Skip to main content
Log in

Overexpression of the Cytokinin Oxidase/dehydrogenase (CKX) from Medicago sativa Enhanced Salt Stress Tolerance of Arabidopsis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Cytokinin oxidase/dehydrogenase (CKXs) are involved in various physiological processes, including cytokinins (CKs) catabolism, root system architecture and response to abiotic stresses in plants. Alfalfa (Medicago sativa) is a widely cultivated forage which is frequently threatened by high salinity, and the potential role of CKXs in alleviating the salt stress in alfalfa lacked attention. In this study, we isolated a CKX gene from alfalfa, MsCKX (MK177192), and identified its biological functions by overexpressing it in Arabidopsis. MsCKX shares high sequence identity with CKX from other legume plants, especially Medicago truncatula (98%). MsCKX was clearly tissue-specific, and it was mainly expressed in roots. In addition, the expression of MsCKX increased under salt stress and abscisic acid (ABA) treatment. Overexpression of MsCKX gene increased the activity of CKX, which led to an enlarged root system in transgenic Arabidopsis plants. Overexpression of MsCKX gene enhanced salt tolerance of transgenic plants by maintaining a higher K+/Na+ ratio, enhancing the activities of antioxidant enzymes to scavenge ROS and increasing the expression levels of stress-related genes (P5CS1, DREB2, ion transporters and H+ pumps). Taken together, these results shed light on the roles of MsCKX involved in salt tolerance and may have applications in salt-resistant breeding of alfalfa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Dahro B, Wang F, Peng T, Liu JH 2016 PtrA/NINV, an alkaline/neutral invertase gene of Poncirus trifoliata, confers enhanced tolerance to multiple abiotic stresses by modulating ROS levels and maintaining photosynthetic efficiency. BMC Plant Biol 16:76

    Article  PubMed  Google Scholar 

  • Dai W, Wang M, Gong XQ, Liu JH 2018 The transcription factor FcWRKY40 of Fortunella crassifolia functions positively in salt tolerance through modulation of ion homeostasis and proline biosynthesis by directly regulating SOS2 and P5CS1 homologs. New Phytol 219:972–989

    Article  CAS  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu GH, Schroeder JI 2014 Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  Google Scholar 

  • Galuszka P, Frébortová J, Werner T, Yamada M, Strnad M, Schmülling T, Frébort I 2004 Cytokinin oxidase/dehydrogenase genes in barley and wheat: cloning and heterologous expression. FEBS J 271:3990–1002

    CAS  Google Scholar 

  • Galuszka P, Popelková H, Werner T, Frébortová J, Pospíšilová H, Mik V, Köllmer I, Schmülling T, Frébort I 2007 Biochemical characterization of cytokinin oxidases/dehydrogenases from Arabidopsis thaliana expressed in Nicotiana tabacum L. J Plant Growth Regul 26:255–267

    Article  CAS  Google Scholar 

  • Gao S, Fang J, Xu F, Wang W, Sun X, Chu J, Cai B, Feng Y, Chu C 2014 A cytokinin oxidase/dehydrogenase gene OsCKX4 integrates cytokinin and auxin signaling to control rice crown root formation. Plant Physiol 165:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Giannopolitis CN, Ries SK 1977 Superoxide dismutase. I. Occurrence in higher plants. Plant Physiol 59:309–314

    Article  CAS  PubMed  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K 2012 Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79:137–155

    Article  CAS  Google Scholar 

  • Ha S, Vanková R, Yamaguchi-Shinozaki K, Shinozaki K, Tran L 2012 Cytokinins: metabolism and function in plant adaptation to environmental stresses. Trends Plant Sci 17:172–179

    Article  CAS  Google Scholar 

  • Hansen H, Dörffling K (2003) Root-derived trans-zeatin riboside and abscisic acid in drought-stressed and rewatered sunflower plants: interaction in the control of leaf diffusive resistance? Funct Plant Biol 30:365–375

    Article  CAS  Google Scholar 

  • Heyl A, Ramireddy E, Brenner WG, Riefler M, Allemeersch J, Schmülling T 2008 The transcriptional silencer ARR1-SRDX suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiol 147:1380–1395

    Article  CAS  PubMed  Google Scholar 

  • Hwang I, Sheen J, Müller B 2012 Cytokinin signaling networks. Annu Rev Plant Biol 63:353–380

    Article  CAS  Google Scholar 

  • Jager AK, Stirk WA, Staden JV 1997 Cytokinin oxidase activity in habituated and non-habituated soybean callus. Plant Growth Regul 22:203–206

    Article  CAS  Google Scholar 

  • Jiang MY, Zhang JH 2001 Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273

    Article  CAS  Google Scholar 

  • Köllmer I, Novák O, Strnad M, Schmülling T, Werner T 2014 Overexpression of the cytosolic cytokinin oxidase/dehydrogenase (CKX7) from Arabidopsis causes specific changes in root growth and xylem differentiation. Plant J 78:359–371

    Article  Google Scholar 

  • Kowalska M, Galuszka P, Frébortová J, Šebela M, Béres T, Hluska T, Šmehilová M, Bilyeu KD, Frébort I 2010 Vacuolar and cytosolic cytokinin dehydrogenases of Arabidopsis thaliana: Heterologous expression, purification and properties. Phytochemistry 71:1970–1978

    Article  CAS  Google Scholar 

  • Liang W, Ma X, Wan P, Liu L 2017 Plant salt-tolerance mechanism: A review. Biochem Biophys Res Commun 495:286–291

    Article  Google Scholar 

  • Liao X, Guo X, Wan Q, Wang Y, Zhao D (2017) Overexpression of MsDREB6.2 results in cytokinin-deficient developmental phenotypes and enhances drought tolerance in transgenic apple plants. Plant J 89:510–526

    Article  CAS  Google Scholar 

  • Libreros-Minotta CA, Tipton PA 1995 A colorimetric assay for cytokinin oxidase. Anal Biochem 231:339–341

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD 2001 Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  Google Scholar 

  • Macková H, Hronková M, Dobrá J, Turečková V, Novák O, Lubovská Z, Motyka V, Haisel D, Hájek T, Prášil IT, Gaudinová A, Štorchová H, Ge E, Werner T, Schmülling T, Vanková R 2013 Enhanced drought and heat stress tolerance of tobacco plants with ectopically enhanced cytokinin oxidase/dehydrogenase gene expression. J Exp Bot 64:2805–2815

    Article  PubMed  Google Scholar 

  • Mahajan S, Tuteja N 2005 Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF, Ali EF 2017 Evaluation of proline functions in saline conditions. Phytochemistry 140:52

    Article  CAS  Google Scholar 

  • Massonneau A, Houba-Hérin N, Pethe C, Madzak C, Falque M, Mercy M, Kopecny D, Majira A, Rogowsky P, Laloue M 2004 Maize cytokinin oxidase genes: Differential expression and cloning of two new cDNAs. J Exp Bot 55:2549–2557

    Article  CAS  Google Scholar 

  • Munns R, Tester M 2008 Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  Google Scholar 

  • Nishiyama R Watanabe Y, Fujita Y, Le DT, Kojima M, Werner T, Vankova R, Yamaguchi-Shinozaki K, Shinozaki K, Kakimoto T, Sakakibara H, Schmülling T, Tran LS 2011 Analysis of cytokinin mutants and regulation of cytokinin metabolic genes reveals important regulatory roles of cytokinins in drought, salt and abscisic acid responses, and abscisic acid biosynthesis. Plant Cell 23:2169–218

    Article  CAS  PubMed  Google Scholar 

  • Platten DJ, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P, Pantoja O, Rodríguez-Navarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Véry AA, Zhu JK, Dennis ES, Tester M 2006 Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374

    Article  CAS  Google Scholar 

  • Polle A, Otter T, Seifert F 1994 Apoplastic peroxidases and lignification in needles of norway spruce (Picea abies L.). Plant Physiol 106:53–60

    Article  CAS  PubMed  Google Scholar 

  • Pospisilova H, Jiskrova E, Vojta P, Mrízová K, Kokáš F, Čudejková MM, Bergougnoux V, Plíhal O, Klimešová J, Novák O, Dzurová L, Frébort I, Galuszka P 2016 Transgenic barley overexpressing a cytokinin dehydrogenase gene shows greater tolerance to drought stress. New Biotechnol 33:692–705

    Article  CAS  Google Scholar 

  • Pospisilova J, Vagner M, Malbeck J, Travnickova A, Batkova P 2005 Interactions between abscisic acid and cytokinins during water stress and subsequent rehydration. Biol Plant 49:533–540

    Article  CAS  Google Scholar 

  • Puckette MC, Weng H, Mahalingam R 2007 Physiological and biochemical responses to acute ozone-induced oxidative stress in Medicago truncatula. Plant Physiol Biochem 45:70–79

    Article  CAS  Google Scholar 

  • Tran LS, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K 2007 Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci USA 104:20623–20628

    Article  CAS  Google Scholar 

  • Tsai YC, Weir NR, Hill K, Zhang W, Kim HJ, Shiu SH, Schaller GE, Kieber JJ 2012 Characterization of genes involved in cytokinin signaling and metabolism from rice. Plant Physiol 158:1666–1684

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Garcia-Ramirez L, Pantoja O 2005 Salt stress in Thellungiella halophila activates Na+ transport mechanisms required for salinity tolerance. Plant Physiol 139:1507–1517

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan C, Wang SM 2014 Coordination of AtHKT1;1 and AtSOS1 facilitates Na+ and K+ homeostasis in Arabidopsis thaliana under salt stress. J Plant Biol 57:282–290

    Article  CAS  Google Scholar 

  • Wei C, Cui Q, Zhang XQ, Zhao YQ, Jia GX 2016 Three P5CS genes including a novel one from Lilium regale play distinct roles in osmotic, drought and salt stress tolerance. J Plant Biol 59:456–466

    Article  CAS  Google Scholar 

  • Werner T, Kollmer I, Bartrina I, Hoist K, Schmutling T 2006 New insights into the biology of cytokinin degradation. Plant Biol 8:371–381

    Article  CAS  Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T 2003 Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  CAS  PubMed  Google Scholar 

  • Werner T, Nehnevajova E, Kollmer I, Novak O, Strnad M, Kramer U, Schmülling T 2010 Root-specific reduction of cytokinin causes enhanced root growth, drought tolerance, and leaf mineral enrichment in Arabidopsis and tobacco. Plant Cell 22:3905–3920

    Article  PubMed  Google Scholar 

  • Wu DY, Ji J, Wang G, Guan WZ, Guan CF, Jin C, Tian XW 2015 LcMKK, a novel group A mitogen-activated protein kinase kinase gene in Lycium chinense, confers dehydration and drought tolerance in transgenic tobacco via scavenging ROS and modulating expression of stress-responsive genes. Plant Growth Regul 76:269–279

    Article  CAS  Google Scholar 

  • Wu S, Ding L, Zhu JK 1996 SOS1, a genetic locus essential for salt tolerance and potassium acquisition. Plant Cell 8:617–627

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y 2018 Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217:523–539

    Article  CAS  Google Scholar 

  • Zhang X, Henriques R, Lin SS, Niu QW, Chua NH 2006 Agrobacterium-mediated transformation of Arabidopsis thaliana using the floral dip method. Nat Protoc 1:641–646

    Article  CAS  Google Scholar 

  • Zhao L, Liu FX, Xu WY, Di C, Zhou S, Xue Y, Yu J, Su Z 2009 Increased expression of OsSPX1 enhances cold/subfreezing tolerance in tobacco and Arabidopsis thaliana. Plant Biotechnol J 7:550–561

    Article  CAS  Google Scholar 

  • Zhen A, Bie ZL, Huang Y, Liu ZX, Lei B 2011 Effects of salt-tolerant rootstock grafting on ultrastructure, photosynthetic capacity, and H2O2-scavenging system in chloroplasts of cucumber seedlings under NaCl stress. Acta Physiol Plant 33:2311–2319

    Article  CAS  Google Scholar 

  • Zhu JK 2001 Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  Google Scholar 

  • Zhu JK 2002 Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273

    Article  CAS  PubMed  Google Scholar 

  • Zhuo CL, Wang T, Guo ZF, Lu SY 2016 Overexpression of MfPIP2-7 from Medicago falcata promotes cold tolerance and growth under NO3 deficiency in transgenic tobacco plants. BMC Plant Biol 16:138

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Project of National Natural Science Foundation of China (Nos. 31572456 and 31772660), the China Agriculture Research System (No. CARS-34), and the Key Research and Development Program of Shaanxi Province (No. 2018ZDXM-NY-089).

Author information

Authors and Affiliations

Authors

Contributions

LS and HS designed the research. LS performed the research and wrote the manuscript; HS cloned the gene and analyzed the gene expression pattern; AY, ZJ and CY participated in Arabidopsis transformation and physiological assays; ZJ, LY and GJ participated in the data analysis; YP and HT proposed the ideas, designed the experiment, and edited the manuscript. The authors declare that they have no conflict of interest.

Corresponding authors

Correspondence to Tianming Hu or Peizhi Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., An, Y., Hailati, S. et al. Overexpression of the Cytokinin Oxidase/dehydrogenase (CKX) from Medicago sativa Enhanced Salt Stress Tolerance of Arabidopsis. J. Plant Biol. 62, 374–386 (2019). https://doi.org/10.1007/s12374-019-0141-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-019-0141-z

Keywords

Navigation