Skip to main content
Log in

The Iron Deficiency Response Regulators IAA-LEUCINE RESISTANT3 and bHLH104 Possess Different Targets and Have Distinct Effects on Photosynthesis in Arabidopsis

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

In higher plants, iron (Fe) is an essential element for photosynthesis and growth. Two basic helix-loop-helix (bHLH) transcription factors, bHLH104 and IAA-LEUCINE RESISTANT3 (ILR3), positively regulate Fe uptake in Arabidopsis. Furthermore, an E3 ubiquitin ligase, BRUTUS (BTS) functions as a negative regulator upstream of bHLH104 and ILR3 in the Fe homeostasis pathway. Interestingly, we characterized a lesion of BRUTUS (BTS), which exhibited pale-green leaves and retarded in growth. Genetic analyses showed that only loss of ILR3 could entirely compromise the chlorosis in bts-2 mutants. To further investigate whether bHLH104 and ILR3 have different roles in functioning downstream of BTS other than Fe absorption, we obtained bHLH104-, and ILR3-overexpressing plants. Interestingly, similar to bts-2, overexpression of ILR3 displayed chlorotic leaves. Moreover, overexpressing ILR3 also caused the abundance of thylakoid proteins reduced, along with photosynthetic genes decreased. However, there was no visible difference between bHLH104-overexpressing plants and WT. Furthermore, we found that bHLH104 and ILR3 may act independently on different downstream targets. bHLH104, but not ILR3, could bind to the promoter of At- NEET, which acts as a Fe-S/Fe cluster donor in chloroplasts. Collectively, our data demonstrate that bHLH104 and ILR3 possess different downstream targets that may have distinct effects on photosynthesis, although they share a common function in Fe deficiency responses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aparicio F and Pallas V (2017) The coat protein of Alfalfa mosaic virus interacts and interferes with the transcriptional activity of the bHLH transcription factor ILR3 promoting salicylic aciddependent defence signalling response. Mol Plant Pathol 18: 173–186

    Article  CAS  PubMed  Google Scholar 

  • Bailey PC, Martin C, Toledo-Ortiz G, Quail PH, Huq E, Heim MA, Jakoby M, Werber M, Weisshaar B (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15:2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Balk J, Schaedler TA (2014) Iron cofactor assembly in plants. Annu Rev Plant Biol 65:125–153

    Article  CAS  PubMed  Google Scholar 

  • Briat JF, Dubos C, Gaymard F (2015) Iron nutrition, biomass production, and plant product quality. Trends Plant Sci 20:33–40

    Article  CAS  PubMed  Google Scholar 

  • Burgess DG, Xu J, Freeling M (2015) Advances in understanding cis regulation of the plant gene with an emphasis on comparative genomics. Curr Opin Plant Biol 27:141–147

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Flexas J, Pinheiro C (2009) Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot 103:551–560

    Article  CAS  PubMed  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S, Lee BH, Hong X, Agarwal M, Zhu JK (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chitnis PR (2001) PHOTOSYSTEM I: Function and Physiology. Annu Rev Plant Physiol Plant Mol Biol 52:593–626

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B, Stewart JJ, Baker CR, Adams WW (2018) Optimization of photosynthetic productivity in contrasting environments by regulons controlling plant form and function. Int J Mol Sci 19:872

    Article  CAS  PubMed Central  Google Scholar 

  • Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515

    Article  CAS  PubMed  Google Scholar 

  • Friedrichsen DM, Nemhauser J, Muramitsu T, Maloof JN, Alonso J, Ecker JR, Furuya M, Chory J (2002) Three redundant brassinosteroid early response genes encode putative bHLH transcription factors required for normal growth. Genetics 162:1445–1456

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hantzis LJ, Kroh GE, Jahn CE, Cantrell M, Peers G, Pilon M, Ravet K (2018) A program for iron economy during deficiency targets specific Fe proteins. Plant Physiol 176:596–610

    Article  CAS  PubMed  Google Scholar 

  • Heim MA, Jakoby M, Werber M, Martin C, Weisshaar B, Bailey PC (2003) The basic helix-loop-helix transcription factor family in plants: a genome-wide study of protein structure and functional diversity. Mol Biol Evol 20:735–747

    Article  CAS  PubMed  Google Scholar 

  • Hindt MN, Guerinot ML (2012). Getting a sense for signals: regulation of the plant iron deficiency response. Biochim Biophys Acta 1823:1521–1530

    CAS  PubMed  Google Scholar 

  • Hindt MN, Akmakjian GZ, Pivarski KL, Punshon T, Baxter I, Salt DE, Guerinot ML (2017) BRUTUS and its paralogs, BTS LIKE1 and BTS LIKE2, encode important negative regulators of the iron deficiency response in Arabidopsis thaliana. Metallomics 9:876–890

    Article  CAS  PubMed  Google Scholar 

  • Ivanov R, Brumbarova T, Bauer P (2012) Fitting into the harsh reality: Regulation of iron-deficiency responses in dicotyledonous plants. Molecular Plant 5:27–42

    Article  CAS  PubMed  Google Scholar 

  • Jin H, Li M, Duan S, Fu M, Dong X, Liu B, Feng D, Wang J, Wang HB (2016) Optimization of Light-Harvesting Pigment Improves Photosynthetic Efficiency. Plant Physiol 172:1720–1731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MP (2016) Photosynthesis. Essays Biochem 60:255–273

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaufmann K, Pajoro A, Angenent GC (2010) Regulation of transcription in plants: mechanisms controlling developmental switches. Nat Rev Genet 11:830–842

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi T, Nagasaka S, Senoura T, Itai RN, Nakanishi H, Nishizawa NK (2013) Iron-binding haemerythrin RING ubiquitin ligases regulate plant iron responses and accumulation. Nat Commun 4:2792

    Article  CAS  PubMed  Google Scholar 

  • Leivar P, Monte E, Al-Sady B, Carle C, Storer A, Alonso JM, Ecker JR, Quail PH (2008) The Arabidopsis phytochrome-interacting factor PIF7, together with PIF3 and PIF4, regulates responses to prolonged red light by modulating phyB levels. Plant Cell 20:337–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BH, Tang M, Nelson A, Caligagan H, Zhou X, Clark-Wiest C, Ngo R, Brady SM, Kliebenstein DJ (2018) Network-guided discovery of extensive epistasis between transcription factors involved in aliphatic glucosinolate biosynthesis. Plant Cell 30: 178–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li BH, Gaudinier A, Tang M, Taylor-Teeples M, Nham NT, Ghaffari, C, Benson DS, Steinmann M, Gray JA, Brady SM, Kliebenstein DJ (2014) Promoter-Based Integration in Plant Defense Regulation. Plant Physiol 166:1803–1820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Zhang H, Ai Q, Liang G, Yu D (2016) Two bHLH Transcription Factors, bHLH34 and bHLH104, Regulate Iron Homeostasis in Arabidopsis thaliana. Plant Physiol 170:2478–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang G, Zhang H, Li X, Ai Q, Yu D (2017) bHLH transcription factor bHLH115 regulates iron homeostasis in Arabidopsis thaliana. J Exp Bot 68:1743–1755

    CAS  PubMed  Google Scholar 

  • Lindemose S, O'Shea C, Jensen MK, Skriver K (2013) Structure, function and networks of transcription factors involved in abiotic stress responses. Int J Mol Sci 14:5842–5878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu LS, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants -Functional domains, evolution and regulation. European Journal of Biochemistry 262:247–257

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Stewart CN, Jr. (2016) Plant synthetic promoters and transcription factors. Curr Opin Biotechnol 37:36–44

    Article  CAS  PubMed  Google Scholar 

  • Long TA, Tsukagoshi H, Busch W, Lahner B, Salt DE, Benfey PN (2010) The bHLH transcription factor POPEYE regulates response to iron deficiency in Arabidopsis roots. Plant Cell 22: 2219–2236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Millan AF, Grusak MA, Abadia A, Abadia J (2013) Iron deficiency in plants: an insight from proteomic approaches. Front Plant Sci 4:254

    Article  PubMed  PubMed Central  Google Scholar 

  • Matthiadis A, Long TA (2016) Further insight into BRUTUS domain composition and functionality. Plant Signaling & Behavior 11: e1204508

    Article  CAS  Google Scholar 

  • McElver J, Tzafrir I, Aux G, Rogers R, Ashby C, Smith K, Thomas C, Schetter A, Zhou Q, Cushman MA, Tossberg J, Nickle T, Levin JZ, Law M, Meinke D, Patton D (2001) Insertional mutagenesis of genes required for seed development in Arabidopsis thaliana. Genetics 159:1751–1763

    CAS  PubMed  PubMed Central  Google Scholar 

  • Min JH, Ju HW, Yoon D, Lee KH, Lee S, Kim CS (2017) Arabidopsis Basic Helix-Loop-Helix 34 (bHLH34) Is Involved in Glucose Signaling through Binding to a GAGA Cis-Element. Front Plant Sci 8:2100

    Article  PubMed  PubMed Central  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nechushtai R, Conlan AR, Harir Y, Song L, Yogev O, Eisenberg-Domovich Y, Livnah O, Michaeli D, Rosen R, Ma V, Luo Y, Zuris JA, Paddock ML, Cabantchik ZI, Jennings PA, Mittler R (2012) Characterization of Arabidopsis NEET reveals an ancient role for NEET proteins in iron metabolism. Plant Cell 24:2139–2154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nenova V (2009) Growth and photosynthesis of pea plants under different iron supply. Acta Physiologiae Plantarum 31:385–391

    Article  CAS  Google Scholar 

  • Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582

    Article  CAS  PubMed  Google Scholar 

  • Rampey RA, Woodward AW, Hobbs BN, Tierney MP, Lahner B, Salt DE, Bartel B (2006) An Arabidopsis basic helix-loop-helix leucine zipper protein modulates metal homeostasis and auxin conjugate responsiveness. Genetics 174:1841–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Samira R, Li B, Kliebenstein D, Li C, Davis E, Gillikin JW, Long TA (2018) The bHLH transcription factor ILR3 modulates multiple stress responses in Arabidopsis. Plant Mol Biol 97:297–309

    Article  CAS  PubMed  Google Scholar 

  • Selote D, Samira R, Matthiadis A, Gillikin JW, Long TA (2015) Ironbinding E3 ligase mediates iron response in plants by targeting basic helix-loop-helix transcription factors. Plant Physiol 167: 273–286

    Google Scholar 

  • Selote D, Matthiadis A, Gillikin JW, Sato MH, Long TA (2018) The E3 ligase BRUTUS facilitates degradation of VOZ1/2 transcription factors. Plant Cell Environ 41:2463–2474

    Article  CAS  PubMed  Google Scholar 

  • Stone, S.L., Hauksdottir, H., Troy, A., Herschleb, J., Kraft, E., and Callis, J. (2005). Functional analysis of the RING-type ubiquitin ligase family of Arabidopsis. Plant Physiol 137:13–30

    CAS  PubMed  Google Scholar 

  • Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney TC, McElver J, Aux G, Patton D, Meinke D (2004) Identification of genes required for embryo development in Arabidopsis. Plant Physiol 135:1206–1220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang C, Yao X, Yu D, Liang G (2017a) Fe-deficiency-induced expression of bHLH104 enhances Fe-deficiency tolerance of Arabidopsis thaliana. Planta 246:421–431

    Article  CAS  PubMed  Google Scholar 

  • Wang ML, Jiang L, Da QG, Liu J, Feng DR, Wang JF, Wang HB, Jin HL (2016) DELAYED GREENING 238, a nuclear-encoded chloroplast nucleoid protein, is involved in the regulation of early chloroplast development and plastid gene expression in Arabidopsis thaliana. Plant and Cell Physiology 57:2586–2599

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Liu J, Liu B, Feng D, Da Q, Wang P, Shu S, Su J, Zhang Y, Wang J, Wang HB (2013) Evidence for a role of chloroplastic mtype thioredoxins in the biogenesis of photosystem II in Arabidopsis. Plant Physiol 163:1710–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Xu C, Li K, Cai X, Wu M, Chen G (2017b) Fe deficiency induced changes in rice (Oryza sativa L.) thylakoids. Environ Sci Pollut Res Int 24:1380–1388

    Article  CAS  PubMed  Google Scholar 

  • Yamori W, Shikanai T (2016) Physiological functions of cyclic electron transport around photosystem I in sustaining photosynthesis and plant growth. Annu Rev Plant Biol 67:81–106

    Article  CAS  PubMed  Google Scholar 

  • Yao XN, Cai YR, Yu DQ, Liang G (2018) bHLH104 confers tolerance to cadmium stress in Arabidopsis thaliana. Journal of Integrative Plant Biology 60:691–702

    Article  CAS  PubMed  Google Scholar 

  • Yruela I (2013) Transition metals in plant photosynthesis. Metallomics 5: 1090–1109

    Book  Google Scholar 

  • Zhang J, Liu B, Li M, Feng D, Jin H, Wang P, Liu J, Xiong F, Wang J, Wang HB (2015) The bHLH transcription factor bHLH104 interacts with IAA-LEUCINE RESISTANT3 and modulates iron homeostasis in Arabidopsis. Plant Cell 27:787–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bing Liu.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Zhang, J., Jin, H. et al. The Iron Deficiency Response Regulators IAA-LEUCINE RESISTANT3 and bHLH104 Possess Different Targets and Have Distinct Effects on Photosynthesis in Arabidopsis. J. Plant Biol. 62, 109–119 (2019). https://doi.org/10.1007/s12374-018-0360-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-018-0360-8

Keywords

Navigation