Skip to main content

Advertisement

Log in

Development of Plant-produced E2 Protein for Use as a Green Vaccine Against Classical Swine Fever Virus

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants are promising host systems for recombinant protein production. However, progress in the commercialization of plant-made proteins (PMPs) has been slow. Only one PMP drug is commercially available. In this study, we explored the possibility of using plants to produce E2 of classical swine fever virus (CSFV) and the use of this plant-produced E2 as a vaccine. We designed high-level expression vectors for transgenic plants by considering the transcription, translation, and storage of E2 in the cell. We incorporated a cellulosebinding domain sequence into the expression vector as an affinity tag for cost-effective, one-step purification. Using this vector, we generated multiple lines of transgenic Arabidopsis thaliana plants expressing a fusion protein of E2 from CSFV at high levels (0.7% of total soluble proteins). ER-targeted E2 fusion protein was successfully purified via a one-step purification process using amorphous cellulose resin. Arabidopsis-produced E2 was recognized by an antibody that detects CSFV antigen. Finally, antisera from mice immunized with E2 fusion protein reacted strongly to the antigens in a CSFV antibody detection kit. Therefore, we propose that plant-produced E2 fusion proteins could be further developed for use as a green vaccine against CSFV in animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Abdoli Nasab M, Jalali Javaran M, Cusido RM, Palazon J. (2016) Purification of recombinant tissue plasminogen activator (rtPA) protein from transplastomic tobacco plants. Plant Physiol Biochem 108:139–144

    Article  PubMed  CAS  Google Scholar 

  • Ahn G, Kim H, Kim DH, Hanh H, Yoon Y, Singaram I, Wijesinghe KJ, Johnson KA, Zhuang X, Liang Z, Stahelin RV, Jiang L, Cho, W, Kang BH, Hwang I. (2017) SH3 Domain-Containing Protein 2 Plays a Crucial Role at the Step of Membrane Tubulation during Cell Plate Formation. Plant Cell 29:1388–1405

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ahrens U, Kaden V, Drexler C, Visser N. (2000) Efficacy of the classical swine fever (CSF) marker vaccine Porcilis Pesti in pregnant sows. Vet Microbiol 77:83–97

    Article  PubMed  CAS  Google Scholar 

  • Armenta S, Moreno-Mendieta S, Sanchez-Cuapio Z, Sanchez S, Rodriguez-Sanoja R. (2017) Advances in molecular engineering of carbohydrate-binding modules. Proteins 85:1602–1617

    Article  PubMed  CAS  Google Scholar 

  • Arora S, Saxena V, Ayyar BV. (2017) Affinity chromatography: A versatile technique for antibody purification. Methods 116:84–94

    Article  PubMed  CAS  Google Scholar 

  • Bertran K, Thomas C, Guo X, Bublot M, Pritchard N, Regan JT, Cox KM, Gasdaska JR, Dickey LF, Kapczynski DR, Swayne DE. (2015). Expression of H5 hemagglutinin vaccine antigen in common duckweed (Lemna minor) protects against H5N1 high pathogenicity avian influenza virus challenge in immunized chickens. Vaccine 33:3456–3462

    Article  PubMed  CAS  Google Scholar 

  • Blome S, Staubach C, Henke J, Carlson J, Beer M. (2017) Classical Swine Fever-An Updated Review. Viruses 9

  • Boraston AB, McLean BW, Guarna MM, Amandaron-Akow E, Kilburn DG. (2001). A family 2a carbohydrate-binding module suitable as an affinity tag for proteins produced in Pichia pastoris. Protein Expr Purif 21:417–423

    Article  PubMed  CAS  Google Scholar 

  • Bouma A, De Smit AJ, De Jong MC, De Kluijver EP, Moormann RJ. (2000) Determination of the onset of the herd-immunity induced by the E2 sub-unit vaccine against classical swine fever virus. Vaccine 18:1374–1381

    Article  PubMed  CAS  Google Scholar 

  • Buyel JF, Kaever T, Buyel JJ, Fischer R. (2013) Predictive models for the accumulation of a fluorescent marker protein in tobacco leaves according to the promoter/5'UTR combination. Biotechnol Bioeng 110:471–482

    Article  PubMed  CAS  Google Scholar 

  • Canto T. (2016) Transient Expression Systems in Plants: Potentialities and Constraints. Adv Exp Med Biol 896:287–301

    Article  PubMed  CAS  Google Scholar 

  • Chen YJ, Zhang J, Liu J, Deng XG, Zhang P, Zhu T, Chen LJ, Bao WK, Xi DH, Lin HH. (2014) The capsid protein p38 of turnip crinkle virus is associated with the suppression of cucumber mosaic virus in Arabidopsis thaliana co-infected with cucumber mosaic virus and turnip crinkle virus. Virology 462-463:71–80

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF. (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Comai L, Moran P, Maslyar D. (1990) Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol Biol 15:373–381

    Article  PubMed  CAS  Google Scholar 

  • Daniell H, Chan HT, Pasoreck EK. (2016). Vaccination via chloroplast genetics: Affordable protein drugs for the prevention and treatment of inherited or infectious human diseases. Annu Rev Genet 50: 595–618

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gleba Y, Klimyuk V, Marillonnet S. (2007) Viral vectors for the expression of proteins in plants. Curr Opin Biotechnol 18:134–141

    Article  PubMed  CAS  Google Scholar 

  • Gomez E, Zoth SC, Asurmendi S, Vazquez Rovere C, Berinstein A. (2009). Expression of hemagglutinin-neuraminidase glycoprotein of newcastle disease Virus in agroinfiltrated Nicotiana benthamiana plants. J Biotechnol 144:337–340

    Article  PubMed  CAS  Google Scholar 

  • Gomord V, Denmat LA, Fitchette-Laine AC, Satiat-Jeunemaitre B, Hawes C, Faye L. (1997). The C-terminal HDEL sequence is sufficient for retention of secretory proteins in the endoplasmic reticulum (ER) but promotes vacuolar targeting of proteins that escape the ER. Plant J 11:313–325

    Article  PubMed  CAS  Google Scholar 

  • Grabowski GA, Golembo M, Shaaltiel Y. (2014). Taliglucerase alfa: an enzyme replacement therapy using plant cell expression technology. Mol Genet Metab 112:1–8

    Article  PubMed  CAS  Google Scholar 

  • Hefferon KL. (2012). Plant virus expression vectors set the stage as production platforms for biopharmaceutical proteins. Virology 433:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Velazquez A, Lopez-Quesada A, Ceballo-Camara Y, Cabrera-Herrera G, Tiel-Gonzalez K, Mirabal-Ortega L, Perez-Martinez M, Perez-Castillo R, Rosabal-Ayan Y, Ramos-Gonzalez O, Enriquez-Obregon G, Depicker A, Pujol-Ferrer M. (2015) Tobacco seeds as efficient production platform for a biologically active anti-HBsAg monoclonal antibody. Transgenic Res 24:897–909

    Article  PubMed  CAS  Google Scholar 

  • Hong J, Wang YR, Ye XH, Zhang YHP. (2008) Simple protein purification through affinity adsorption on regenerated amorphous cellulose followed by intein self-cleavage. J Chromatogr A 1194:150–154

    Article  PubMed  CAS  Google Scholar 

  • Hyunjong B, Lee DS, Hwang I. (2006). Dual targeting of xylanase to chloroplasts and peroxisomes as a means to increase protein accumulation in plant cells. J Exp Bot 57:161–169

    Article  PubMed  CAS  Google Scholar 

  • Jha S, Agarwal S, Sanyal I, Jain GK, Amla DV. (2012) Differential subcellular targeting of recombinant human alpha(1)-proteinase inhibitor influences yield, biological activity and in planta stability of the protein in transgenic tomato plants. Plant Sci 196: 53–66

    Article  PubMed  CAS  Google Scholar 

  • Joung YH, Park SH, Moon KB, Jeon JH, Cho HS, Kim HS. (2016) The Last Ten Years of Advancements in Plant-Derived Recombinant Vaccines against Hepatitis B. Int J Mol Sci 17

  • Kang H, Kim SY, Song K, Sohn EJ, Lee Y, Lee DW, Hara-Nishimura I, Hwang I. (2012) Trafficking of vacuolar proteins: the crucial role of Arabidopsis vacuolar protein sorting 29 in recycling vacuolar sorting receptor. Plant Cell 24:5058–5073

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim Y, Lee G, Jeon E, Sohn EJ, Lee Y, Kang H, Lee DW, Kim DH, Hwang I. (2014). The immediate upstream region of the 5'-UTR from the AUG start codon has a pronounced effect on the translational efficiency in Arabidopsis thaliana. Nucleic Acids Res 42:485–498

    Article  PubMed  CAS  Google Scholar 

  • Kittur FS, Lalgondar M, Hung CY, Sane DC, Xie J. (2015) CTerminally fused affinity Strep-tag II is removed by proteolysis from recombinant human erythropoietin expressed in transgenic tobacco plants. Plant Cell Rep 34:507–516

    Article  PubMed  CAS  Google Scholar 

  • Komarova TV, Sheshukova EV, Dorokhov YL. (2017) Plant-Made Antibodies: Properties and Therapeutic Applications. Curr Med Chem

    Google Scholar 

  • Kopertekh L, Schiemann J. (2017) Transient production of recombinant pharmaceutical proteins in plants: evolution and perspectives. Curr Med Chem

    Google Scholar 

  • Kumar R, Barman NN, Khatoon E, Rajbongshi G, Deka N, Morla S, Kumar S. (2015) Molecular characterization of E2 glycoprotein of classical swine fever virus: adaptation and propagation in porcine kidney cells. In Vitro Cell Dev Biol Anim 51:441–446

    Article  PubMed  CAS  Google Scholar 

  • Lee DW, Woo S, Geem KR, Hwang I. (2015) Sequence Motifs in Transit Peptides Act as Independent Functional Units and Can Be Transferred to New Sequence Contexts. Plant Physiol 169: 471–484

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee G, Na YJ, Yang BG, Choi JP, Seo YB, Hong CP, Yun CH, Kim DH, Sohn EJ, Kim JH, Sung YC, Kim YK, Jang MH, Hwang I. (2015) Oral immunization of haemaggulutinin H5 expressed in plant endoplasmic reticulum with adjuvant saponin protects mice against highly pathogenic avian influenza A virus infection. Plant Biotechnol J 13:62–72

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Lee H, Kim J, Lee S, Kim DH, Kim S, Hwang I. (2011) Both the hydrophobicity and a positively charged region flanking the C-terminal region of the transmembrane domain of signalanchored proteins play critical roles in determining their targeting specificity to the endoplasmic reticulum or endosymbiotic organelles in Arabidopsis cells. Plant Cell 23:1588–1607

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lico C, Chen Q, Santi L. (2008) Viral vectors for production of recombinant proteins in plants. J Cell Physiol 216:366–377

    Article  PubMed  CAS  Google Scholar 

  • Lim SI, Song JY, Kim J, Hyun BH, Kim HY, Cho IS, Kim B, Woo GH, Lee JB, An DJ. (2016) Safety of classical swine fever virus vaccine strain LOM in pregnant sows and their offspring. Vaccine 34:2021–2026

    Article  PubMed  Google Scholar 

  • Lojewska E, Kowalczyk T, Olejniczak S, Sakowicz T. (2016) Extraction and purification methods in downstream processing of plantbased recombinant proteins. Protein Expr Purif 120:110–117

    Article  PubMed  CAS  Google Scholar 

  • Lomonossoff GP, D'Aoust MA. (2016) Plant-produced biopharmaceuticals: A case of technical developments driving clinical deployment. Science 353:1237–1240

    Article  PubMed  CAS  Google Scholar 

  • Madeira LM, Szeto TH, Henquet M, Raven N, Runions J, Huddleston J, Garrard I, Drake PM, Ma JK. (2016) High-yield production of a human monoclonal IgG by rhizosecretion in hydroponic tobacco cultures. Plant Biotechnol J 14:615–624

    Article  PubMed  CAS  Google Scholar 

  • Makhzoum A, Benyammi R, Moustafa K, Tremouillaux-Guiller J. (2014) Recent advances on host plants and expression cassettes' structure and function in plant molecular pharming. BioDrugs 28:145–159

    Article  PubMed  CAS  Google Scholar 

  • Maliga P. (2004) Plastid transformation in higher plants. Annu Rev Plant Biol 55:289–313

    Article  PubMed  CAS  Google Scholar 

  • Minato N, Komatsu K, Okano Y, Maejima K, Ozeki J, Senshu H, Takahashi S, Yamaji Y, Namba S. (2014) Efficient foreign gene expression in planta using a plantago asiatica mosaic virus-based vector achieved by the strong RNA-silencing suppressor activity of TGBp1. Arch Virol 159:885–896

    Article  PubMed  CAS  Google Scholar 

  • Mortimer CL, Dugdale B, Dale JL. (2015) Updates in inducible transgene expression using viral vectors: from transient to stable expression. Curr Opin Biotechnol 32:85–92

    Article  PubMed  CAS  Google Scholar 

  • Oliveira C, Domingues L. (2018) Guidelines to reach high-quality purified recombinant proteins. Appl Microbiol Biotechnol 102: 81–92

    Article  PubMed  CAS  Google Scholar 

  • Park M, Kim SJ, Vitale A, Hwang I. (2004) Identification of the protein storage vacuole and protein targeting to the vacuole in leaf cells of three plant species. Plant Physiol 134:625–639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Park Y, Xu ZY, Kim SY, Lee J, Choi B, Lee J, Kim H, Sim HJ, Hwang I. (2016) Spatial Regulation of ABCG25, an ABA Exporter, Is an Important Component of the Mechanism Controlling Cellular ABA Levels. Plant Cell 28:2528–2544

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peyret H, Lomonossoff GP. (2013) The pEAQ vector series: the easy and quick way to produce recombinant proteins in plants. Plant Mol Biol 83:51–58

    Article  PubMed  CAS  Google Scholar 

  • Rybicki EP. (2017) Plant-made vaccines and reagents for the One Health initiative. Hum Vaccin Immunother 13:2912–2917

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabalza M, Christou P, Capell T. (2014) Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 36:2367–2379

    Article  PubMed  CAS  Google Scholar 

  • Sakka K, Kojima Y, Kondo T, Karita S, Ohmiya K, Shimada K. (1993) Nucleotide sequence of the Clostridium stercorarium xynA gene encoding xylanase A: identification of catalytic and cellulose binding domains. Biosci Biotechnol Biochem 57:273–277

    Article  PubMed  CAS  Google Scholar 

  • Salazar-Gonzalez JA, Banuelos-Hernandez B, Rosales-Mendoza S. (2015) Current status of viral expression systems in plants and perspectives for oral vaccines development. Plant Mol Biol 87: 203–217

    Article  PubMed  CAS  Google Scholar 

  • Schouest JM, Luu TK, Moy RL. (2012) Improved texture and appearance of human facial skin after daily topical application of barley produced, synthetic, human-like epidermal growth factor (EGF) serum. J Drugs Dermatol 11:613–620

    PubMed  CAS  Google Scholar 

  • Sheshukova EV, Komarova TV, Dorokhov YL. (2016) Plant Factories for the Production of Monoclonal Antibodies. Biochemistry (Mosc) 81:1118–1135

    Article  CAS  Google Scholar 

  • Singh N, Herzer S. (2017) Downstream Processing Technologies/Capturing and Final Purification: Opportunities for Innovation, Change, and Improvement. A Review of Downstream Processing Developments in Protein Purification. Adv Biochem Eng Biotechnol

    Google Scholar 

  • Song J, Lee MH, Lee GJ, Yoo CM, Hwang I. (2006) Arabidopsis EPSIN1 plays an important role in vacuolar trafficking of soluble cargo proteins in plant cells via interactions with clathrin, AP-1, VTI11, and VSR1. Plant Cell 18:2258–2274

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Staub JM, Garcia B, Graves J, Hajdukiewicz PT, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Russell DA. (2000) High-yield production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18:333–338

    Article  PubMed  CAS  Google Scholar 

  • Stephan A, Hahn-Lobmann S, Rosche F, Buchholz M, Giritch A, Gleba Y. (2017) Simple Purification of Nicotiana benthamiana-Produced Recombinant Colicins: High-Yield Recovery of Purified Proteins with Minimum Alkaloid Content Supports the Suitability of the Host for Manufacturing Food Additives. Int J Mol Sci 19

  • Sugimoto N, Igarashi K, Samejima M. (2012) Cellulose affinity purification of fusion proteins tagged with fungal family 1 cellulose-binding domain. Protein Expr Purif 82:290–296

    Article  PubMed  CAS  Google Scholar 

  • Tabayashi N, Matsumura T. (2014) Forefront study of plant biotechnology for practical use: development of oral drug for animal derived from transgenic strawberry. Soc Biotechnolo J Japan 92:537–539

    CAS  Google Scholar 

  • Wan W, Wang D, Gao X, Hong J. (2011) Expression of family 3 cellulose-binding module (CBM3) as an affinity tag for recombinant proteins in yeast. Appl Microbiol Biotechnol 91:789–798

    Article  PubMed  CAS  Google Scholar 

  • Wong-Arce A, Gonzalez-Ortega O, Rosales-Mendoza S. (2017) Plant-Made Vaccines in the Fight Against Cancer. Trends Biotechnol 35:241–256

    Article  PubMed  CAS  Google Scholar 

  • Yadav DK, Yadav N, Yadav S, Haque S, Tuteja N. (2016) An insight into fusion technology aiding efficient recombinant protein production for functional proteomics. Arch Biochem Biophys 612:57–77

    Article  PubMed  CAS  Google Scholar 

  • Yemets AI, Tanasienko IV, Krasylenko YA, Blume YB. (2014) Plantbased biopharming of recombinant human lactoferrin. Cell Biol Int 38:989–1002

    PubMed  CAS  Google Scholar 

  • Yoshikai Y, Matsuzaki G, Inoue T, Nomoto K. (1990) An increase in number of T-cell receptor gamma/delta-bearing T cells in athymic nude mice treated with complete Freund's adjuvants. Immunology 70:61–65

    PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inhwan Hwang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sohn, EJ., Lee, Y., Park, N. et al. Development of Plant-produced E2 Protein for Use as a Green Vaccine Against Classical Swine Fever Virus. J. Plant Biol. 61, 241–252 (2018). https://doi.org/10.1007/s12374-018-0133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-018-0133-4

Keywords