Skip to main content
Log in

Plant Thermomorphogenic Adaptation to Global Warming

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants are capable of actively adapting to a variety of environmental signals by adjusting physiological activities, growth behaviors, and architectural morphology. Temperatures are one of the major environmental factors that extensively affect plant growth and developmental processes. A suite of signaling mediators and underlying molecular mechanisms governing plant adaptation to stressful high and low temperatures have been explored through molecular genetic approaches and global-scale gene expression screening in recent decades. Notably, it is known that ambient temperature changes even by a few degrees also profoundly affect plant developmental and morphological traits. In particular, in response to ambient warm temperatures, plants exhibit distinct morphological adjustments, such as stem elongation, increase of leaf hyponasty, and formation of small, slender leaves, which are collectively termed thermomorphogenesis. Plant thermomorphogenesis is intimately associated with global warming, which represents a steady increase of the average global temperatures and is emerging as a world-wide ecological concern because of its impacts on plant vegetation and crop productivity. In this minireview, we summarize recent progress in the field and discuss practical insights into how plants cope with temperature changes to sustain optimal growth and adaptive behaviors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alcázar R, Parker JE (2011) The impact of temperature on balancing immune responsiveness and growth in Arabidopsis. Trends Plant Sci 12:666–675

    Google Scholar 

  • Begum S, Nakaba S, Bayramzadeh V, Oribe Y, Kubo T, Funada R (2008) Temperature responses of cambial reactivation and xylem differentiation in hybrid poplar (Populus sieboldii x P. grandidentata) under natural conditions. Tree Physiol 28(12):1813–1819

    PubMed  Google Scholar 

  • Begum S, Nakaba S, Oribe Y, Kubo T, Funada R (2010) Cambial sensitivity to rising temperatures by natural condition and artificial heating from late winter to early spring in the evergreen conifer Cryptomeria japonica. Trees 24(1):43–52

    Google Scholar 

  • Bose BK (2010) Global warming: energy, environmental pollution, and the impact of power electronics. IEEE Ind Electron Mag 4:6–17

    Google Scholar 

  • Braslavsky SE, Gärtner W, Schaffner K (1997) Phytochrome photoconversion. Plant Cell Environ 20:700–706

    CAS  Google Scholar 

  • Castillon A, Shen H, Huq E (2007) Phytochrome interacting factors: central players in phytochrome-mediated light signaling networks. Trends Plant Sci 12:514–521

    PubMed  CAS  Google Scholar 

  • Chakraborty S, Newton AC (2011) Climate change, plant diseases and food security: an overview. Plant Pathol 60:2–14

    Google Scholar 

  • Chaneva S, Sevdalina F, Minkova K, Lukavský J (2007) Effect of light and temperature on the cyanobacterium Arthronema africanum—a prospective phycobiliprotein-producing strain. J Appl Phycol 19(5):537–544

    CAS  Google Scholar 

  • Cobben MMP, Verboom J, Opdam PFM, Hoekstra RF, Jochem R, Arens P, Smulders MJM (2011) Projected climate change causes loss and redistribution of genetic diversity in a model metapopulation of a medium-good disperser. Ecography 34:920–932

    Google Scholar 

  • Commuri PD, Jones RD (2001) High temperatures during endosperm cell division in maize: a genotypic comparison under in vitro and field conditions. Crop Sci 41:1122–1130

    Google Scholar 

  • Deutsch CA, Tewksbury JJ, Tigchelaar M, Battisti DS, Merrill SC, Huey RB, Naylor RL (2018) Increase in crop losses to insect pests in a warming climate. Science 361:916–919

    PubMed  CAS  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y, Xie Q, Zhu JK (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    PubMed  CAS  Google Scholar 

  • Elich TD, Chory J (1997) Biochemical characterization of Arabidopsis wild-type and mutant phytochrome B holoproteins. Plant Cell 9:2271–2280

    PubMed  PubMed Central  CAS  Google Scholar 

  • Fei Q, Li J, Luo Y, Ma K, Niu B, Mu C, Gao H, Li X (2018) Plant molecular responses to the elevated ambient temperatures expected under global climate change. Plant Signal Behav 13:e1414123

    PubMed  PubMed Central  Google Scholar 

  • Fitter AH, Fitter RS (2002) Rapid changes in flowering time in British plants. Science 296:1689–1691

    PubMed  CAS  Google Scholar 

  • Franklin KA, Lee SH, Patel D, Kumar SV, Spartz AK, Gu C, Ye S, Yu P, Breen G, Cohen JD, Wigge PA, Gray WM (2011) Phytochrome-interacting factor 4 (PIF4) regulates auxin biosynthesis at high temperature. Proc Natl Acad Sci USA 108:20231–20235

    PubMed  CAS  Google Scholar 

  • Fujii Y, Tanaka H, Konno N, Ogasawara Y, Hamashima N, Tamura S, Hasegawa S, Hayasaki Y, Okajima K, Kodama Y (2017) Phototropin perceives temperature based on the lifetime of its photoactivated state. Proc Natl Acad Sci USA 114(34):9206–9211

    PubMed  CAS  Google Scholar 

  • Gangappa SN, Kumar SV (2017) DET1 and HY5 control PIF4-mediated thermosensory elongation growth through distinct mechanisms. Cell Rep 18(2):344–351

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gangappa SN, Berriri S, Kumar SV (2017) PIF4 coordinates thermosensory growth and immunity in Arabidopsis. Curr Biol 27:243–249

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gil KE, Kim WY, Lee HJ, Faisal M, Saquib Q, Alatar AA, Park CM (2017) ZEITLUPE contributes to a thermoresponsive protein quality control system in Arabidopsis. Plant Cell 29:2882–2894

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gould PD, Locke JC, Larue C, Southern MM, Davis SJ, Hanano S, Moyle R, Milich R, Putterill J, Millar AJ, Hall A (2006) The molecular basis of temperature compensation in the Arabidopsis circadian clock. Plant Cell 18:1177–1187

    PubMed  PubMed Central  CAS  Google Scholar 

  • Gray WM, Ostin A, Sandberg G, Romano CP, Estelle M (1998) High temperature promotes auxin-mediated hypocotyl elongation in Arabidopsis. Proc Natl Acad Sci USA 95:7197–7202

    PubMed  CAS  Google Scholar 

  • Ha JH, Han SH, Lee HJ, Park CM (2017a) Environmental adaptation of the heterotrophic-to-autotrophic transition: the developmental plasticity of seedling establishment. Crit Rev Plant Sci 36:128–137

    Google Scholar 

  • Ha JH, Lee HJ, Jung JH, Park CM (2017b) Thermo-induced maintenance of photo-oxidoreductases underlies plant autotrophic development. Dev Cell 41:170–179

    PubMed  CAS  Google Scholar 

  • Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684

    PubMed  PubMed Central  Google Scholar 

  • Holmgren M, Scheffer M, Huston MA (1997) The interplay of facilitation and competition in plant communities. Ecology 78:1966–1975

    Google Scholar 

  • Huey RB, Carlson M, Crozier L, Frazier M, Hamilton H, Harley C, Hoang A, Kingsolver JG (2002) Plants versus animals: do they deal with stress in different ways? Integr Comp Biol 42:415–423

    PubMed  Google Scholar 

  • Huot B, Castroverde CDM, Velásquez AC, Hubbard E, Pulman JA, Yoshida Y, Yao J, Howe GA, Childs KL, Tsuda K, Montgomery BL, He SY (2017) Dual impact of elevated temperature on plant defence and bacterial virulence in Arabidopsis. Nat Commun 8:1808

    PubMed  PubMed Central  Google Scholar 

  • Huq E (2002) Quail PH (2002) PIF4, a phytochrome-interacting bHLH factor, functions as a negative regulator of phytochrome B signaling in Arabidopsis. EMBO J 21:2441–2450

    PubMed  PubMed Central  CAS  Google Scholar 

  • James R, Washington R (2013) Changes in African temperature and precipitation associated with degrees of global warming. Clim Change 117:859–872

    Google Scholar 

  • Jump AS, Marchant R, Peñuelas J (2009) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    PubMed  CAS  Google Scholar 

  • Jung JH, Seo PJ, Ahn JH, Park CM (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 287:16007–16016

    PubMed  PubMed Central  CAS  Google Scholar 

  • Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M, Grant A, Locke JC, Schäfer E, Jaeger KE, Wigge PA (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    PubMed  CAS  Google Scholar 

  • Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826

    PubMed  CAS  Google Scholar 

  • Kim HY, Horie T, Nakagawa H, Wada K (1996) Effects of elevated CO2 concentration and high temperature on growth and yield of rice: II. The effect of yield and its component of Akihikari rice. Jpn J Crop Sci 65:644–651

    CAS  Google Scholar 

  • Kim J, Yi H, Choi G, Shin B, Song PS, Choi G (2003) Functional characterization of phytochrome interacting factor 3 in phytochrome-mediated light signal transduction. Plant Cell 15:2399–2407

    PubMed  PubMed Central  CAS  Google Scholar 

  • Kim TS, Kim WY, Fujiwara S, Kim J, Cha JY, Park JH, Lee SY, Somers DE (2011) HSP90 functions in the circadian clock through stabilization of the client F-box protein ZEITLUPE. Proc Natl Acad Sci USA 108:16843–16848

    PubMed  CAS  Google Scholar 

  • Koini MA, Alvey L, Allen T, Tilley CA, Harberd NP, Whitelam GC, Franklin KA (2009) High temperature-mediated adaptations in plant architecture require the bHLH transcription factor PIF4. Curr Biol 19:408–413

    PubMed  CAS  Google Scholar 

  • Łabuz J, Hermanowicz P, Gabryś H (2015) The impact of temperature on blue light induced chloroplast movements in Arabidopsis thaliana. Plant Sci 239:238–249

    PubMed  Google Scholar 

  • Lee HJ, Jung JH, Cortés Llorca L, Kim SG, Lee S, Baldwin IT, Park CM (2014) FCA mediates thermal adaptation of stem growth by attenuating auxin action in Arabidopsis. Nat Commun 5:5473

    PubMed  Google Scholar 

  • Lee HJ, Ha JH, Park CM (2017) An FCA-mediated epigenetic route towards thermal adaptation of autotrophic development in plants. BMB Rep 50:343–344

    PubMed  PubMed Central  CAS  Google Scholar 

  • Legris M, Klose C, Burgie ES, Rojas CC, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    PubMed  CAS  Google Scholar 

  • Más P, Kim WY, Somers DE, Kay SA (2003) Targeted degradation of TOC1 by ZTL modulates circadian function in Arabidopsis thaliana. Nature 426:567–570

    PubMed  Google Scholar 

  • Mathews S (2010) Evolutionary studies illuminate the structural-functional model of plant phytochromes. Plant Cell 22(1):4–16

    PubMed  PubMed Central  CAS  Google Scholar 

  • Matsuzaki J, Kawahara Y, Izawa T (2015) Punctual transcriptional regulation by the rice circadian clock under fluctuating field conditions. Plant Cell 27:633–648

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mattoo RU, Sharma SK, Priya S, Finka A, Goloubinoff P (2013) Hsp110 is a bona fide chaperone using ATP to unfold stable misfolded polypeptides and reciprocally collaborate with Hsp70 to solubilize protein aggregates. J Biol Chem 19:21399–21411

    Google Scholar 

  • Maurya JP, Bhalerao RP (2017) Photoperiod- and temperature-mediated control of growth cessation and dormancy in trees: a molecular perspective. Ann Bot 120:351–360

    PubMed  PubMed Central  CAS  Google Scholar 

  • McClellan AJ, Tam S, Kaganovich D, Frydman J (2005) Protein quality control: chaperones culling corrupt conformations. Nat Cell Biol 7:736–741

    PubMed  CAS  Google Scholar 

  • Medzihradszky M, Bindics J, Ádám É, Viczián A, Klement É, Lorrain S, Gyula P, Mérai Z, Fankhauser C, Medzihradszky KF, Kunkel T, Schäfer E, Nagy F (2013) Phosphorylation of phytochrome B inhibits light-induced signaling via accelerated dark reversion in Arabidopsis. Plant Cell 25:535–544

    PubMed  PubMed Central  CAS  Google Scholar 

  • Meehl GA, Washington WM, Collins WD, Arblaster JM, Hu A, Buja LE, Strand WG, Teng H (2005) How much more global warming and sea level rise? Science 307:1769–1772

    PubMed  CAS  Google Scholar 

  • Menna A, Nguyen D, Guttman DS, Desveaux D (2015) Elevated temperature differentially influences effector-triggered immunity outputs in Arabidopsis. Front Plant Sci 6:995

    PubMed  PubMed Central  Google Scholar 

  • Miura K, Furumoto T (2013) Cold signaling and cold response in plants. Int J Mol Sci 14:5312–5337

    PubMed  PubMed Central  CAS  Google Scholar 

  • Mooney KA, Halitschke R, Kessler A, Agrawal AA (2010) Evolutionary trade-offs in plants mediate the strength of trophic cascades. Science 327:1642–1644

    PubMed  CAS  Google Scholar 

  • Oh E, Kim J, Park E, Kim JI, Kang C, Choi G (2004) PIL5, a phytochrome-interacting basic helix-loop-helix protein, is a key negative regulator of seed germination in Arabidopsis thaliana. Plant Cell 16:3045–3058

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ortigosa A, Fonseca S, Franco-Zorrilla JM, Fernandez-Calvo P, Zander M, Lewsey MG, García-Casado G, Fernández-Barbero G, Ecker JR, Solano R (2019) The JA-pathway MYC transcription factors regulate photomorphogenic responses by targeting HY5 gene expression. Plant J. https://doi.org/10.1111/tpj.14618

    Article  PubMed  Google Scholar 

  • Park YJ, Park CM (2019) Physicochemical modeling of the phytochrome-mediated photothermal sensing. Sci Rep 9:10485

    PubMed  PubMed Central  Google Scholar 

  • Park YJ, Lee HJ, Ha JH, Kim JY, Park CM (2017) COP1 conveys warm temperature information to hypocotyl thermomorphogenesis. New Phytol 215:269–280

    PubMed  CAS  Google Scholar 

  • Park YJ, Lee HJ, Gil KE, Kim JY, Lee JH, Lee H, Cho HT, Vu LD, De Smet I, Park CM (2019) Developmental programming of thermonastic leaf movement. Plant Physiol 180:1185–1197

    PubMed  CAS  Google Scholar 

  • Pyl ET, Piques M, Ivakov A, Schulze W, Ishihara H, Stitt M, Sulpice R (2012) Metabolism and growth in Arabidopsis depend on the daytime temperature but are temperature-compensated against cool nights. Plant Cell 24:2443–2469

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rockwell NC, Lagarias JC (2006) The structure of phytochrome: a picture is worth a thousand spectra. Plant Cell 18:4–14

    PubMed  PubMed Central  CAS  Google Scholar 

  • Root TL, Price JT, Hall KR, Schneider SH, Rosenzweig C, Pounds JA (2003) Fingerprints of global warming on wild animals and plants. Nature 421:57–60

    PubMed  CAS  Google Scholar 

  • Scharf KD, Höhfeld I, Nover L (1998) Heat stress response and heat stress transcription factors. J Biosci 23:313–329

    CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    PubMed  CAS  Google Scholar 

  • Velásquez AC, Castroverde CDM, He SY (2018) Plant and pathogen warfare under changing climate conditions. Curr Biol 28:R619–R634

    PubMed  PubMed Central  Google Scholar 

  • Xiao S, Brown S, Patrick E, Brearley C, Turner JG (2003) Enhanced transcription of the Arabidopsis disease resistance genes RPW8.1 and RPW8.2 via a salicylic acid-dependent amplification circuit is required for hypersensitive cell death. Plant Cell 15(1):33–45

    Google Scholar 

  • Zeng N, Yoon J (2009) Expansion of the world's deserts due to vegetation-albedo feedback under global warming. Grophys Res 36:L17401

    Google Scholar 

  • Zhu J, Dong CH, Zhu JK (2007) Interplay between cold-responsive gene regulation, metabolism and RNA processing during plant cold acclimation. Curr Opin Plant Biol 10:290–295

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Leaping Research (NRF-2018R1A2A1A19020840) Program provided by the National Research Foundation of Korea (NRF) and the Next-Generation BioGreen 21 Program (PJ013134) provided by the Rural Development Administration of Korea. Y.-J.P. was partially supported by Global Ph.D. Fellowship Program through NRF (NRF-2016H1A2A1906534).

Author information

Authors and Affiliations

Authors

Contributions

CMP and YJP designed the manuscript. CMP, YJP, JHL, and JYK wrote the manuscript. J.-I Kim provided scientific discussion. All the authors agreed on the contents of the paper and critically evaluated the manuscript.

Corresponding authors

Correspondence to Young-Joon Park or Chung-Mo Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JH., Kim, J.Y., Kim, JI. et al. Plant Thermomorphogenic Adaptation to Global Warming. J. Plant Biol. 63, 1–9 (2020). https://doi.org/10.1007/s12374-020-09232-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-020-09232-y

Keywords

Navigation