Skip to main content

Advertisement

Log in

Characterization of a Chlamydomonas reinhardtii mutant defective in a maltose transporter

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Microalgae are potential sources of energy and high-value materials. To decipher the process of energy metabolism in green algae, we created a mutant pool of strain CC-503 of the model green microalga Chlamydomonas reinhardtii, by random insertion of an antibiotic resistance gene, and screened the pool for lines with altered carbon metabolism. We identified a mutant that harbored the antibiotic resistance gene in CrMEX1, a putative Maltose Exporter-Like protein 1 (Cre12.g486600.t1.2). The mutant had reduced levels of CrMEX1 expression and, similarly to the Arabidopsis mex1 knockout mutant, which cannot export maltose from the chloroplast, it over-accumulated starch granules in the chloroplast. The mutant’s lipid levels were slightly higher than those of the wild type, and its initial growth kinetics were not significantly different from those of the wild type, but the mutant culture did not reach the same high cell density as the wild type in acetate-containing culture medium under continuous light. These results suggest that CrMEX1 encodes a maltose transporter protein, and that export of photoassimilates from chloroplasts is necessary for normal Chlamydomonas growth, even under continuous light with an ample supply of carbon in the form of acetate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ball SG, Dirick L, Decq A, Martiat J-C, Matagne R (1990) Physiology of starch storage in the monocellular alga Chlamydomonas reinhardtii. Plant Sci 66:1–9

    Article  CAS  Google Scholar 

  • Borkhsenious ON, Mason CB, Moroney JV (1998) The intracellular localization of ribulose-1,5-bisphosphate Carboxylase/Oxygenase in Chlamydomonas reinhardtii. Plant Physiol 116:1585–1591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Canvin DT, Beevers H (1961) Sucrose synthesis from acetate in the germinating castor bean: kinetics and pathway. J Biol Chem 236:988–995

    CAS  PubMed  Google Scholar 

  • Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Falkowski PG (1994) The role of phytoplankton photosynthesis in global biogeochemical cycles. Photosynthesis Res 39:235–258

    Article  CAS  Google Scholar 

  • Fukuzawa H, Miura K, Ishizaki K, Kucho K-i, Saito T, Kohinata T, Ohyama K (2001) Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing CO2 availability. Proc Natl Acad Sci USA 98:5347–5352

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook, Ed, Vol 2. Cambridge Univ Press

  • Heinnickel ML, Grossman AR (2013) The GreenCut: re-evaluation of physiological role of previously studied proteins and potential novel protein functions. Photosynth Res 116:427–436

    Article  CAS  PubMed  Google Scholar 

  • Hostettler C, Kolling K, Santelia D, Streb S, Kotting O, Zeeman SC (2011) Analysis of starch metabolism in chloroplasts. Methods Mol Biol 775:387–410

    Article  CAS  PubMed  Google Scholar 

  • Kang B-H (2010) Electron microscopy and high-pressure freezing of Arabidopsis. Methods Cell Biol 96:259–283

    Article  PubMed  Google Scholar 

  • Karpowicz SJ, Prochnik SE, Grossman AR, Merchant SS (2011) The GreenCut2 resource, a phylogenomically derived inventory of proteins specific to the plant lineage. J Biol Chem 286: 21427–21439

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim S, Kim H, Ko D, Yamaoka Y, Otsuru M, Kawai-Yamada M, Ishikawa T, Oh HM, Nishida I, Li-Beisson Y, Lee Y (2013) Rapid induction of lipid droplets in Chlamydomonas reinhardtii and Chlorella vulgaris by Brefeldin A. PLoS One 8: e81978

    Article  PubMed Central  PubMed  Google Scholar 

  • Kim SR, Jeon JS, An G (2011) Development of an efficient inverse PCR method for isolating gene tags from T-DNA insertional mutants in rice. Methods Mol Biol 678:139–146

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Lin H, Joo S, Goodenough U (2008) Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829–840

    Article  CAS  PubMed  Google Scholar 

  • Niittyla T, Messerli G, Trevisan M, Chen J, Smith AM, Zeeman SC (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303(5654):87–89

    Article  PubMed  Google Scholar 

  • Ramazanov Z, Rawat M, Henk MC, Mason CB, Matthews SW, Moroney JV (1994) The induction of the CO2-concentrating mechanism is correlated with the formation of the starch sheath around the pyrenoid of Chlamydomonas reinhardtii. Planta 195:210–216

    Article  CAS  Google Scholar 

  • Reynolds CS (2006) The ecology of phytoplankton, Ed, Vol Cambridge University Press

    Book  Google Scholar 

  • Ryoo N, Eom J-S, Kim H-B, Vo BT, Lee S-W, Hahn T-R, Jeon J-S (2013) Expression and functional analysis of rice plastidic maltose transporter, OsMEX1. J Korean Soc Appl Biol Chem 56:149–155

    Article  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, Ed, Vol 2. Cold spring harbor laboratory press New York

  • Schottkowski M, Peters M, Zhan Y, Rifai O, Zhang Y, Zerges W (2012) Biogenic membranes of the chloroplast in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 109:19286–19291

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shimogawara K, Fujiwara S, Grossman A, Usuda H (1998) Highefficiency transformation of Chlamydomonas reinhardtii by electroporation. Genetics 148:1821–1828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Smith AM, Zeeman SC (2006) Quantification of starch in plant tissues. Nat Protoc 1:1342–1345

    Article  CAS  PubMed  Google Scholar 

  • Sonnhammer EL, von Heijne G, Krogh A (1998) A hidden Markov model for predicting transmembrane helices in protein sequences. Proc Int Conf Intell Syst Mol Biol 6:175–182

    CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tuncay H, Findinier J, Duchene T, Cogez V, Cousin C, Peltier G, Ball SG, Dauvillee D (2013) A forward genetic approach in Chlamydomonas reinhardtii as a strategy for exploring starch catabolism. PLoS One 8:e74763

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V and Vogel HJ, Eds, Evolving Genes and Proteins, Academic Press, New York, pp 97–166

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Youngsook Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, S., Yamaoka, Y., Ko, Dh. et al. Characterization of a Chlamydomonas reinhardtii mutant defective in a maltose transporter. J. Plant Biol. 58, 344–351 (2015). https://doi.org/10.1007/s12374-015-0377-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-015-0377-1

Keywords

Navigation