Roles of Sugars in Controlling Flowering Time

Abstract

Flowering time is influenced by environmental factors such as photosynthesis, temperature, nutrition, and water. The main products of photosynthesis are sugars that are mobilized to sink tissues to support plant growth and differentiation. They also function as signals to control various types of metabolism and developmental processes. One of the most important transitions in the plant life cycle is from the vegetative to reproductive phase. During that transition, sucrose levels rise rapidly but transiently in the phloem and shoot apexes. For several species, the addition of exogenous sucrose promotes flowering, possibly by acting as a main signal. Although other sugars, including glucose, also appear to be involved in this transition, evidence for their roles in flowering is limited. In Arabidopsis thaliana, trehalose-6-phosphate serves as a signal to induce flowering. However, its roles in other plants have not been reported. Sucrose seems to function primarily in the leaf phloem to enhance the generation of florigens such as Flowering Locus T (FT) while trehalose-6-phosphate functions in the shoot apical meristem to promote the flowering signal pathway downstream of those florigens.

This is a preview of subscription content, access via your institution.

References

  1. Aluri S, Buttner M (2006) Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci USA 104:2537–2542

    Article  CAS  Google Scholar 

  2. Aoki N, Hirose T, Scofield GN, Whitfeld PR, Furbank RT (2003) The sucrose transporter gene family in rice. Plant Cell Physiol 44: 223–232

    Article  PubMed  CAS  Google Scholar 

  3. Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. Plant Cell 5:1147–1155

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Burkle L, Hibberd JM, Quick WP, Kuhn C, Hirner B, Frommer WB (1998) The H1-sucrose cotransporter NtSUT1 is essential for sugar export from tobacco leaves. Plant Physiol 118:59–68

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Chang AB, Lin R, Studley WK, Tran CV, Saier MH (2004) Phylogeny as a guide to structure and function of membrane transport proteins. Mol Membr Biol 21:171–181

    Article  PubMed  CAS  Google Scholar 

  6. Chen L-Q, Qu X-Q, Hou B-H, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335:207–211

    Article  PubMed  CAS  Google Scholar 

  7. Chen M, Xia X, Zheng H, Yuan Z, Huang H (2004) The GAOLAOZHUANGREN2 gene is required for normal glucose response and development of Arabidopsis. J Plant Res 117:473–476

    Article  PubMed  CAS  Google Scholar 

  8. Chincinska IA, Liesche J, Krugel U, Michalska J, Geigenberger P, Grimm B, Kuhn C (2008) Plant Physiol 146:515–528

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Chiou TJ, Bush DR (1998) Sucrose is a signal molecule in assimilate partitioning. Proc Natl Acad Sci USA 95:4784–4788

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Cho J-I, Ryoo N, Eom J-S, Lee D-W, Kim H-B, Jeong S-W, Lee Y-H, Kwon Y-K, Cho M-H, Bhoo SH et al. (2009) Role of the rice hexokinases OsHXK5 and OsHXK6 as glucose sensors. Plant Physiol 149:745–759

    Article  PubMed  PubMed Central  Google Scholar 

  11. Cho YH, Yoo SD, Sheen J (2006) Regulatory functions of nuclear hexokinase1 complex in glucose signaling. Cell 127:579–589

    Article  PubMed  CAS  Google Scholar 

  12. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603

    Article  PubMed  CAS  Google Scholar 

  13. Coneva V, Guevara D, Rothstein SJ, Colasanti J (2012) Transcript and metabolite signature of maize source leaves suggests a link between transitory starch to sucrose balance and the autonomous floral transition. J Exp Bot 14:5079–5092

    Article  CAS  Google Scholar 

  14. Corbesier L, Lejeune P, Bernier G (1998) The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206:131–137

    Article  PubMed  CAS  Google Scholar 

  15. Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Eastmond PJ, van Dijken AJ, Spielman M, Kerr A, Tissier AF, Dickonson HG, Jones JD, Smeekens SC, Graham IA (2002) Trehalose-6-phosphate synthase 1, which catalyses the first step in trehalose synthesis, is essential for Arabidopsis embryo maturation. Plant J 29:223–235

    Article  Google Scholar 

  17. Eom JS, Chen LQ, Sosso D, Julius BT, Lin I, Qu XQ, Bruan DM, Frommer WB (2015) SWEETs, transporters for intracellular and intercellular sugar translocation. Curr Opin Plant Biol 25:53–62

    Article  PubMed  CAS  Google Scholar 

  18. Eom JS, Cho JI, Reinders A, Lee SW, Yoo Y, Tuan PQ, Choi SB, Bang G, Park YI, Cho MH, Bhoo SH, An G, Hahn TR, Ward JM, Jeon JS (2011) Impaired function of the tonoplast-localized sucrose transporter in rice, OsSUT2, limits the transport of vacuolar reserve sucrose and affects plant growth. Plant Physiol 157:109–119

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Eom JS, Nguyeon CD, Lee DW, Lee SK, Jeon JS (2016) Genetic complementation analysis of rice sucrose transporter genes in Arabidopsis SUC2 mutant atsuc2. J Plant Biol 59:231–237

    Article  CAS  Google Scholar 

  20. Eveland AL, Jackson DP (2012) Sugars, signaling, and plant development. J Exp Bot 63:3367–3377

    Article  PubMed  CAS  Google Scholar 

  21. Feng J, Zhao S, Chen X, Wang W, Dong W, Chen J, Shen J-R, Liu L, Kuang T (2015) Biochemical and structural study of Arabidopsis hexokinase 1. Acta Cryst D71:367–375

    Google Scholar 

  22. Figueroa CM, Lunn JE (2016) A tale of two sugars: trehalose 6-phosphate and sucrose. See comment in PubMed Commons belowPlant Physiol 172:7–27

    CAS  Google Scholar 

  23. Friend DJC, Bodson M, Bernier G (1984) Promotion of flowering in Brassica campestris L. cv Ceres by sucrose. Plant Physiol 75:1085–1089

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Granot D, Kelly G, Stein O, David-Schwartz R (2014) Substantial roles of hexokinase and fructokinase in the effects of sugars on plant physiology and development. J Exp Bot 65:809–819

    Article  PubMed  CAS  Google Scholar 

  25. Hanson J, Hanssen M, Wiese A, Hendriks MM, Smeekens S (2008) The sucrose regulated transcription factor bZIP11 affects amino acid metabolism by regulating the expression of ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE2. Plant J 53:935–949

    Article  PubMed  CAS  Google Scholar 

  26. Heyer AG, Raap M, Schroeer B, Marty B, Willmitzer L (2004) Cell wall invertase expression at the apical meristem alters floral, architectural, and reproductive traits in Arabidopsis thaliana. Plant J 39:161–169

    Article  PubMed  CAS  Google Scholar 

  27. Houssa P, Bernier G, Kinet J (1991) Qualitative and quantitative analysis of carbohydrates in leaf exudate of the short-day plant, Xanthium strumarium L. during floral transition. J Plant Physiol 138:24–28

    Article  CAS  Google Scholar 

  28. Ishimaru K, Hirose T, Aoki N, Takahashi S, Ono K, Yamamoto S, Wu J, Saji S, Baba T, Ugaki M, Matsumoto T, Ohsugi R (2001) Antisense expression of a rice sucrose transporter OsSUT1 in rice (Oryza sativa L.). Plant Cell Physiol 42:1181–1185

    Article  PubMed  CAS  Google Scholar 

  29. Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Choi YD, Nahm BH, Kim JK (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131:516–524

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Jeong EY, Seo PJ, Woo JC, Park MC (2015) AKIN10 delays flowering by inactivating IDD8 transcription factor through protein phosphorylation in Arabidopsis. BMC Plant Biol 15:110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Kim YM, Heinzel N, Giese JO, Koeber J, Melzer M, Rutten T, von Wiren N, Sonnewald U, Hajirezaei MR (2013) A dual role of tobacco hexokinase 1 in primary metabolism and sugar sensing. Plant Cell Environ 36:1311–1327

    Article  PubMed  CAS  Google Scholar 

  34. King RW, Hisamatsu T, Goldschmidt EE, Blundell C (2008) The nature of floral signals in Arabidopsis. I. Photosynthesis and a far-red photoresponse independently regulate flowering by increasing expression of FLOWERING LOCUS T (FT). J Exp Bot 59:3811–3820

    CAS  Google Scholar 

  35. Klemens PAW, Patzke K, Deitmer JW, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus E (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth and stress tolerance in Arabidopsis. Plant Physiol 163:1338–1352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Kretzschmar T, Pelayo MAF, Trijatmiko KR, Gabunada LFM, Alam R, Jimenez R, Medioro MS, Slamet-Loedin IH, Sreenivasulu N, Bailey-Serres J, Ismail AM, Mackill DJ, Septiningsih EM (2015) A trehalose-6-phosphate phosphatase enhances anaerobic germination tolerance in rice. Nat Plants 1: doi:10.1038/nplants.2015.124

    Google Scholar 

  37. Kuhn C, Grof CP (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13:288–298

    Article  PubMed  CAS  Google Scholar 

  38. Lastdrager J, Hanson J, Smeekens S (2014) Sugar signals and the control of plant growth and development. J Exp Bot 65:799–807

    Article  PubMed  CAS  Google Scholar 

  39. Lazakis CM, Coneva V, Colasanti J (2011) ZCN8 encodes a potential orthologue of Arabidopsis FT florigen that integrates both endogenous and photoperiod flowering signals in maize. J Exp Bot 62:4833–4842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Li HW, Zang BS, Deng XW, Wang XP (2011) Overexpression of the trehalose-6-phosphate synthase gene OsTPS1 enhances abiotic stress tolerance in rice. Planta 234:1007–1018

    Article  PubMed  CAS  Google Scholar 

  41. Lunn JE, Feil R, Hendriks JHM, Gibon Y, Morcuende R, Osuna D, Scheible WR, Carillo P, Hajirezawl MR, Stitt M (2006) Sugar induced increases in trehalose 6-phosphate are correlated with redox activation of ADP-glucose pyrophosphorylase and higher rates of starch synthesis in Arabidopsis thaliana. Biochem J 397:139–148

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Nagaraj VJ, Riedl R, Boller T, Wiemken A, Meyer AD (2001) Light and sugar regulation of the barley sucrose:fructan 6-fructosyltransferase promoter. J Plant Physiol 158:1601–1607

    Article  CAS  Google Scholar 

  43. Noel-Martinez GMA, Tognetti JA, Pontis HG (2001) Protein kinase and phosphatase activities are involved in fructan synthesis initiation mediated by sugars. Planta 213:640–646

    Article  CAS  Google Scholar 

  44. Nuccio ML, Wu JW, Mowers P, Zhou HP, Meghji M, Primavesi LF, Paul MJ, Chen X, Gao Y, Haque E, Basu SS, Lagrimini LM (2015) Expression of trehalose-6-phosphate phosphatase in maize ears improves yield in well-watered and drought conditions. Nat Biotechnol 33:862–869

    Article  PubMed  CAS  Google Scholar 

  45. Ohto M, Onai K, Fukukawa Y, Aoki E, Araki T, Nakamura K (2001) Effects of sugar on vegetative development and floral transition in Arabidopsis. Plant Physiol 127:252–261

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Menges M, Samland AK, Planchais S, Murray JAH (2006) The Dtype cyclin CYCD3;1 is limiting for the G1-to-S-phase transition in Arabidopsis. Plant Cell 18:893–906

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Micallef BJ, Haskins KA, Wanderveer PJ, Roh K-S, Shewmaker CK, Sharkey TD (1995) Altered photosynthesis, flowering, and fruiting in transgenic tomato plants that have an increased capacity for sucrose synthesis. Planta 196:327–334

    Article  CAS  Google Scholar 

  48. Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  49. Muller-Rober B, Sonnewald L, Willmitzer L (1992) Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and expression of tuber storage protein genes. EMBO J 11:1229–1238

    PubMed  PubMed Central  CAS  Article  Google Scholar 

  50. Paul MJ, Primavesi LF, Jhurreea D, Zhang Y (2008) Trehalose metabolism and signaling. Annu Rev Plant Biol 59:417–441

    Article  PubMed  CAS  Google Scholar 

  51. Pryke JA, Bernier G (1978) Acid invertase activity in the apex of Sinapis alba during transition to flowering. Ann Bot 42:747–749

    CAS  Google Scholar 

  52. Qi X, Wu Z, Li J, Mo X, Wu S, Chu J, Wu P (2007) AtCYT-INV1, a neutral invertase, is involved in osmotic stress-induced inhibition on lateral root growth in Arabidopsis. Plant Mol Biol 64:575–587

    Article  PubMed  CAS  Google Scholar 

  53. Rideout JW, Raper CDJ, Miner GS (1992) Changes in ratio of soluble sugars and free amino nitrogen in the apical meristem during floral transition in tobacco. Int J Plant Sci 153:78–88

    Article  PubMed  CAS  Google Scholar 

  54. Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57:675–709

    Article  PubMed  CAS  Google Scholar 

  55. Seo PJ, Ryu J, Kang SK, Park CM (2011) Modulation of sugar metabolism by an INDETERMINATE DOMAIN transcription factor contributes to photoperiodic flowering in Arabidopsis. Plant J 65:418–429

    Article  PubMed  CAS  Google Scholar 

  56. Sharkey TD, Laporte M, Lu Y, Weise S, Weber APM (2004) Engineering plants for elevated CO2: a relationship between starch degradation and sugar sensing. Plant Biol 6:280–288

    Article  PubMed  CAS  Google Scholar 

  57. Sheen J (2014) Master regulators in plant glucose signaling networks. J Plant Biol 57:67–79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertase and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54:525–531

    Article  PubMed  CAS  Google Scholar 

  59. Sivitz AB, Reinders A, Johnson ME. Krentz AD, Grof CPL, Perroux JM, Ward JM (2007) Arabidopsis Sucrose Transporter AtSUC9. High-affinity transport activity, intragenic control of expression, and early flowering mutant phenotype. Plant Physiol 143:188–198

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Slewinski TL, Meeley R, Braun DM (2009) Sucrose transporter1 functions in phloem loading in maize leaves. J Exp Bot 60:881–892

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P (2006) Sucrosespecific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiol 140:637–646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Sun J, Wang H, Ren L, Chen S, Chen F, Jiang J (2017) CmFTL2 is involved in the photoperiod- and sucrose-mediated control of flowering time in chrysanthemum. Hort Res 4:17001

    Article  CAS  Google Scholar 

  63. Tognetti JA, Pontis HG, Martinez-Noel GMA (2013) Sucrose signaling in plants. Plant Signal Behav 8:3, e23316

    Google Scholar 

  64. Tsai AY, Gazzarrini S (2012) AKIN10 and FUSCA3 interact to control lateral organ development and phase transitions in Arabidopsis. Plant J 69:809–821

    Article  PubMed  CAS  Google Scholar 

  65. van Dijken AJH, Schluepmann H, Smeekens SCM (2004) Arabidopsis trehalose 6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiol 135:969–977

    Article  PubMed  PubMed Central  Google Scholar 

  66. Wahl V, Ponnu J, Schlereth A, Arrivault S, Langebecker T, Franke A, Geil R, Lunn JE, Stitt M, Schmid M (2013) Regulation of flowering by trehalose-6-phosphate signaling in Arabidopsis thaliana. Science 339:704–707

    Article  PubMed  CAS  Google Scholar 

  67. Weber H, Borisjuk L, Wobus U (1996) Controlling seed development and seed size in Vicia faba: a role for seed coat-associated invertases and carbohydrate state. Plant J 10:823–834

    Article  CAS  Google Scholar 

  68. Willemoes JG, Beltrano J, Montaldi ER (1988) Diagravitropic growth promoted by high sucrose contents in Paspalum vaginatum, and its reversion by gibberellic acid. Can J Bot 66:2035–2037

    Article  Google Scholar 

  69. Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants: a diversity of roles and complex regulation. Trends Plant Sci 5:283–290

    Article  PubMed  CAS  Google Scholar 

  70. Wu G, Park MY, Conway SR, Wang JW, Weigel D, Poethig RS (2009) The sequential action of miR156 and miR172 regulates developmental timing in Arabidopsis. Cell 138:750–759

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Xu X, van Lammeren AAM, Vermeer E, Vreugdenhil D (1998) The role of gibberellin, abscisic acid, and sucrose in the regulation of potato tuber formation in vitro. Plant Physiol 17:575–584

    Article  Google Scholar 

  72. Yang L, Xu M, Koo Y, He J, Poethig RS (2013) Sugar promotes vegetative phase change in Arabidopsis thaliana by repressing the expression of MIR156A and MIR156C. eLife 2:e00260

    Google Scholar 

  73. Yang Z, Zhang L, Diao F, Huang M, Wu N (2004) Sucrose regulates elongation of carrot somatic embryo radicles as a signal molecule. Plant Mol Biol 54:441–459

    Article  PubMed  CAS  Google Scholar 

  74. Yeo ET, Kwon HB, Han SE, Lee JT, Byu MO (2000) Genetic engineering of drought resistant potato plants by introduction of the trehalose-6-phosphate synthase (TPS1) gene from Saccharomyces cerevisiae. Mol Cells 10:263–268

    PubMed  CAS  Google Scholar 

  75. Yu S, Cao L, Zhou CM, Zhang TQ, Lian H, Sun Y, Wu J, Huang J, Wang G, Wang JW (2013) Sugar is an endogenous cue for juvenile-to-adult phase transition in plants. eLife 2:e00269

    Google Scholar 

  76. Zhou L, Jang JC, Jones TL, Sheen J (1998) Glucose and ethylene signal transduction crosstalk revealed by an Arabidopsis glucoseinsensitive mutant. Proc Natl Acad Sci USA 95:10294–10299

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Zhou Y, Liu L, Huang W, Yuan M, Zhou F, Li X, Lin Y (2014) Overexpression of OsSWEET5 in rice causes growth retardation and precocious senescence. PLoS One 9:e94210

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jong-Seong Jeon or Gynheung An.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cho, LH., Pasriga, R., Yoon, J. et al. Roles of Sugars in Controlling Flowering Time. J. Plant Biol. 61, 121–130 (2018). https://doi.org/10.1007/s12374-018-0081-z

Download citation

Keywords

  • Flowering time
  • Photosynthesis
  • Soluble sugars