Skip to main content

Advertisement

SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Cart
  1. Home
  2. Journal of Plant Biology
  3. Article
Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves?
Download PDF
Download PDF
  • Review Article
  • Published: 27 May 2019

Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves?

  • Pedro Filho Noronha Souza1,2 na1 &
  • Fabricio Eulálio Leite Carvalho1 na1 

Journal of Plant Biology volume 62, pages 170–180 (2019)Cite this article

  • 674 Accesses

  • 8 Citations

  • Metrics details

Abstract

As simple organisms with a parasite nature, viruses have become masters in manipulating and subvert cellular components, including host proteins and organelles, to improve viral replication. Therefore, the understanding of viral strategies to manipulate cell function disrupting plant defenses and enhancing viral infection cycles is fundamental to the production of virus-resistant plant lines. After invading susceptible plants, viruses create conditions that favor local and systemic infections by suppressing multiple layers of innate host defenses while use cellular machinery to own benefit. Viral interference in interlinked essential cellular functions results in phenotypic changes and disease symptoms, which debilitates plants favoring infection establishment. Herein in this review, the novelty it will be the discussion about the strategies used by (+) single strand RNA viruses to affect cellular processes and components to improve viral replication, in parallel to overcome plant defenses, favoring disease establishment by applying in one action using the same viral protein to coordinate viral replication and breaking down plant defense. This focus on plant-virus interaction was never done before, and this knowledge has the potential to help in the development of new strategies to produce resistant plants.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  • Abbink TE, Peart JR, Mos TN, Baulcombe DC, Bol JF, Linthorst HJ (2002) Silencing of a gene encoding a protein component of the oxygen-evolving complex of photosystem II enhances virus replication in plants. Virology 295:307–319

    Article  CAS  PubMed  Google Scholar 

  • Ala-Poikela M, Goytia E, Haikonen T, Rajamaki ML, Valkonen JP (2011) Helper component proteinase of the genus Potyvirus is an interaction partner of translation initiation factors eIF(iso)4E and eIF4E and contains a 4E binding motif. J Virol 85:6784–6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bamunusinghe D, Seo JK, Rao AL (2011) Subcellular localization and rearrangement of endoplasmic reticulum by Brome mosaic virus capsid protein. J Virol 85:2953–2963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhattacharyya D, Chakraborty S (2018) Chloroplast: the Trojan horse in plant-virus interaction. Mol Plant Pathol 19:504–518

    Article  Google Scholar 

  • Cao X, Jin X, Zhang X, Li Y, Wang C, Wang X, Hong J, Wang X, Li D, Zhang Y (2015) Morphogenesis of Endoplasmic Reticulum Membrane-Invaginated Vesicles during Beet Black Scorch Virus Infection: Role of Auxiliary Replication Protein and New Implications of Three-Dimensional Architecture. J Virol 89:6184–6195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP 2015. Chloroplast stromules function during innate immunity. Dev Cell 34:45–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng SF, Huang YP, Chen LH, Hsu YH, Tsai CH (2013) Chloroplast phosphoglycerate kinase is involved in the targeting of Bamboo mosaic virus to chloroplasts in Nicotiana benthamiana plants. Plant Physiol 163:1598–608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dempsey M, Riley D, Srinivasan R (2017) Insecticidal effects on the spatial progression of tomato yellow leaf curl virus and movement of its whitefly vector in tomato. J Econ Entomol 110:875–883

    Article  CAS  PubMed  Google Scholar 

  • Diaz A, Ahlquist P (2012) Role of host reticulon proteins in rearranging membranes for positive-strand RNA virus replication. Curr Opin Microbiol 15:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elvira MI, Galdeano MM, Gilardi P, Garcia-Luque I, Serra MT (2008) Proteomic analysis of pathogenesis-related proteins (PRs) induced by compatible and incompatible interactions of pepper mild mottle virus (PMMoV) in Capsicum chinense L3 plants. J Exp Bot 59:1253–1265

    Article  CAS  PubMed  Google Scholar 

  • Evans MR, Simpson RW (1980) The coronavirus avian infectious bronchitis virus requires the cell nucleus and host transcriptional factors. Virology 105:582–591

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22:481–496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gomez-Aix C, Garcia-Garcia M, Aranda MA, Sanchez-Pina MA (2015) Melon necrotic spot virus Replication Occurs in Association with Altered Mitochondria. Mol Plant Microbe Interact 28:387–397

    Article  CAS  PubMed  Google Scholar 

  • Grangeon R, Agbeci M, Chen J, Grondin G, Zheng H, Laliberte JF (2012) Impact on the endoplasmic reticulum and Golgi apparatus of turnip mosaic virus infection. J Virol 86:9255–9265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harries PA, Park JW, Sasaki N, Ballard KD, Maule AJ, Nelson RS (2009) Differing requirements for actin and myosin by plant viruses for sustained intercellular movement. Proc Natl Acad Sci USA 106:17594–17599

    Article  PubMed  Google Scholar 

  • Hashimoto M, Komatsu K, Iwai R, Keima T, Maejima K, Shirashi K, Yoshida T, Kitazawa Y, Okano Y, Yamaji Y, Namba S (2015) Cell Death Triggered by a Putative Amphipathic Helix of Radish mosaic virus Helicase Protein Is Tightly Correlated With Host Membrane Modification. Mol Plant Microbe Interact 28:675–688

    Article  CAS  PubMed  Google Scholar 

  • Hill JH, Whitham SA (2014) Control of virus diseases in soybeans. Adv Virus Res 90:355–390

    Article  PubMed  Google Scholar 

  • Hiscox JA (2007) RNA viruses: hijacking the dynamic nucleolus. Nat Rev Microbiol 5:119–127

    Article  CAS  Google Scholar 

  • Hodgson RA, Beachy RN, Pakrasi HB (1989) Selective inhibition of photosystem II in spinach by tobacco mosaic virus: an effect of the viral coat protein. FEBS Lett 245:267–270

    Article  CAS  PubMed  Google Scholar 

  • Huang TS, Wei T, Laliberte JF, Wang A (2010) A host RNA helicase-like protein, AtRH8, interacts with the potyviral genome-linked protein, VPg, associates with the virus accumulation complex, and is essential for infection. Plant Physiol 152:255–266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Y, Ma HY, Huang W, Wang F, Xu ZS, Xiong AS (2016) Comparative proteomic analysis provides novel insight into the interaction between resistant vs susceptible tomato cultivars and TYLCV infection. BMC Plant Biol 16:162–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang YW, Hu CC, Lin NS, Hsu YH (2012) Unusual roles of host metabolic enzymes and housekeeping proteins in plant virus replication. Curr Opin Virol 2:676–682

    Article  CAS  PubMed  Google Scholar 

  • Hwang J, Lee S, Lee JH, Kang WH, Kang JH, Kang MY, Oh CS, Kang BC (2015) Plant Translation Elongation Factor 1Bβ Facilitates Potato Virus X (PVX) Infection and Interacts with PVX Triple Gene Block Protein 1. PLoS One 10:e0128014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang J, Oh CS, Kang BC (2013) Translation elongation factor 1B (eEF1B) is an essential host factor for Tobacco mosaic virus infection in plants. Virology 439:105–14

    Article  CAS  PubMed  Google Scholar 

  • Kalinina NO, Makarova S, Makhotenko A, Love AJ, Taliansky M (2018) The Multiple Functions of the Nucleolus in Plant Development, Disease and Stress Responses. Front Plant Sci 9:132

    Article  PubMed  PubMed Central  Google Scholar 

  • Kenyon L, Tsai W-S, Shih S-L, Lee L-M (2014) Emergence and diversity of begomoviruses infecting solanaceous crops in East and Southeast Asia. Virus Res 186:104–113

    Article  CAS  PubMed  Google Scholar 

  • Kim K (1977) An ultrastructural study of inclusions and disease development in plant cells infected by cowpea chlorotic mottle virus. J Gen Virol 35:535–543

    Article  Google Scholar 

  • Kim SH, Macfarlane S, Kalinina NO, Rakitina DV, Ryabov EV, Gillespie T, Haupt S, Brown JW, Taliansky M (2007) Interaction of a plant virus-encoded protein with the major nucleolar protein fibrillarin is required for systemic virus infection. Proc Natl Acad Sci USA 104:11115–11120

    Article  CAS  PubMed  Google Scholar 

  • King AM, Adams MJ, Carstens EB, Lefkowitz EJ (2012) Virus Taxonomy: Classification and Nomenclature of Viruses, Ninth Report of the International Committee on Taxonomy of Viruses, London, Waltham, Academic Press

    Google Scholar 

  • Kundu S, Chakraborty D, Kundu A, Pal A (2013) Proteomics approach combined with biochemical attributes to elucidate compatible and incompatible plant-virus interactions between Vigna mungo and Mungbean Yellow Mosaic India Virus. Prot Sci 11:1–15

    Article  CAS  Google Scholar 

  • Kusumanegara K, Mine A, Hyodo K, Kaido M, Mise K, Okuno T (2012) Identification of domains in p27 auxiliary replicase protein essential for its association with the endoplasmic reticulum membranes in Red clover necrotic mosaic virus. Virology 433:131–41

    Article  CAS  PubMed  Google Scholar 

  • Laliberté J-F, Sanfaçon H (2010) Cellular remodeling during plant virus infection. Annu Rev Phytopathol 48:69–91

    Article  CAS  PubMed  Google Scholar 

  • Lehto K, Tikkanen M, Hiriart J-B, Paakkarinen V, Aro E-M (2003) Depletion of the photosystem II core complex in mature tobacco leaves infected by the flavum strain of tobacco mosaic virus. Mol Plant Microbe Int 16:1135–1144

    Article  CAS  Google Scholar 

  • Levy A, Zheng JY, Lazarowitz SG (2013) The Tobamovirus Turnip vein clearing virus 30K Movement Protein Localizes to Novel Nuclear Filaments to Enhance Virus Infection. J Virol 87:6428–6440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Cui H, Cui X, Wang A (2016) The altered photosynthetic machinery during compatible virus infection. Curr Opin Virol 17:19–24

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Hong J, Xue L, Yang Y, Zhou X, Jiang D (2006) Effects of Broad bean wilt virus 2 isolate infection on photosynthetic activities and chloroplast ultrastructure in broad bean leaves. J Plant Physiol Mol Biol 32:490–496

    CAS  Google Scholar 

  • Li Z, Zhang Y, Jiang Z, Jin X, Zhang K, Wang X, Han C, Yu J, Li D (2018) Hijacking of the nucleolar protein fibrillarin by TGB1 is required for cell-to-cell movement of Barley stripe mosaic virus. Mol Plant Pathol 19:1222–1237

    Article  CAS  PubMed  Google Scholar 

  • Lin JW, Ding MP, Hsu Y-H, Tsai C-H (2006) Chloroplast phosphoglycerate kinase, a gluconeogenetic enzyme, is required for efficient accumulation of Bamboo mosaic virus. Nucleic Acids Res 35:424–432

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Yang J, Bi H, Zhang P (2014) Why mosaic? Gene expression profiling of African cassava mosaic virus-infected cassava reveals the effect of chlorophyll degradation on symptom development. J Integr Plant Biol 56:122–132

    Article  CAS  PubMed  Google Scholar 

  • Liao YWK, Sun ZH, Zhou YH, Shi K, Li X, Zhang GQ, Xia XJ, Chen ZX, Yu JQ (2013) The Role of Hydrogen Peroxide and Nitric Oxide in the Induction of Plant-Encoded RNA-Dependent RNA Polymerase 1 in the Basal Defense against Tobacco Mosaic Virus. PLoS One 8:e76090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita Y, Deguchi M, Youda M, Nishiguchi M, Nyunoya H (2001) The tomato mosaic tobamovirus movement protein interacts with a putative transcriptional coactivator KELP. Mol Cells 12:57–66

    CAS  PubMed  Google Scholar 

  • Mccartney AW, Greenwood JS, Fabian MR, White KA, Mullen RT (2005) Localization of the tomato bushy stunt virus replication protein p33 reveals a peroxisome-to-endoplasmic reticulum sorting pathway. Plant Cell 17:3513–3531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meinecke M, Bartsch P, Wagner R (2016) Peroxisomal protein import pores. Biochim Biophys Acta 1863:821–827

    Article  CAS  PubMed  Google Scholar 

  • Mendu V, Chiu M, Barajas D, Li Z, Nagy PD (2010) Cpr1 cyclophilin and Ess1 parvulin prolyl isomerases interact with the tombusvirus replication protein and inhibit viral replication in yeast model host. Virology 406:342–351

    Article  CAS  PubMed  Google Scholar 

  • Mine A, Hyodo K, Tajima Y, Kusumanegara K, Taniguchi T, Kaido M, Mise K, Taniguchi H, Okuno T (2012) Differential roles of Hsp70 and Hsp90 in the assembly of the replicase complex of a positive-strand RNA plant virus. J Virol 86:12091–12104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagy PD (2016) Tombusvirus-Host Interactions: Co-Opted Evolutionarily Conserved Host Factors Take Center Court. Annu Rev Virol 3:491–515

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Barajas D, Pogany J (2012) Host factors with regulatory roles in tombusvirus replication. Curr Opin Virol 2:691–268

    Article  CAS  PubMed  Google Scholar 

  • Nagy PD, Pogany J (2012) The dependence of viral RNA replication on co-opted host factors. Nat Rev Microbiol 10:137–149

    Article  CAS  Google Scholar 

  • Navarro B, Rubino L, Russo M (2004) Expression of the Cymbidium ringspot virus 33-kilodalton protein in Saccharomyces cerevisiae and molecular dissection of the peroxisomal targeting signal. J Virol 78:4744–4752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nomura H, Komori T, Uemura S, Kanda Y, Shimotani K, Nakai K, Furuichi T, Takebayashi K, Sugimoto T, Sano S, Suwastika IN, Fukusaki E, Yoshioka H, Nakahira Y, Shiina T (2012) Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat Commun 3:1–18

    Article  CAS  Google Scholar 

  • Ouibrahim L, Mazier M, Estevan J, et al. (2014) Cloning of the A rabidopsis rwm1 gene for resistance to W atermelon mosaic virus points to a new function for natural virus resistance genes. Plant J 79:705–716

    Article  CAS  PubMed  Google Scholar 

  • Panavas T, Hawkins CM, Panaviene Z, Nagy PD (2005) The role of the p33: p33/p92 interaction domain in RNA replication and intracellular localization of p33 and p92 proteins of Cucumber necrosis tombusvirus. Virology 338:81–95

    Article  CAS  PubMed  Google Scholar 

  • Pathak KB, Sasvari Z, Nagy PD (2008) The host Pex19p plays a role in peroxisomal localization of tombusvirus replication proteins. Virology 379:294–305

    Article  CAS  PubMed  Google Scholar 

  • Ponce De León I, Montesano M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 14:3178–200

    Article  CAS  PubMed  Google Scholar 

  • Qiao W, Medina V, Falk BW (2017) Inspirations on virus replication and cell-to-cell movement from studies examining the cytopathology induced by lettuce infectious yellows virus in plant cells. Front Plant Sci 8:1672–1681

    Article  PubMed  PubMed Central  Google Scholar 

  • Qiao Y, Li H, Wong S, Fan Z (2009) Plastocyanin transit peptide interacts with Potato virus X coat protein, while silencing of plastocyanin reduces coat protein accumulation in chloroplasts and symptom severity in host plants. Mol Plant Microbe Intract 22:1523–1534

    Article  CAS  Google Scholar 

  • Rahoutei J, García-Luque I, Barón M (2000) Inhibition of photosynthesis by viral infection: effect on PSII structure and function. Physiol Plantarum 110:286–292

    Article  CAS  Google Scholar 

  • Rakitina DV, Taliansky M, Brown JW, Kalinina NO (2011) Two RNA-binding sites in plant fibrillarin provide interactions with various RNA substrates. Nucleic Acids Res 39:8869–8880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Restrepo-Hartwig MA, Ahlquist P (1996) Brome mosaic virus helicase- and polymerase-like proteins colocalize on the endoplasmic reticulum at sites of viral RNA synthesis. J Virol 70:8908–8916

    CAS  PubMed  PubMed Central  Google Scholar 

  • Revers F, García JA (2015) Molecular biology of potyviruses. Adv Virus Res 92:101–199

    Article  CAS  PubMed  Google Scholar 

  • Romero-Brey I, Bartenschlager R (2016) Endoplasmic Reticulum: The Favorite Intracellular Niche for Viral Replication and Assembly. Viruses 8:1–26

    Article  CAS  Google Scholar 

  • Ryabov E, Oparka K, Santa Cruz S, Robinson D, Taliansky M (1998) Intracellular location of two groundnut rosette umbravirus proteins delivered by PVX and TMV vectors. Virology 242:303–313

    Article  CAS  PubMed  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky M (2001). Umbravirus-encoded proteins both stabilize heterologous viral RNA and mediate its systemic movement in some plant species. Virology 288:391–400

    Article  CAS  PubMed  Google Scholar 

  • Ryabov EV, Robinson DJ, Taliansky ME (1999) A plant virus-encoded protein facilitates long-distance movement of heterologous viral RNA. Proc Nat Aca Sci USA 96:1212–1217

    Article  CAS  Google Scholar 

  • Rys M, Juhasz C, Surowka E, Janeczko A, Saja D, Tóbiás I, Schoczowski A, Barna B, Gullner G (2014) Comparison of a compatible and an incompatible pepper-tobamovirus interaction by biochemical and non-invasive techniques: chlorophyll a fluorescence, isothermal calorimetry and FT-Raman spectroscopy. Plant Physiol Biochem 83:267–278

    Article  CAS  PubMed  Google Scholar 

  • Savary S, Ficke A, Aubertot J-N, Hollier C (2012) Crop losses due to diseases and their implications for global food production losses and food security. Food Security 4:519–37

    Article  Google Scholar 

  • Scholthof KB, Adkins S, Czosnek H, Palukaitis P, Jacquot E, Hohn T, Hohn B, Saunders K, Candresse T, Alhquist P, Hemenway C, Foster GD (2011) Top 10 plant viruses in molecular plant pathology. Mol Plant Pathol 12:938–954

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M, Chen J, Lee WM, Janda M, Ahlquist P (2004) Alternate, virus-induced membrane rearrangements support positive-strand RNA virus genome replication. Proc Nat Aca Sci USA 101: 11263–11268

    Article  CAS  Google Scholar 

  • Serva S, Nagy PD (2006) Proteomics analysis of the tombusvirus replicase: Hsp70 molecular chaperone is associated with the replicase and enhances viral RNA replication. J Virol 80:2162–2169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma M, Sasvari Z, Nagy PD (2011) Inhibition of phospholipid biosynthesis decreases the activity of the tombusvirus replicase and alters the subcellular localization of replication proteins. Virology 415:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimura H, Pantaleo V, Ishihara T, Myojo N, Inaba JI, Sueda K, Burgyán J, Masuta C (2011) A viral satellite RNA induces yellow symptoms on tobacco by targeting a gene involved in chlorophyll biosynthesis using the RNA silencing machinery. PLoS Pathog 7:e1002021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shoup Rupp JL, Cruz LF, Trick HN, Fellers JP (2016) RNAi-mediated, stable resistance to Triticum mosaic virus in wheat. Crop Sci 56:1602–1610

    Article  CAS  Google Scholar 

  • Souza PF, Silva FD, Carvalho FE, Silveira JA, Vasconcelos IM, Oliveira JT (2017) Photosynthetic and biochemical mechanisms of an EMS-mutagenized cowpea associated with its resistance to cowpea severe mosaic virus. Plant Cell Rep 36:219–234

    Article  CAS  PubMed  Google Scholar 

  • Souza PFN, Garcia-Ruiz H, Carvalho FE (2019) What proteomics can reveal about plant-virus interactions? Photosynthesis-related proteins on the spotlight. Theor Exp Plant Physiol 31:227–248 https://doi.org/10.1007/s40626-019-00142-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uhrig JF, Canto T, Marshall D, Macfarlane SA (2004) Relocalization of nuclear ALY proteins to the cytoplasm by the tomato bushy stunt virus P19 pathogenicity protein. Plant Physiol 135:2411–2423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Verchot J (2016) How does the stressed out ER find relief during virus infection? Curr Opin Virol 17:74–79

    Article  CAS  PubMed  Google Scholar 

  • Verchot J (2016) Plant Virus Infection and the Ubiquitin Proteasome Machinery: Arms Race along the Endoplasmic Reticulum. Viruses 8:1–20

    Article  CAS  Google Scholar 

  • Walker EJ, Ghildyal R (2017) Editorial: Viral Interactions with the Nucleus. Front Microbiol 8:951–955

    Article  PubMed  PubMed Central  Google Scholar 

  • Weber PH, Bujarski JJ (2015) Multiple functions of capsid proteins in (+) stranded RNA viruses during plant-virus interactions. Virus Res 196:140–149

    Article  CAS  PubMed  Google Scholar 

  • Xiong R, Wang A (2013) SCE1, the SUMO-conjugating enzyme in plants that interacts with NIb, the RNA-dependent RNA polymerase of Turnip mosaic virus is required for viral infection. J Virol 87:4704–4715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G (2018) Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotchnol J 16:1415–1423

    Article  CAS  Google Scholar 

  • Zheng L, Du Z, Lin C, Mao Q, Wu K, Wu J, Wei Z, Xie L (2015) Rice stripe tenuivirus p2 may recruit or manipulate nucleolar functions through an interaction with fibrillarin to promote virus systemic movement. Mol Plant Pathol 16:921–930

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Author notes
  1. These authors contribute equally to this work.

Authors and Affiliations

  1. Department of Biochemistry and Molecular Biology, Center of Science, Federal University of Ceara, Fortaleza, Ceara, Brazil

    Pedro Filho Noronha Souza & Fabricio Eulálio Leite Carvalho

  2. Nebraska Center for Virology, Department of Plant Pathology, University of Nebraska Lincoln, Lincoln, Nebraska, USA

    Pedro Filho Noronha Souza

Authors
  1. Pedro Filho Noronha Souza
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Fabricio Eulálio Leite Carvalho
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Pedro Filho Noronha Souza.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Souza, P.F.N., Carvalho, F.E.L. Killing two birds with one stone: How do Plant Viruses Break Down Plant Defenses and Manipulate Cellular Processes to Replicate Themselves?. J. Plant Biol. 62, 170–180 (2019). https://doi.org/10.1007/s12374-019-0056-8

Download citation

  • Received: 19 February 2019

  • Accepted: 15 March 2019

  • Published: 27 May 2019

  • Issue Date: June 2019

  • DOI: https://doi.org/10.1007/s12374-019-0056-8

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cellular manipulation
  • Plant defense
  • Plant host proteins
  • Plant viruses
  • (+) RNA viruses
  • Viral replication
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

95.216.99.153

Not affiliated

Springer Nature

© 2023 Springer Nature