Skip to main content

Advertisement

Log in

Genetic Diversity, Population Genetic Structure and Protection Strategies for Houpoëa officinalis (Magnoliaceae), an Endangered Chinese Medical Plant

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Houpoëa officinalis is a traditional Chinese medical plant, which has significantly declined in the past decades because of human influence and habitat fragmentation. Twelve expressed sequence tag SSR (EST-SSR) markers developed from the EST sequence of H. officinalis were used to analyse the genetic diversity and structure of fourteen natural populations. The results indicated that moderate genetic diversity and high genetic differentiation existed in this plant (Ho = 0.600, Fst = 0.327). STRUCTURE and UPGMA analyses showed that H. officinalis populations could be divided into 3 different groups, and the west group had higher genetic diversity than the central and east groups. The historical migration rates among the groups were low and unsymmetrical, and there was no significant correlation between Nei’s genetic distance and geographic distance. According to the genetic consequences, conservation strategies (in situ or ex situ, artificial pollination) should be carried out in all populations to preserve genetic diversity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alisoltani A, Ebrahimi S, Azarian S, Hematyar M, Shiran B, Jahanbazi H (2015) Parallel consideration of SSRs and differentially expressed genes under abiotic stress for targeted development of functional markers in almond and related Prunus species. Scientia Hortic 198:462–472

    Article  CAS  Google Scholar 

  • Bai B, Li N, Lu CH (2011) Influence of habitat fragmentation on frugivores and their seed dispersal. Chin J Ecol 30:2613–2620

    Google Scholar 

  • Beerli P (2006) Comparison of Bayesian and maximum-likelihood inference of population genetic parameters. Bioinformatics 22: 341–345

    Article  PubMed  CAS  Google Scholar 

  • Beerli P, Felsenstein J (1999) Maximum-likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics 152:763–773

    PubMed  PubMed Central  CAS  Google Scholar 

  • Chapuis MP, Estoup A (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  PubMed  CAS  Google Scholar 

  • Cobat A, Abel L, Alcaïs A (2011) The Maximum-Likelihood-Binomial method revisited: a robust approach for model-free linkage analysis of quantitative traits in large sibships. Genetic Epidemiology 35:46–56

    Article  PubMed  Google Scholar 

  • Committee of Pharmacopoeia (2010) Chinese Pharmacopoeia. Beijing: chemical industry publishers. 275

    Google Scholar 

  • Edmands S, Timmerman CC (2003) Modeling Factors Affecting the Severity of Outbreeding Depression. Conserv Biol 17:883–892

    Article  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  PubMed  CAS  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Gapare WJ, Aitken SN, Ritland CE (2005) Genetic diversity of core and peripheral Sitka spruce (Picea sitchensis, (Bong.) Carr) populations: implications for conservation of widespread species. Biol Conserv 123:113–123

    Article  Google Scholar 

  • Godt MJW, Hamrick JL (2003) Consequences of landscape patterns on the genetic composition of remnant hardwood stands in the Southeast: A pilot study. Off Sci & Tech InformTech Rep 2–48

    Google Scholar 

  • González-Varo JP, Arroyo J, Aparicio A (2009) Effects of fragmentation on pollinator assemblage, pollen limitation and seed production of Mediterranean myrtle (Myrtus communis). Biol Conserv 142:1058–1065

    Article  Google Scholar 

  • Guo BL, Wu M, Si JP, Li JS, Xiao PG (2001) Research on DNA molecular marker of Magnolia officinalis Rehd. et Wils—RAPD study on certified species. Acta Pharmacol Sin 36:386–389

    CAS  Google Scholar 

  • Hedrick PW (2005) A standardized genetic differentiation measure. Evolution 59:1633–1638

    Article  PubMed  CAS  Google Scholar 

  • He JS, Ling C, Ying S, Bo H, Ban XQ, Wang YW (2009) Population structure and genetic diversity distribution in wild and cultivated populations of the traditional Chinese medicinal plant Magnolia officinalis subsp. biloba (Magnoliaceae) Genetica 135:233

    Article  PubMed  Google Scholar 

  • Hoebee SE, Arnold U, Düggelin C, Brodbeck S, Rotach P, Holderegger R, Hoebee SE, Amold U (2007) Mating patterns and contemporary gene flow by pollen in a large continuous and a small isolated population of the scattered forest tree Sorbus torminalis. Heredity 99:47–55

    Article  PubMed  CAS  Google Scholar 

  • Hsu TH, Takata K, Onozato H et al (2015) Causes of the drastic loss of genetic variation in the Critically Endangered Formosa landlocked salmon of Taiwan. Endange Species Res 27:277–287

    Article  Google Scholar 

  • Huang Z, Liu N, Liang W, Zhang Y, Liao X, Ruan L (2010). Phylogeography of Chinese bamboo partridge, Bambusicola thoracica thoracica, (Aves: Galliformes) in south China: Inference from mitochondrial DNA control-region sequences. Mol Phylogenet Evol 56:273–280

    Article  PubMed  Google Scholar 

  • Hufford KM, Mazer SJ (2003) Plant ecotypes: genetic differentiation in the age of ecological restoration. Trends Ecol Evol 18:147–155

    Article  Google Scholar 

  • Jiang YF (2010) Study on variation of genetic diversity of Magnolia officinalis at different levels. MsD Hangzhou: Zhejiang Agriculture and Forest University

    Google Scholar 

  • Jones LR, Dukesylvester SM, Leberg PL, Johnso DM (2017) Closing the gaps for animal seed dispersal: Separating the effects of habitat loss on dispersal distances and seed aggregation. Ecol Evol 7:5410

    Article  PubMed  PubMed Central  Google Scholar 

  • Kong L (2010) Study on variety selection of Magnolia officinalis and its identification of provenance of RAPD. MsD. Fuzhou: Fujian Agriculture and forestr University

    Google Scholar 

  • Levi A (2011) EST-SSRs of watermelon (Citrullus sp.) Useful in assessing genetic diversity among Lagenaria Siceraria accessions. Int J Wildland Fire 20:776–791

    Article  Google Scholar 

  • Li Y, Yan HF, Ge XJ (2012) Phylogeographic analysis and environmental niche modeling of widespread shrub Rhododendron simsii in China reveals multiple glacial refugia during the last glacial maximum. Acta Phytotaxon Sin 50:362–373

    Google Scholar 

  • Li X, Yin X (2004) Seed dispersal by birds in Nanjing Botanical Garden Mem. Sun Yat.-Sen in spring and summer. Act Ecol Sin 24:1452–1458

    Google Scholar 

  • Liu YH, Xia NH, Yang HQ (1995). The origin, evolution, and phytogeography of Magnoliaceae. J Tropic & Subtropic Bot 34:1–12

    Google Scholar 

  • Liu YH, Luo XR, Wu RF (1996) Flora of China. Beijing: Science Press 30:221–222

    Google Scholar 

  • Liu WS, Zhu JM, He B, Su Y (2004) Studies on random amplified polymorphic DNA fingerprinting of cortex Magnoliae officinalis. J Tradit Chin Med 27:164–169

    Google Scholar 

  • Lu JJ, Gao L, Kang JY, Feng SG, He RF, Wang HZ (2013) Thirteen novel polymorphic microsatellite markers for endangered Chinese endemic herb Dendrobium officinale. Conservation Genetics Resources 5:359–361

    Article  Google Scholar 

  • Mai J, Yang ZL, Yang X, Wang L (2015) Analysis and genetic diversity of population of parents and their progenies of Magnolia officinalis based on SSR markers. J Plant Resour &Envir 24:10–17

    Google Scholar 

  • Nagamitsu T, Kikuchi S, Hotta M, Kenta T, Hiura T (2014) Effects of Population Size, Forest Fragmentation, and Urbanization on Seed Production and Gene Flow in an Endangered Maple (Acer miyabei). Am Midl Nat 172:303–316

    Article  Google Scholar 

  • Moniem HEMA, Holland JD (2013) Habitat connectivity for pollinator beetles using surface metrics. Landscape Ecol 28:1251–1267

    Article  Google Scholar 

  • Nybom H (2004) Comparison of different nuclear DNA markers for estimating intraspecific genetic diversity in plants. Mol Ecol 13: 1143–1155

    Article  PubMed  CAS  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  PubMed Central  CAS  Google Scholar 

  • Rosas F, Quesada M, Lobo JA, Sork VL (2011) Effects of habitat fragmentation on pollen flow and genetic diversity of the endangered tropical tree Swietenia humilis (meliaceae). Biol Conserv 144:3082–3088

    Article  Google Scholar 

  • Rufai S, Hanafi MM, Rafii MY, Ahmad S, Arolu IW, Ferdous J (2013) Genetic dissection of new genotypes of drumstick tree (Moringa oleifera Lam.) using random amplified polymorphic DNA marker. Biomed Res Int 2013:604598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sahu J, Sen P, Choudhury MD, Modi MK, Talukdar AD (2012) Towards an efficient computational mining approach to identify EST-SSR markers. Bioinformation 8:201–202

    Article  PubMed  PubMed Central  Google Scholar 

  • Setsuko S, Nishimura N, Tomaru N (2008) Analysis of seed dispersal pattern of Magnolia stellata by using microsatellite markers. Japanese forestry society congress

    Google Scholar 

  • Schlautman B, Fajardo D, Bougie T, Wiesman E, Polashock J, Vorsa N (2015) Development and validation of 697 novel polymorphic genomic and EST-SSR markers in the American cranberry (Vaccinium macrocarpon Ait.). Molecules 20:2001–2013

    Article  PubMed  CAS  Google Scholar 

  • Si JP, Tong ZK, Guo BL (2000) Discussion on current classification of Magnolia officinalis. J Pharm Practi 18:301–302

    Google Scholar 

  • Soldati MC, Fornes L, Zonneveld MV, Thomas E, Zelener N (2013) An assessment of the genetic diversity of Cedrela balansae, C. DC. (Meliaceae) in Northwestern Argentina by means of combined use of SSR and AFLP molecular markers. Biochem Syst Ecol 47:45–55

    Article  CAS  Google Scholar 

  • Tian K, Zhang G, Cheng X, He S, Yang Y (2003) The habitat fragility of Manglietiastrum sinicum. Acta Bot Yunn 2003

    Google Scholar 

  • Thiago A, Maristerrar L, James G, Rogério G (2008) Post-logging loss of genetic diversity in a mahogany (Swietenia macrophylla King, Meliaceae) population in Brazilian Amazonia. Forest Ecol Manag 255:340–345

    Article  Google Scholar 

  • Tong ZK (2002) Studies on genetic improvement of medical plant Magnoliae officinalis. PhD. Nanjing: Nanjing Forestry University

    Google Scholar 

  • Tremblay RL, Ackerman JD (2001) Gene flow and effective population size in Lepanthes (Orchidaceae): a case for genetic drift. Biol J Linn Soc 72:47–62

    Article  Google Scholar 

  • Wang L, Yang Y, Zhao Y, Yang S, Udikeri S, Liu T (2016) De novo characterization of the root transcriptome and development of EST-SSR markers in Paris polyphylla Smith var. yunnanensis, an endangered medical plant. J Agric Sci Tech-Iran 18:437–452

    Google Scholar 

  • Wang X, Zhou X, Gao W, Cui G, Huang L, Liu C (2011). New analysis of EST-SSR distribution and development of EST-SSR markers in Salvia miltiorrhiza. China J Chin mater med 36:289–93

    CAS  Google Scholar 

  • Wang T, Sun YJ, Zhu J et al (2001) Studies on DNA amplification fingerprinting of cortex Magnoliae officinalis. J Tradit Chin Med 24:710–715

    CAS  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    PubMed  CAS  Google Scholar 

  • Weng J (2014) TRAP analysis and seedling preliminary provenance selection on different provenances of Magnolia officinalis subsp. Biloba. MsD. Fuzhou: Fujian Agriculture and forestry university

    Google Scholar 

  • Wu HB, Gong H, Liu P, He XL, Luo SB, Zheng XM (2014) Largescale development of EST-SSR markers in sponge gourd via transcriptome sequencing. Mol Breeding 34:1903–1915

    Article  CAS  Google Scholar 

  • Xia N H, Liu Y H, Nooteboom HP (2008) Magnoliaceae. Flora of China. Beijing:Science Press 7:64

    Google Scholar 

  • Xiong M, Tian S, Zhang Z, Fan D, Zhang Z (2014) Population genetic structure and conservation units of Sinomanglietia glauca (Magnoliaceae). Biodiver Sci 22:476

    Article  CAS  Google Scholar 

  • Yang HB (2007) Quality of Cortex Magnolia officinalis in Hubei Enshi. MsD. Wuhang: Hubei university of Chinese medicine

    Google Scholar 

  • Yang L, Liu ZL, Li J, Dyer RJ (2015) Genetic structure of Pinus henryi, and Pinus tabuliformis: Natural landscapes as significant barriers to gene flow among populations. Biochem Syst Ecol 61:124–132

    Article  CAS  Google Scholar 

  • Yang X, Yang ZL, Wang J, Tan GY, He ZS (2012) Floral syndrome and breeding system of endangered species Magnolia officinalis subsp. Biloba. Chin J Ecol 31:551–556

    Google Scholar 

  • Yang X, Yang ZL, Wang J, Tan GY (2012) Variation of fruit and seed characters of endangered species Magnolia officinalis subsp. Biloba. Chin J Ecol 31:1077–1081

    Google Scholar 

  • Yang X, Yang Z L, Mai J, Pan WT, Li HG (2016) Comparison of characters of leaf trichomes in Houpoëa officinalis and their taxonomical significances, Guihaia 36:1335–1343

    Google Scholar 

  • Yang ZL, Yang X (2017) Conservation biology of Houpoëa officinalis. Beijing: Science Press 36–37

    Google Scholar 

  • Yu SX, Yuan QJ, Yang B, Zhang C, Chen C (2010) Population genetic study of Magnolia officinalis and Magnolia officinalis var biloba. Zhongguo Zhong Yao Za Zhi 35:2129–2132

    PubMed  Google Scholar 

  • Yuan A, Bonney GE (2003) Exact test of Hardy-Weinberg equilibrium by Markov chain Monte Carlo. Math Med Biol 20:327–340

    Article  PubMed  Google Scholar 

  • Yu HH, Yang ZL, Sun B, Liu RN, Yang X (2011) Genetic diversity and relationship of the endangered plant Magnolia officinalis (Magnoliaceae) assessed with ISSR polymorphisms. Biochem Syst Ecol 39:71–78

    Article  CAS  Google Scholar 

  • Zhao JL, He TH, Li QM (2010) Contrasting coarse and fine scale genetic structure among isolated relic populations of Kmeria septentrionalis. Genetica 138:939–944

    Article  PubMed  Google Scholar 

  • Zheng ZL (2010). Studies on genetic diversity and construction of fingerprinting of Magnolia officinalis. MsD. Fuzhou: Fujian Agriculture and forestry university

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huogen Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Yang, Z. & Li, H. Genetic Diversity, Population Genetic Structure and Protection Strategies for Houpoëa officinalis (Magnoliaceae), an Endangered Chinese Medical Plant. J. Plant Biol. 61, 159–168 (2018). https://doi.org/10.1007/s12374-017-0373-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-017-0373-8

Keywords