Skip to main content
Log in

Suppressor of bri1-120 mutant allele revealed interrelated and independent actions of brassinosteroid and light signaling

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Brassinosteroids (BRs) are plant hormones that affect diverse aspects of plant development. Various BR-biosynthetic or BR-signaling mutants contribute to BR functions and signaling events in many plant species. The BR receptor brassinosteroid-Insensitive 1 (BRI1) plays critical roles in BR signaling. We previously identified a weak bri1 mutant allele, bri1-120, that has a mutation site in the extracellular domain of BRI1. Here, genetic suppressor screening revealed that a PHYB gene mutation led to suppression of ethyl methanesulfonate (EMS)-mutagenized bri1-120. The morphology of bri1-120phyB-1 indicated that compact and rounded phenotypes of bri1-120 were suppressed. However, BR sensitivity of the bri1-120phyB-1 was only recovered in hypocotyl elongation, and overexpression of PHYB in bri1-120 did not enhance bri1-120 phenotypes. To further investigate the relationship between BR and light signalings, we examined the seed germination pattern and hypocotyl growth of bri1-120phyB-1 as compared to that of each single mutant under various light conditions. Seed germination in bri1-120phyB-1 was higher than in both the single mutants. Hypocotyl length in bri1-120phyB-1 was intermediate between that of bri1-120 and phyB-1, whereas sensitivity to red light in bri1-120phyB-1 remained the same as in phyB-1. These results suggest that BR and light signalings affect diverse cellular responses both together and independently, depending on the specific cellular processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bai MY, Shang JX, Oh E, Fan M, Bai Y, Zentella R, Sun TP, Wang ZY (2012) Brassinosteroid, gibberellin and phytochrome impinge on a common transcription module in Arabidopsis. Nature Cell Biol 14:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  CAS  PubMed  Google Scholar 

  • Choe S, Dilkes BP, Fujioka S, Takatsuto S, Sakurai A, Feldmann KA (1998) The DWF4 gene of Arabidopsis encodes a cytochrome P450 that mediates multiple 22alpha-hydroxylation steps in brassinosteroid biosynthesis. Plant Cell 10:231–243

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chory J, Nagpal P, Peto CA (1991) Phenotypic and Genetic Analysis of det2, a New Mutant That Affects Light-Regulated Seedling Development in Arabidopsis. Plant Cell 3:445–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Christie JM (2007) Phototropin blue-light receptors. Annu Rev Plant Biol 58:21–45

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD, Langford M, McMorris TC (1996) A brassinosteroidinsensitive mutant in Arabidopsis thaliana exhibits multiple defects in growth and development. Plant Physiol 111:671–678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clouse SD, Sasse JM (1998) BRASSINOSTEROIDS: Essential Regulators of Plant Growth and Development. Annu Rev Plant Physiol Plant Mol Biol 49:427–451

    Article  CAS  PubMed  Google Scholar 

  • Franklin KA, Quail PH (2010) Phytochrome functions in Arabidopsis development. J Exp Botany 61:11–24

    Article  CAS  Google Scholar 

  • Fu M, Kang HK, Son SH, Kim SK, Nam KH (2014) A subset of Arabidopsis RAV transcription factors modulates drought and salt stress responses independent of ABA. Plant Cell Physiol 55:1892–1904

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Fujioka S, Blancaflor EB, Miao S, Gou X, Li J (2010) TCP1 modulates brassinosteroid biosynthesis by regulating the expression of the key biosynthetic gene DWARF4 in Arabidopsis thaliana. Plant Cell 22:1161–1173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heschel MS, Selby J, Butler C, Whitelam GC, Sharrock RA, Donohue K (2007) A new role for phytochromes in temperature-dependent germination. New Phytol 174:735–741

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Jin H, Tzfira T, Li J (2008) Multiple mechanism-mediated retention of a defective brassinosteroid receptor in the endoplasmic reticulum of Arabidopsis. Plant Cell 20:3418–3429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins GI (2014) The UV-B photoreceptor UVR8: from structure to physiology. Plant Cell 26:21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeong YJ, Park S, Suh SJ, Il Kwon S, Cha R, Kim YE, Choe S (2016) Overexpression of the 3’ half of the PHYB partially suppresses dwarfism in the brassinosteroid-insensitive bri1-5 mutant. J Plant Biol 59:83–91

    Article  CAS  Google Scholar 

  • Jin H, Hong Z, Su W, Li JM (2009) A plant-specific calreticulin is a key retention factor for a defective brassinosteroid receptor in the endoplasmic reticulum. Pro Natl Acad Sci USA 106:13612–13617

    Article  CAS  Google Scholar 

  • Jin H, Yan Z, Nam KH, Li J (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Molecular Cell 26:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson E, Bradley M, Harberd NP, Whitelam GC (1994) Photoresponses of Light-Grown phyA Mutants of Arabidopsis (Phytochrome A Is Required for the Perception of Daylength Extensions). Plant Physiol 105:141–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang B, Wang H, Nam KH, Li JY, Li JM (2010) Activation-Tagged Suppressors of a Weak Brassinosteroid Receptor Mutant. Mol Plant 3:260–268

    Article  CAS  PubMed  Google Scholar 

  • Kim B, Jeong YJ, Corvalan C, Fujioka S, Cho S, Park T, Choe S (2014) Darkness and gulliver2/phyB mutation decrease the abundance of phosphorylated BZR1 to activate brassinosteroid signaling in Arabidopsis. Plant J 77:737–747

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim DH, Yamaguchi S, Lim S, Oh E, Park J, Hanada A, Kamiya Y, Choi G (2008) SOMNUS, a CCCH-type zinc finger protein in Arabidopsis, negatively regulates light-dependent seed germination downstream of PIL5. Plant Cell 20:1260–1277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SY, Nam KH (2010) Physiological roles of ERD10 in abiotic stresses and seed germination of Arabidopsis. Plant Cell Rep 29:203–209

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Rolff E, Spruit CJP (1980) Genetic control of lightinhibited hypocotyl elongation in Arabidopsis thaliana (L.) Heynh. Z Pflanzenphysiol 100:147–160

    Article  Google Scholar 

  • Leivar P, Quail PH (2011) PIFs: pivotal components in a cellular signaling hub. Trends Plant Sci 16:19–28

    Article  CAS  PubMed  Google Scholar 

  • Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  • Li J, Li Y, Chen S, An L (2010) Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis. J Exp Botany 61:4221–4230

    Article  CAS  Google Scholar 

  • Li J, Nagpal P, Vitart V, McMorris TC, Chory J (1996) A role for brassinosteroids in light-dependent development of Arabidopsis. Science 272:398–401

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wen J, Lease KA, Doke JT, Tax FE, Walker JC (2002) BAK1, an Arabidopsis LRR receptor-like protein kinase, interacts with BRI1 and modulates brassinosteroid signaling. Cell 110:213–222

    Article  CAS  PubMed  Google Scholar 

  • Li QH, Yang HQ (2007) Cryptochrome signaling in plants. Photochem Photobiol 83:94–101

    Article  CAS  PubMed  Google Scholar 

  • Mathur J, Molnar G, Fujioka S, Takatsuto S, Sakurai A, Yokota T, Adam G, Voigt B, Nagy F, Maas C, Schell J, Koncz C, Szekeres M (1998) Transcription of the Arabidopsis CPD gene, encoding a steroidogenic cytochrome P450, is negatively controlled by brassinosteroids. Plant J 14:593–602

    Article  CAS  PubMed  Google Scholar 

  • Mora-Garcia S, Vert G, Yin Y, Cano-Delgado A, Cheong H, Chory J (2004) Nuclear protein phosphatases with Kelch-repeat domains modulate the response to brassinosteroids in Arabidopsis. Genes Develop 18:448–460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nam KH, Li J (2002) BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110:203–212

    Article  CAS  PubMed  Google Scholar 

  • Neff MM, Nguyen SM, Malancharuvil EJ, Fujioka S, Noguchi T, Seto H, Tsubuki M, Honda T, Takatsuto S, Yoshida S, Chory J (1999) BAS1: A gene regulating brassinosteroid levels and light responsiveness in Arabidopsis. Proc Natl Acad Sci USA 96:15316–15323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Noguchi T, Fujioka S, Choe S, Takatsuto S, Yoshida S, Yuan H, Feldmann KA, Tax FE (1999) Brassinosteroid-insensitive dwarf mutants of Arabidopsis accumulate brassinosteroids. Plant Physiol 121:743–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn MH, Oliverio K, Yanovsky MJ, Casal JJ (2002) CP3 is involved in negative regulation of phytochrome A signalling in Arabidopsis. Planta 215:557–564

    Article  CAS  PubMed  Google Scholar 

  • Reed JW NP, Poole DS, Furuya M, Chory J. (1993) Mutations in the gene for the red/far-red light receptor phytochrome B alter cell elongation and physiological responses throughout Arabidopsis development. Plant Cell 5:147–157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shang Y, Lee MM, Li JM, Nam KH (2011) Characterization of cp3 reveals a new bri1 allele, bri1-120, and the importance of the LRR domain of BRI1 mediating BR signaling. BMC Plant Biol 11:8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharrock RA, Quail PH (1989) Novel phytochrome sequences in Arabidopsis thaliana: structure, evolution, and differential expression of a plant regulatory photoreceptor family. Genes Dev 3:1745–1757

    Article  CAS  PubMed  Google Scholar 

  • Steber CM, McCourt P (2001) A role for brassinosteroids in germination in Arabidopsis. Plant Physiol 125:763–769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szekeres M, Nemeth K, Koncz-Kalman Z, Mathur J, Kauschmann A, Altmann T, Redei GP, Nagy F, Schell J, Koncz C (1996) Brassinosteroids rescue the deficiency of CYP90, a cytochrome P450, controlling cell elongation and de-etiolation in Arabidopsis. Cell 85:171–182

    Article  CAS  PubMed  Google Scholar 

  • Takano M, Inagaki N, Xie XZ, Kiyota S, Baba-Kasai A, Tanabata T, Shinomura T (2009) Phytochromes are the sole photoreceptors for perceiving red/far-red light in rice. Proc Natl Acad Sci USA 106:14705–14710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turk EM, Fujioka S, Seto H, Shimada Y, Takatsuto S, Yoshida S, Wang H, Torres QI, Ward JM, Murthy G, Zhang J, Walker JC, Neff MM (2005) BAS1 and SOB7 act redundantly to modulate Arabidopsis photomorphogenesis via unique brassinosteroid inactivation mechanisms. Plant J 42:23–34

    Article  CAS  PubMed  Google Scholar 

  • Vert G, Nemhauser JL, Geldner N, Hong F, Chory J (2005) Molecular mechanisms of steroid hormone signaling in plants. Annu Rev Cell Dev Biol 21:177–201

    Article  CAS  PubMed  Google Scholar 

  • Wagner D, Tepperman JM, Quail PH (1991) Overexpression of Phytochrome B Induces a Short Hypocotyl Phenotype in Transgenic Arabidopsis. Plant Cell 3:1275–1288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang H, Zhu YY, Fujioka S, Asami T, Li JY, Li JM (2009) Regulation of Arabidopsis Brassinosteroid Signaling by Atypical Basic Helix-Loop-Helix Proteins. Plant Cell 21:3781–3791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XL, Zhang J, Yuan M, Ehrhardt DW, Wang ZY, Mao TL (2012) Arabidopsis MI CROTUBULE DESTABILIZING PROTEIN40 Is Involved in Brassinosteroid Regulation of Hypocotyl Elongation. Plant Cell 24:4012–4025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia XJ, Gao CJ, Song LX, Zhou YH, Shi K, Yu JQ (2014) Role of H2O2 dynamics in brassinosteroid-induced stomatal closure and opening in Solanum lycopersicum. Plant, Cell Environ 37:2036–2050

    Article  CAS  Google Scholar 

  • Xue LW, Du JB, Yang H, Xu F, Yuan S, Lin HH (2009) Brassinosteroids counteract abscisic acid in germination and growth of Arabidopsis. Zeitschrift fur Naturforschung C, J Biosciences 64:225–230

    CAS  Google Scholar 

  • Yamaguchi R, Nakamura M, Mochizuki N, Kay SA, Nagatani A (1999) Light-dependent translocation of a phytochrome B-GFP fusion protein to the nucleus in transgenic Arabidopsis. J Cell Biol 145:437–445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang CJ, Zhang C, Lu YN, Jin JQ, Wang XL (2011) The mechanisms of brassinosteroids’ action: from signal transduction to plant development. Mol Plant 4:588–600

    Article  CAS  PubMed  Google Scholar 

  • Zhu JY, Sae-Seaw J, Wang ZY (2013) Brassinosteroid signaling. Development 140:1615–1620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyoung Hee Nam.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Fu, M. & Nam, K.H. Suppressor of bri1-120 mutant allele revealed interrelated and independent actions of brassinosteroid and light signaling. J. Plant Biol. 59, 594–602 (2016). https://doi.org/10.1007/s12374-016-0366-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-016-0366-z

Keywords

Navigation