YG, Mitsukawa N, Oosumi T, Whittier RF (1995) Efficient isolation and mapping of Arabidopsis thaliana T-DNA insert junctions by thermal asymmetric interlaced PCR. Plant J 8:457–463

    PubMed  CAS  Google Scholar 

  • Lynch-Day MA, Bhandari D, Menon S, Huang J, Cai H, Bartholomew CR, Brumell JH, Ferro-Novick S, Klionsky DJ (2010) Trs85 directs a Ypt1 GEF, TRAPPIII, to the phagophore to promote autophagy. Proc Natl Acad Sci 107:7811–7816

    PubMed  CAS  Google Scholar 

  • Naramoto S, Nodzyński T, Dainobu T, Takatsuka H, Okada T, Friml J, Fukuda H (2014) VAN4 encodes a putative TRS120 that is required for normal cell growth and vein development in Arabidopsis. Plant Cell Physiol 55:750–763

    PubMed  CAS  Google Scholar 

  • Park M, Jürgens G (2012) Membrane traffic and fusion at post-Golgi compartments. Front Plant Sci 2:111

    PubMed  PubMed Central  Google Scholar 

  • Pfeffer SR (2017) Rab GTPases: master regulators that establish the secretory and endocytic pathways. Mol Biol Cell 28:712–715

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Zheng H (2011) Arabidopsis TRAPPII is functionally linked to Rab-A, but not Rab-D in polar protein trafficking in trans-Golgi network. Plant Signal Behav 6:1679–1683

    PubMed  PubMed Central  CAS  Google Scholar 

  • Qi X, Kaneda M, Chen J, Geitmann A, Zheng H (2011) A specific role for Arabidopsis TRAPPII in post-Golgi trafficking that is crucial for cytokinesis and cell polarity. Plant J 68:234–248

    PubMed  CAS  Google Scholar 

  • Ravikumar R, Steiner A, Assaad FF (2017) Multisubunit tethering complexes in higher plants. Curr Opin Plant Biol 40:97–105

    PubMed  CAS  Google Scholar 

  • Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M, Phinney BS, Domozych D, Wilkop T, Drakakaki G (2019) AtTRAPPC11/ROG2: A Role for TRAPPs in maintenance of the plant trans-golgi network/early endosome organization and function. The Plant Cell TPC 00110:02019

    Google Scholar 

  • Rutherford S, Moore I (2002) The Arabidopsis Rab GTPase family: another enigma variation. Curr Opin Plant Biol 5:518–528

    PubMed  CAS  Google Scholar 

  • Sacher M, Kim YG, Lavie A, Oh BH, Segev N (2008) The TRAPP complex: insights into its architecture and function. Traffic 9:2032–2042

    PubMed  PubMed Central  CAS  Google Scholar 

  • Sarkar AK, Luijten M, Miyashima S, Lenhard M, Hashimoto T, Nakajima K, Scheres B, Heidstra R, Laux T (2007) Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers. Nature 446:811

    PubMed  CAS  Google Scholar 

  • Song S-K (2016) Misexpression of AtTX12 encoding a Toll/interleukin-1 receptor domain induces growth defects and expression of defense-related genes partially independently of EDS1 in Arabidopsis. BMB Rep 49:693

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song S-K, Hofhuis H, Lee MM, Clark SE (2008) Key divisions in the early Arabidopsis embryo require POL and PLL1 phosphatases to establish the root stem cell organizer and vascular axis. Dev Cell 15:98–109

    PubMed  PubMed Central  CAS  Google Scholar 

  • Song JH, Kwak S-H, Nam KH, Schiefelbein J, Lee MM (2019) QUIRKY regulates root epidermal cell patterning through stabilizing SCRAMBLED to control CAPRICE movement in Arabidopsis. Nat Commun 10:1744

    PubMed  PubMed Central  Google Scholar 

  • Surpin M, Raikhel N (2004) Traffic jams affect plant development and signal transduction. Nat Rev Mol Cell Biol 5:100

    PubMed  CAS  Google Scholar 

  • Takemoto K, Ebine K, Askani JC, Krüger F, Gonzalez ZA, Ito E, Goh T, Schumacher K, Nakano A, Ueda T (2018) Distinct sets of tethering complexes, SNARE complexes, and Rab GTPases mediate membrane fusion at the vacuole in Arabidopsis. Proc Natl Acad Sci 115:E2457–E2466

    PubMed  CAS  Google Scholar 

  • Thellmann M, Rybak K, Thiele K, Wanner G, Assaad FF (2010) Tethering factors required for cytokinesis in Arabidopsis. Plant Physiol 154:720–732

    PubMed  PubMed Central  CAS  Google Scholar 

  • Thomas LL, Joiner AM, Fromme JC (2018) The TRAPPIII complex activates the GTPase Ypt1 (Rab1) in the secretory pathway. J Cell Biol 217:283–298

    PubMed  PubMed Central  CAS  Google Scholar 

  • Uemura T, Ueda T, Ohniwa RL, Nakano A, Takeyasu K, Sato MH (2004) Systematic analysis of SNARE molecules in Arabidopsis: dissection of the post-Golgi network in plant cells. Cell Struct Funct 29:49–65

    PubMed  CAS  Google Scholar 

  • Vukašinović N, Žárský V (2016) Tethering complexes in the Arabidopsis endomembrane system. Front Cell Dev Biol 4:46

    PubMed  PubMed Central  Google Scholar 

  • Waki T, Miyashima S, Nakanishi M, Ikeda Y, Hashimoto T, Nakajima K (2013) A GAL 4-based targeted activation tagging system in Arabidopsis thaliana. Plant J 73:357–367

    PubMed  CAS  Google Scholar 

  • Wang W, Sacher M, Ferro-Novick S (2000) TRAPP stimulates guanine nucleotide exchange on Ypt1p. J Cell Biol 151:289–296

    PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang J, Chen J, Wang L, Zhao S, Li J, Liu B, Li H, Qi X, Zheng H, Lu M (2018) AtBET5 is essential for exine pattern formation and apical meristem organization in Arabidopsis. Plant Sci 274:231–241

    PubMed  CAS  Google Scholar 

  • Zhu J, Gong Z, Zhang C, Song C-P, Damsz B, Inan G, Koiwa H, Zhu J-K, Hasegawa PM, Bressan RA (2002) OSM1/SYP61: A syntaxin protein in Arabidopsis controls abscisic acid–mediated and non-abscisic acid–mediated responses to abiotic stress. Plant Cell 14:3009–3028

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Basic Science Research Program through the National Research Foundation(Grant Number, 2018R1A6A1A03025607) funded by the Ministry of Education, Republic of Korea to M.M.L., the National Research Foundation of Korea (NRF-2018R1D1A1A09083240) to S. S., and research fund from Chosun University 2014 (K206888001) to S.S.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sang-Kee Song or Myeong Min Lee.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, SK., Kim, Y.H., Song, J. et al. Defective Quiescent Center/AtTRS85 Encoding a TRAPPIII-specific Subunit Required for the Trans-golgi Network/Early Endosome Integrity is Essential for the Proper Root Development in Arabidopsis. J. Plant Biol. 63, 23–31 (2020). https://doi.org/10.1007/s12374-020-09234-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09234-w

Keywords

Navigation