Skip to main content

Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice

Abstract

Plant annexins are Ca2+-dependent phospholipid-binding proteins and exist as multigene families in plants. They are implicated in the regulation of plant development as well as protection from environmental stresses. In this study, the rice annexin gene OsAnn3 knockout was performed via the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR associated proteins) mediated genome editing. Thus, mutant plantlets were successfully obtained. We identified cold tolerance phenotype of T1 mutant lines from T0 biallelic mutants using the 4∼6°C for 3 days cold treatment. The results showed that REC (the relative electrical conductivity) of T1 mutant lines was increased, and the survival ratio of T1 mutant lines was decreased dramatically compared with the wild type after the exposure to cold treatment. It was suggested that OsAnn3 was involved in cold tolerance of rice.

This is a preview of subscription content, access via your institution.

References

  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini L (2013) Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acid Res 41:7429–7437

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Breton G, Vazquez-Tello A, Danyluk J, Sarhan F (2000) Two novel intrinsic annexins accumulate in wheat membranes in response to low temperature. Plant Cell Physiol 41:177–184

    CAS  Article  PubMed  Google Scholar 

  • Candida V, Franca L, Marcella B, Enrico M, Milena M, Michela O, Monica M, Elena Baldoni, Immacolata Coraggio (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37: 115–127

    Article  Google Scholar 

  • Cantero A, Barthakur S, Bushart TJ, Chou S, Morgan RO, Fernandez MP, Clark GB, Roux SJ (2006) Expression profiling of the Arabidopsis annexin gene family during germination, de-etiolation and abiotic stress. Plant Physiol Biochem 44:13–24

    CAS  Article  PubMed  Google Scholar 

  • Chu P, Chen H, Zhou Y, Li Y, Ding Y, Jiang LW, Edward WTT, Wu KQ, Huang SZ (2012) Proteomic and functional analyses of Nelumbo nucifera annexins involved in seed thermotolerance and germination vigor. Planta 235:1271–1288

    CAS  Article  PubMed  Google Scholar 

  • Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu XB, Jiang WY, Marraffini L, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339:819–823

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Dan I, Watanabe NM, Kasumi A (2001) The Ste20 group kinases as regulators of MAP kinase cascades. Trends Cell Biol 11:220–230

    CAS  Article  PubMed  Google Scholar 

  • Gerke V and Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371

    CAS  Article  PubMed  Google Scholar 

  • Gidrol X, Sabelli PA, Fern YS, Kush AK (1996) Annexin-like protein from Arabidopsis thaliana rescues DoxyR mutant of Escherichia coli from H2O2 stress. Proc Natl Acad Sci 93:11268–11273

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Goel A, Taj G, Pandey D, Gupta S, Kumar A (2011) Genome-wide comparative in silico analysis of calcium transporters of rice and sorghum. Genomics Proteomics Bioinform 9:138–150

    CAS  Article  Google Scholar 

  • Gratz SJ, Cummings A, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194:1029–1035

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Hashimoto M, Toorchi M, Matsushita K, Iwasaki Y, Komatsu S (2009) Proteome analysis of rice root plasma membrane and detection of cold stress responsive proteins. Protein Peptide Lett 16:685–697

    CAS  Article  Google Scholar 

  • Hu TZ, Zeng H, He S, Wu YM, Wang GX, Huang XY (2012) Molecular analysis of OsLEA4 and its contributions to improve E. coli viability. Appl Biochem Biotech 166:222–233

    CAS  Article  Google Scholar 

  • Hoshino D, Hayashi A, Temmei Y, Kanzawa N, Tsuchiya T (2004) Biochemical and immunohistochemical characterization of Mimosa annexin. Planta 219:867–875

    CAS  Article  PubMed  Google Scholar 

  • Jami SK, Clark GB, Ayele BT, Ayele BT, Roux SJ, Kirti PB (2012a) Identification and characterization of annexin gene family in rice. Plant Cell Rep 31:813–825

    CAS  Article  PubMed  Google Scholar 

  • Jami SK, Clark GB, Ayele BT, Ashe P, Kirti PB (2012b) Genomewide comparative analysis of annexin superfamily in plants. PLoS ONE 7: e47801

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jami SK, Clark GB, Swathi AT, Handley C, Roux SJ, Kirti PB (2008) Ectopic expression of an annexin from Brassica juncea confers tolerance to abiotic and biotic stress treatments in transgenic tobacco. Plant Physiol Biochem 46:1019–1030

    CAS  Article  PubMed  Google Scholar 

  • Jami SK, Dalal A, Divya K, Kirti PB (2009) Molecular cloning and characterization of five annexin genes from Indian mustard (Brassica juncea L. Czern and Coss). Plant Physiol Biochem 47: 977–990

    CAS  Article  PubMed  Google Scholar 

  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini L (2013) RNA guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Jinek M, Chylinski K, Fonfara I, auer M, Doudna J, Charpentier E (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821

    CAS  Article  PubMed  Google Scholar 

  • Konopka-Postupolska D, Clark G, Goch G, Debski J, Floras K, Cantero A, Fijolek B, Roux S, Hennig J (2009) The role of annexin 1 in drought stress in Arabidopsis. Plant Physiol 150: 1394–1410

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Konopka-Postupolska D, Clark G, Hofmann A (2011) Structure, function and membrane interactions of plant annexins: an update. Plant Sci 181: 230–241

    CAS  Article  PubMed  Google Scholar 

  • Kovach, MJ, Sweeney, MT, McCouch, SR (2007) New insights into the history of rice domestication. Trends Genet 23:578–587

    CAS  Article  PubMed  Google Scholar 

  • Kovacs I, Ayaydin F, Oberschall A, Ipacs I, Bottka S, Pongor S, Dudits D, Toth E (1998) Immunolocalization of a novel annexin-like protein encoded by a stress and abscisic acid responsive gene in alfalfa. Plant J 15:185–197

    CAS  Article  PubMed  Google Scholar 

  • Laohavisit A, Davies JM (2011) Annexins. New Phytol 189:40–53

    CAS  Article  PubMed  Google Scholar 

  • Lee S, Lee EJ, Yang EJ, Lee JE, Park AR, Song WH, Park OH (2004) Proteomic identification of annexins, calcium-dependent membrane binding proteins that mediate osmotic stress and abscisic acid signal transduction in Arabidopsis. Plant Cell 16:1378–1391

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Li JF, Norville JE, Aach J, McCormack M, Zhang DD, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat biotechnol 31:688–691

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Liu CT, Wu YB, Wang XP (2012) bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235:1157–1169

    CAS  Article  PubMed  Google Scholar 

  • Loukehaich R, Wang T, Ouyang B, Ziaf K, Li HX, Zhang JH, Lu YG, Ye ZB (2012) SpUSP, an annexin-interacting universal stress protein, enhances drought tolerance in tomato. J Exp Bot 63: 5593–5606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mali P, Yang L, Esvelt KM, Aach J, Guell M, Dicarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339:823–826

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mikami M, Toki S, Endo M (2015a) Comparison of CRISPR/Cas9 expression constructs for efficient targeted mutagenesis in rice. Plant mol biol 88:561–572

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Mikami M, Toki S, Endo M (2015b) Parameters affecting frequency of CRISPR/Cas9 mediated targeted mutagenesis in rice. Plant Cell Rep 34:1807–1815

    CAS  Article  PubMed  Google Scholar 

  • Moss SE, Morgan RO (2004) The annexins. Genome Biol 5:219

    Article  PubMed  PubMed Central  Google Scholar 

  • Ma Y, Dai XY, Xu YY, Luo W, Zheng XM, Zeng DL, Pan YJ, Lin XL, Liu HH, Zhang DJ, Xiao J, Guo XY, Xu SJ, Niu YD, Jin JB, Zhang H, Xu X, Li LG, Wang W, Qian Q, Ge S, Chong K (2015) COLD1 confers chilling tolerance in rice. Cell 160:1209–1221

    CAS  Article  PubMed  Google Scholar 

  • Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691–693

    CAS  Article  PubMed  Google Scholar 

  • Prakash M, Gopalakrishnan N, Kang IS, Moon BY, Lee CH (2009) Effects of low temperature stress on rice (Oryza sativa L.) plastid ω-3 desaturase gene, OsFAD8 and its functional analysis using T-DNA mutants. Plant Cell 98:87–96

    Google Scholar 

  • Qiao B, Zhang Q, Liu D, Wang H, Yin JY, Wang R, He ML, Cui M, Shang ZL, Wang DK, Zhu ZG (2015) A calcium-binding protein, rice annexin OsANN1, enhances heat stress tolerance by modulating the production of H2O2. J Exp Bot 66:5853–5866

    CAS  Article  PubMed  Google Scholar 

  • Ramezani-Rad M (2003) The role of adaptor protein Ste50-dependent regulation of the MAPKKK Ste11 in multiple signalling pathways of yeast. Curr Genet 43:161–170

    CAS  PubMed  Google Scholar 

  • Rhee HJ, Kim GY, Huh JW, Kim SW, Na DS (2000) Annexin I is a stress protein induced by heat, oxidative stress and a sulfhydrylreactive agent. Eur J Biochem 267:3220–3225

    CAS  Article  PubMed  Google Scholar 

  • Rohila JS, Chen M, Chen S, Chen J, Cerny R, Dardick C, Canlas P, Xu X, Gribskov M, Kanrar S, Zhu JK, Ronald P, Fromm ME (2006) Protein–protein interactions of tandem affinity purificationtagged protein kinases in rice. Plant J 46:1–13

    CAS  Article  PubMed  Google Scholar 

  • Sasaki T, Burr B (2000) International Rice Genome Sequencing Project: the effort to completely sequence the rice genome. Curr Opin Plant Biol 3:138–141

    CAS  Article  PubMed  Google Scholar 

  • Saito K, Miura K, Nagano K, Hayano-Saito Y, Araki H, Kato A (2001) Identification of two closely linked quantitative trait loci for cold tolerance on chromosome 4 of rice and their association with anther length. Theor Appl Genet 103:862–868

    CAS  Article  Google Scholar 

  • Sang T, Ge S (2007) Genetics and phylogenetics of rice domestication. Curr Opin Genet Dev 17:533–538

    CAS  Article  PubMed  Google Scholar 

  • Shan Q, Wang Y, Li J, Zhang Y, Chen KL, Liang Z, Zhang K, Liu JX, Jeff-Xi JZ, Qiu JL, Gao CX (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31: 686–688

    CAS  Article  PubMed  Google Scholar 

  • Shen CX, Li D, He RH, Fang Z, Xia YM, Gao J, Shen H, Cao ML (2014) Comparative transcriptome analysis of RNA-Seq data for cold-tolerant and cold-sensitive rice genotypes under normal and cold stress. J Plant Biol 57:337–348

    CAS  Article  Google Scholar 

  • Singh A, Kanwar P, Yadav AK, Mishra M, Jha SK, Baranwal V, Pandey A, Kapoor S, Tyagi AK, Pandey GK (2014) Genomewide expressional and functional analysis of calcium transport elements during abiotic stress and development in rice. FEBS J 281:894–915

    CAS  Article  PubMed  Google Scholar 

  • Smyth JT, Dehaven WI, Jones BF, Mercer JC, Trebak M, Vazquez G, Putney JW (2006) Emerging perspectives in store-operated Ca2+ entry: roles of Orai, Stim and TRP. Biochim Biophys Acta 1763: 1147–1160

    CAS  Article  PubMed  Google Scholar 

  • Su CF, Wang YC, Hsieh TH, Lu CA, Tseng TH, Yu SM (2010) A Novel MYBS3-Dependent Pathway Confers Cold Tolerance in Rice. Plant Physiol 153:145–158

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K, Dangl JL, Hirt H (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:41–52

    Article  Google Scholar 

  • Toki, S (1997) Rapid and efficient Agrobacterium-mediated transformation in rice. Plant Mol Biol Rep 15:16–21

    CAS  Article  Google Scholar 

  • Toki S, Hara N, Ono K, Onodera H, Tagiri A, Oka S, Tanaka H (2006). Early infection of scutellum tissue with Agrobacterium allows high-speed transformation of rice. Plant J 47:969–976

    CAS  Article  PubMed  Google Scholar 

  • Vandeputte O, Lowe YO, Burssens S, Van RD, Hutin D, Boniver D, Geelen D, El JM, Baucher M (2007) The tobacco Ntann12 gene, encoding an annexin, is induced upon Rhodoccocus fascians infection and during leafy gall development. Mol Plant Pathol 8: 185–194

    CAS  Article  PubMed  Google Scholar 

  • Wang QY, Guan YC, Wu YR, Chen HL, Chen FL, Chu CC (2008) Over-expression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67:589–602

    CAS  Article  PubMed  Google Scholar 

  • Watkinson JI, Sioson AA, Vasquez-Robinet C, Shukla M, Kumar D, Ellis M, Heath LS, Ramakrishnan N, Chevone B, Watson LT, Zyl LV, Egertsdotter U, Sederoff RR, Grene R (2003) Photosynthetic acclimation is reflected in specific patterns of gene expression in drought-stressed loblolly pine. Plant Physiol 133:1702–1716

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wen JQ, Oono K, Imai R (2002) Two novel mitogen-activated protein signaling components, OsMEK1 and OsMAP1, are involved in a moderate low-temperature signaling pathway in rice. Plant Physiol 129:1880–1891

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  • Wang YJ, Zhang ZG, He XJ, Zhou HL, Wen YX, Dai JX, Zhang JS, Chen SY (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor Appl Genet 107:1402–1409

    CAS  Article  PubMed  Google Scholar 

  • Woo JW, Kim J, Kwon SI, Corvalán C, Cho SW, Kim H, Kim SG, Kim ST, Choe S, Kim JS (2015) DNA-free genome editing in plants with preassembled CRISPR-Cas9 ribonucleoproteins. Nature Biotechnology doi:10.1038/nbt.3389

    Google Scholar 

  • Yang CH, Li DY, Mao DH, Liu X, Ji CJ, Li XB, Zhao XF, Cheng ZK, Chen CY, Zhu LH (2013) Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.) Plant Cell Environ 36:2207–2218

    CAS  Article  PubMed  Google Scholar 

  • Yang GX, Shen SH, Yang SH, Komatsu S (2003) OsCDPK13, a calcium-dependent protein kinase gene from rice, is induced in response to cold and gibberellin. Plant Physiol Biochem 41:369–374

    CAS  Article  Google Scholar 

  • Yan HF, Luo Y, Jiang ZR, Wang F, Zhou B, Xu QJ (2015) Cloning and expression characterization of four annexin genes during germination and abiotic stress in Brassica rapa subsp. rapa ‘Tsuda’. Plant Mol Biol Rep 34:467–482

    Article  Google Scholar 

  • Yusuke S, Shingo H, Junko K, Ko S, Katsura I (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengliang Cao.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, C., Que, Z., Xia, Y. et al. Knock out of the annexin gene OsAnn3 via CRISPR/Cas9-mediated genome editing decreased cold tolerance in rice. J. Plant Biol. 60, 539–547 (2017). https://doi.org/10.1007/s12374-016-0400-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0400-1

Keywords

  • Annexins
  • Cold tolerance
  • CRISPR/Cas9
  • Rice