Journal of Plant Biology

, Volume 61, Issue 2, pp 85–96 | Cite as

Identification and Functional Characterization of R3 MYB Transcription Factor Genes in Soybean

  • Hongwei Xun
  • Zhibing Zhang
  • Yunxiao Zhou
  • Xueyan Qian
  • Yingshan Dong
  • Xianzhong Feng
  • Jinsong Pang
  • Shucai Wang
  • Bao Liu
Original Article
  • 7 Downloads

Abstract

In Arabidopsis, trichome formation is regulated by a MYB-bHLH-WD40 (MBW) transcriptional activator complex, which can activate the expression of GLABRA2 (GL2) and R3 MYB genes. GL2 is required for trichome formation, whereas R3 MYBs inhibit trichome formation by blocking the formation of the MBW complex, thus inhibiting the expression of GL2. By using the amino acid sequence of the Arabidopsis R3 MYB transcription factor TRICHOMELESS1 (TCL1) to BLAST the soybean (Glycine max) protein database, we found that there are a total of six R3 MYB genes in soybean, namely Glycine max TRICHOMELESS1 through 6 (GmTCL1-GmTCL6). By generating transgenic plants, we found that trichome formation in soybean plants overexpressing each of the GmTCLs remained largely unchanged, and the expression of putative GL1 and GL2 genes in the transgenic plants was unaffected. However, all the GmTCLs interacted with GLABRA3 (GL3) in transfected Arabidopsis protoplasts, expression each of the GmTCLs in Arabidopsis inhibited trichome formation, and the expression levels of GL1 and GL2 were greatly reduced in the Arabidopsis transgenic plants. Moreover, phenotypic complementary analysis showed that GmTCL1 is functionally equivalent to TCL1. Taken together, these results suggest that GmTCLs are functional R3 MYBs, however, they do not regulate trichome formation in soybean.

Keywords

Arabidopsis GmTCL1 R3 MYBs Soybean TCL1 Transcription factor Trichome 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernard RL, Singh BB (1969) Inheritance of pubescence type in soybeans:glabrous, curly, dense, sparse and puberulent. Crop Sci 9: 192−197Google Scholar
  2. Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16: 735−743CrossRefGoogle Scholar
  3. Dai X, Zhou L, Zhang W, Cai L, Guo H, Tian H, Schiefelbein J, Wang S (2016) A single amino acid substitution in the R3 domain of GLABRA1 leads to inhibition of trichome formation in Arabidopsis without affecting its interaction with GLABRA3. Plant Cell Environ 39: 897−907CrossRefPubMedGoogle Scholar
  4. Dubos C, Stracke R, Grotewold E, Weisshaar B, Martin C, Lepiniec L (2010) MYB transcription factors in Arabidopsis. Trends Plant Sci 15: 573−581CrossRefGoogle Scholar
  5. Esch JJ, Chen MA, Hillestad M, Marks MD (2004) Comparison of TRY and the closely related At1g01380 gene in controlling Arabidopsis trichome patterning. Plant J 40: 860−869CrossRefGoogle Scholar
  6. Esch JJ, Chen MA, Sanders M, Hillestad M, Ndkium S, Idelkope B, Neizer J, Marks MD (2003) A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. Development 130: 5885−5894CrossRefGoogle Scholar
  7. Gan L, Xia K, Chen JG, Wang S (2011) Functional characterization of TRICHOMELESS2, a new single repeat R3 MYB transcription factor in the regulation of trichome patterning in Arabidopsis. BMC Plant Biol 11: 176CrossRefPubMedPubMedCentralGoogle Scholar
  8. Gruber MY, Wang S, Ethier S, Holowachuk J, Bonham-Smith PC, Soroka J, Lloyd A (2006) “HAIRY CANOLA”—Arabidopsis GL3 induces a dense covering of trichomes on Brassica napus seedlings. Plant Mol Biol 60: 679−698CrossRefGoogle Scholar
  9. Guan X, Lee JJ, Pang M, Shi X, Stelly DM, Chen ZJ (2011) Activation of Arabidopsis seed hair development by cotton fiber-related genes. PLoS One 6: e21301CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guan XY, Li QJ, Shan CM, Wang S, Mao YB, Wang LJ, Chen XY (2008) The HD-Zip IV gene GaHOX1 from cotton is a functional homologue of the Arabidopsis GLABRA2. Physiol Plant 134: 174−182CrossRefGoogle Scholar
  11. Guan X, Pang M, Nah G, Shi X, Ye W, Stelly DM, Chen ZJ (2014) miR828 and miR858 regulate homoeologous MYB2 gene functions in Arabidopsis trichome and cotton fibre development. Nat Commun 5: 3050CrossRefPubMedGoogle Scholar
  12. Hu R, Fan C, Li H, Zhang Q, Fu YF (2009) Evaluation of putative reference genes for gene expression normalization in soybean by quantitative real-time RT-PCR. BMC Mol Biol 10: 93CrossRefPubMedPubMedCentralGoogle Scholar
  13. Hunt M, Kaur N, Stromvik M, Vodkin L (2011) Transcript profiling reveals expression differences in wild-type and glabrous soybean lines. BMC Plant Biol 11: 145CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hülskamp M, Misra S, Jürgens G (1994) Genetic dissection of trichome cell development in Arabidopsis. Cell 76: 555−566CrossRefGoogle Scholar
  15. Ishida T, Kurata T, Okada K, Wada T (2008) A Genetic Regulatory Network in the Development of Trichomes and Root Hairs. Annu Rev Plant Biol 59: 364−386CrossRefGoogle Scholar
  16. Kirik V, Simon M, Hülskamp M, Schiefelbein J. (2004a) The ENHANCER OF TRY AND CPC1 gene acts redundantly with TRIPTYCHON and CAPRICE in trichome and root hair cell patterning in Arabidopsis. Dev Biol 268: 506−513CrossRefGoogle Scholar
  17. Kirik V, Simon M, Wester K, Schiefelbein J, Hülskamp M (2004b) ENHANCER of TRY and CPC 2(ETC2) reveals redundancy in the region-specific control of trichome development of Arabidopsis. Plant Mol Biol 55: 389−398CrossRefGoogle Scholar
  18. Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132: 5387−5398CrossRefGoogle Scholar
  19. Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67: 483−493CrossRefGoogle Scholar
  20. Payne CT, Zhang F, Lloyd AM (2000) GL3 encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156: 1349−1362PubMedCentralGoogle Scholar
  21. Pesch M, Hülskamp M (2004) Creating a two-dimensional pattern de novo during Arabidopsis trichome and root hair initiation. Curr Opin Genet Dev 14: 422−427CrossRefGoogle Scholar
  22. Rerie WG, Feldmann KA, Marks MD (1994) The GLABRA2 gene encodes a homeo domain protein required for normal trichome development in Arabidopsis. Genes Dev 8: 1388−1399CrossRefGoogle Scholar
  23. Schellmann S, Schnittger A, Kirik V, Wada T, Okada K, Beermann A, Thumfahrt J, Jürgens G, Hülskamp M (2002) TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. EMBO J 21: 5036−5046CrossRefPubMedCentralGoogle Scholar
  24. Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6: 74−78CrossRefGoogle Scholar
  25. Schiefelbein J, Huang L, Zheng X (2014) Regulation of epidermal cell fate in Arabidopsis roots: the importance of multiple feedback loops. Front Plant Sci 5: 47CrossRefPubMedPubMedCentralGoogle Scholar
  26. Schnittger A, Folkers U, Schwab B, Jürgens G, Hülskamp M (1999) Generation of a spacing pattern: The role of TRIPTYCHON in trichome patterning in Arabidopsis. Plant Cell 11: 1105−1116CrossRefPubMedCentralGoogle Scholar
  27. Scoville AG, Barnett LL, Bodbyl-Roels S, Kelly JK, Hileman LC (2011) Differential regulation of a MYB transcription factor is correlated with transgenerational epigenetic inheritance of trichome density in Mimulus guttatus. New Phytol 191: 251−263CrossRefPubMedCentralGoogle Scholar
  28. Simon M, Lee MM, Lin Y, Gish L, Schiefelbein J (2007) Distinct and overlapping roles of single-repeat MYB genes in root epidermal patterning. Dev Biol 311: 566−578CrossRefGoogle Scholar
  29. Song ZY, Tian JL, Fu WZ, Li L, Lu LH, Zhou L, Shan ZH, Tang GX, Shou HX (2013) Screening Chinese soybean genotypes for Agrobacterium-mediated genetic transformation suitability. J Zhejiang Univ Sci B 14: 289−298PubMedCentralGoogle Scholar
  30. Tian H, Wang X, Guo H, Cheng Y, Hou C, Chen JG, Wang S (2017) NTL8 regulates trichome formation in Arabidopsis by directly activating R3 MYB genes TRY and TCL1. Plant Physiol 174: 2363−2375CrossRefPubMedPubMedCentralGoogle Scholar
  31. Tiwari SB, Hagen G, Guilfoyle T (2003) The roles of auxin response factor domains in auxin-responsive transcription. Plant Cell 15: 533−543CrossRefPubMedCentralGoogle Scholar
  32. Tominaga R, Iwata M, Sano R, Inoue K, Okada K, Wada T (2008) Arabidopsis CAPRICE-LIKE MYB 3 (CPL3) controls endoreduplication and flowering development in addition to trichome and root hair formation. Development 135: 1335−1345CrossRefGoogle Scholar
  33. Tominaga-Wada R, Nukumizu Y (2012) Expression Analysis of an R3-Type MYB Transcription Factor CPC-LIKE MYB4 (TRICHOMELESS2) and CPL4-Related Transcripts in Arabidopsis. Int J Mol Sci 13: 3478−3491CrossRefPubMedCentralGoogle Scholar
  34. Tominaga-Wada R, Kurata T, Wada T (2017) Localization of ENHANCER OF TRY AND CPC1 protein in Arabidopsis root epidermis. J Plant Physiol 214: 48−52CrossRefPubMedGoogle Scholar
  35. Tominaga-Wada R, Nukumizu Y, Sato S, Wada T (2013) Control of plant trichome and root-hair development by a tomato (Solanum lycopersicum) R3 MYB transcription factor. PLoS One 8: e54019CrossRefPubMedPubMedCentralGoogle Scholar
  36. Vendramin E, Pea G, Dondini L, Pacheco I, Dettori MT, Gazza L, Scalabrin S, Strozzi F, Tartarini S, Bassi D, Verde I, Rossini L (2014) A Unique mutation in a MYB gene cosegregates with the nectarine phenotype in peach. PLoS One 9: e90574CrossRefPubMedPubMedCentralGoogle Scholar
  37. Wada T, Kurata T, Tominaga R, Koshino-Kimura Y, Tachibana T, Goto K, Marks MD, Shimura Y, Okada K (2002) Role of a positive regulator of root hair development, CAPRICE, in Arabidopsis root epidermal cell differentiation. Development 129: 5409−5419Google Scholar
  38. Wada T, Tachibana T, Shimura Y, Okada K (1997) Epidermal cell differentiation in Arabidopsis determined by a Myb homolog, CPC. Science 277: 1113−1116CrossRefGoogle Scholar
  39. Walker AR, Davison PA, Bolognesi-Winfield AC, James CM, Srinivasan N, Blundell TL, Esch JJ, Marks MD, Gray JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11: 1337−1350CrossRefPubMedCentralGoogle Scholar
  40. Wang S, Chen JG (2008) Arabidopsis transient expression analysis reveals that activation of GLABRA2 may require concurrent bindings of GLABRA1 and GLABRA3 to the Promoter of GLABRA2. Plant Cell Physiol 49: 1792−1804CrossRefGoogle Scholar
  41. Wang S, Chen JG (2014) Regulation of cell fate determination by single-repeat R3 MYB transcription factors in Arabidopsis. Front Plant Sci 5: 133PubMedPubMedCentralGoogle Scholar
  42. Wang S, Hubbard L, Chang Y, Guo J, Schiefelbein J, Chen JG (2008) Comprehensive analysis of single-repeat R3 MYB proteins in epidermal cell patterning and their transcriptional regulation in Arabidopsis. BMC Plant Biol 8: 81CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wang S, Kwak SH, Zeng Q, Ellis BE, Chen XY, Schiefelbein J, Chen JG (2007) TRICHOMELESS1 regulates trichome patterning by suppressing GLABRA1 in Arabidopsis. Development 134: 3873−3882Google Scholar
  44. Wang S, Tiwari SB, Hagen G, Guilfoyle TJ (2005) AUXIN RESPONSE FACTOR7 restores the expression of auxin-responsive genes in mutant Arabidopsis leaf mesophyll protoplasts. Plant Cell 17: 1979−1993PubMedCentralGoogle Scholar
  45. Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16: 2323−2334PubMedCentralGoogle Scholar
  46. Wang X, Wang X, Hu Q, Dai X, Tian H, Zheng K, Wang X, Mao T, Chen JG, Wang S (2015) Characterization of an activation-tagged mutant uncovers a role of GLABRA2 in anthocyanin biosynthesis in Arabidopsis. Plant J 83: 300−311Google Scholar
  47. Werker E (2000) Trichome diversity and development. Adv Bot Res 31: 1−35Google Scholar
  48. Wester K, Digiuni S, Geier F, Timmer J, Fleck C, Hülskamp M (2009) Functional diversity of R3 single-repeat genes in trichome development. Development 136: 1487−1496CrossRefGoogle Scholar
  49. Ye XL, Hu FY, Ren J, Huang SN, Liu WJ, Feng H, Liu ZY (2016) Fine mapping and candidate gene analysis of Brtri1, a gene controlling trichome development in Chinese cabbage (Brassica rapa L. ssp pekinensis). Genet Mol Res 15(4): doi: 10.4238/gmr15048924Google Scholar
  50. Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal Control of Trichome Distribution by MicroRNA156-Targeted SPL Genes in Arabidopsis thaliana. Plant Cell 22: 2322−2335PubMedCentralGoogle Scholar
  51. Zimmermann IM, Heim MA, Weisshaar B, Uhrig JF (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40: 22−34CrossRefPubMedGoogle Scholar
  52. Zhang F, Gonzalez A, Zhao M, Payne CT, Lloyd A (2003) A network of redundant bHLH proteins functions in all TTG1-dependent pathways of Arabidopsis. Development 130: 4859−4869Google Scholar
  53. Zhou L, Zheng K, Wang X, Tian H, Wang X, Wang S (2014) Control of trichome formation in Arabidopsis by poplar single-repeat R3 MYB transcription factors. Front Plant Sci 5: 262PubMedPubMedCentralGoogle Scholar
  54. Zheng K, Tian H, Hu Q, Guo H, Yang L, Cai L, Wang X, Liu B, Wang S (2016) Ectopic expression of R3 MYB transcription factor gene OsTCL1 in Arabidopsis, but not rice, affects trichome and root hair formation. Sci Rep 6: 19254CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Korean Society of Plant Biologists and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Hongwei Xun
    • 1
  • Zhibing Zhang
    • 1
  • Yunxiao Zhou
    • 1
  • Xueyan Qian
    • 2
  • Yingshan Dong
    • 2
  • Xianzhong Feng
    • 3
  • Jinsong Pang
    • 1
  • Shucai Wang
    • 1
  • Bao Liu
    • 1
  1. 1.Key Laboratory of Molecular Epigenetics of MOE & Institute of Genetics and CytologyNortheast Normal UniversityChangchunChina
  2. 2.Jilin Academy of Agricultural SciencesChangchunChina
  3. 3.Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and AgroecologyChinese Academy of SciencesChangchunChina

Personalised recommendations