Skip to main content
Log in

FaesPI, a Fagopyrum esculentum PISTILLATA ortholog, is involved only in stamen development

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Arabidopsis thaliana PISTILLATA (PI) and Antirrhinum majus GLOBOSA (GLO), encoding B function MADS-box transcription factors specifying petal and stamen identity, have been intensively studied. To identify the possible roles of GLO/PI-like genes in regulating floral development in species without petals, we isolated and identified a PI ortholog from Fagopyrum esculentum (buckwheat, Polygonaceae), a multi-food-use pseudocereal with healing benefits. Protein sequence alignment and phylogenetic analysis grouped FaesPI into the GLO/PI lineage. Expression analysis suggested that FaesPI was expressed only in developing stamens, distinguishing it from PI and GLO that were expressed in developing petals and stamens. Moreover, ectopic expression of FaesPI rescued stamen development without complementation of petal development in an Arabidopsis pi mutant. Our results suggest that FaesPI is involved only in stamen development in buckwheat. These results also suggest that FaesPI holds potential application for biotechnical engineering to establish a male sterile line of F. esculentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Álvarez-Buylla ER, Ambrose BA, Flores-Sandoval E, Englund M, Garay-Arroyo A, García-Ponce B, de la Torre-Bárcena E, Espinosa-Matías S, Martínez E, Piñeyro-Nelson A, Engström P, Meyerowitz EM (2010) B-function expression in the flower center underlies the homeotic phenotype of Lacandonia schismatica (Triuridaceae). Plant Cell 22:3543–3559

    Article  PubMed Central  PubMed  Google Scholar 

  • Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Brockington SF, Alexandre R, Ramdial J, Moore MJ, Crawley S, Dhingra A, Hilu K, Soltis DE, Soltis PS (2009) Phylogeny of the Caryophyllales sensu lato: revisiting hypotheses on pollination biology and perianth differentiation in the core Caryophyllales. Int J Plant Sci 170:627–643

    Article  Google Scholar 

  • Brockington SF, Rudall PJ, Frohlich MW, Oppenheimer DG, Soltis PS, Soltis DE (2012) ‘Living stones’ reveal alternative petal identity programs within the core eudicots. Plant J 69:193–203

    Article  CAS  PubMed  Google Scholar 

  • Cawoy V, Kinet JM, Jacquemart AL (2008) Morphology of nectaries and biology of nectar production in the distylous species Fagopyrum esculentum. Ann Bot 102:675–684

    Article  PubMed Central  PubMed  Google Scholar 

  • Cawoy V, Ledent JF, Kinet JM, Jacquemart AL (2009) Floral biology of common buckwheat (Fagopyrum esculentum Moench). Eur J Plant Sci Biotechnol 3:1–9

    Google Scholar 

  • Chang YY, Kao NH, Li JY, Hsu WH, Liang YL, Wu JW, Yang CH (2010) Characterization of the possible roles for B class MADS box genes in regulation of perianth formation in orchid. Plant Physiol 152:837–853

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen MK, Hsieh WP, Yang CH (2012) Functional analysis reveals the possible role of the C-terminal sequences and PI motif in the function of lily (Lilium longiflorum) PISTILLATA (PI) orthologues. J Exp Bot 63:941–961.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  CAS  PubMed  Google Scholar 

  • Coen ES, Meyerowitz E M (1991) The war of the whorls: genetic interactions controlling flower development. Nature 353:31–37

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Cartolano M, Schwarz-Sommer Z (2006) Flower development: The Antirrhinum Perspective. Adv Bot Res 44:279–320

    Article  CAS  Google Scholar 

  • de Oliveira RR, Cesarino I, Mazzafera P, Dornelas MC (2014) Flower development in Coffea arabica L.: new insights into MADS-box genes. Plant Reprod 27:79–94.

    Article  PubMed  Google Scholar 

  • Goto K, Meyerowitz EM (1994) Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev 8:1548–1560

    Article  CAS  PubMed  Google Scholar 

  • Fang ZW, Qi R, Li XF, Liu ZX (2014) Ectopic expression of FaesAP3, a Fagopyrum esculentum (Polygonaceae) AP3 orthologous gene rescues stamen development in an Arabidopsis ap3 mutant. Gene 550:200–206

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hofer KA, Ruonala R, Albert VA (2012) The double-corolla phenotype in the Hawaiian lobelioid genus Clermontia involves ectopic expression of PISTILLATA B-function MADS box gene homologs. Evodevo 3:26

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jack T, Brockman LL, Meyerowitz EM (1992) The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68:683–697

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Yoo MJ, Albert VA, Farris JS, Soltis PS, Soltis DE (2004) Phylogeny and diversification of B-function MADS-box genes in angiosperms: evolutionary and functional implications of a 260-millionyear-old duplication. Am J Bot 91:2102–2118

    Article  CAS  PubMed  Google Scholar 

  • Kramer EM, Irish VF (2000) Evolution of the petal and stamen developmental programs: evidence from comparative studies of the lower eudicots and basal angiosperms. Int J Plant Sci 161: S29–S40

    Article  Google Scholar 

  • Kramer EM, Su HJ, Wu CC, Hu JM (2006) A simplified explanation for the frameshift mutation that created a novel C-terminal motif in the Apetala3 gene lineage. BMC Evol Biol 6:30

    Article  PubMed Central  PubMed  Google Scholar 

  • Kramer EM, Dorit RL, Irish VF (1998) Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765–783

    PubMed Central  CAS  PubMed  Google Scholar 

  • Krizek BA, Fletcher JC (2005) Molecular mechanisms of flower development: an armchair guide. Nat Rev Genet 6:688–698

    Article  CAS  PubMed  Google Scholar 

  • Lamb RS, Irish VF (2003) Functional divergence within the APETALA3/PISTILLATA floral homeotic gene lineages. Proc Natl Acad Sci U S A 100:6558–6563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee HL, Irish VF (2011) Gene duplication and loss in a MADS box gene transcription factor circuit. Mol Biol Evol 28:3367–3380

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Sun Y, Du X, Xu Q, Wu F, Meng Z (2013) Analysis of the APETALA3- and PISTILLATA-like genes in Hedyosmum orientale (Chloranthaceae) provides insight into the evolution of the floral homeotic B-function in angiosperms. Ann Bot 112:1239–1251

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lü S, Fan Y, Liu L, Liu S, Zhang W, Meng Z (2010) Ectopic expression of TrPI, a Taihangia rupestris (Rosaceae) PI ortholog, causes modifications of vegetative architecture in Arabidopsis. J Plant Physiol 167:1613–1621

    Article  PubMed  Google Scholar 

  • Ma H, de Pamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8

    Article  CAS  PubMed  Google Scholar 

  • Melzer R, Harter A, Rumpler F, Kim S, Soltis PS, Soltis DE, Theißen G (2014) DEF- and GLO-like proteins may have lost most of their interaction partners during angiosperm evolution. Ann Bot 114:1431–1443

    Article  PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revied media for rapid growth and bioassay with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF (2000) B and C foral organ identity functions require SEPALLATA MADSbox genes. Nature 405:200–203

    Article  CAS  PubMed  Google Scholar 

  • Piwarzyk E, Yang YZ, Jack T (2007) Conserved C-terminal motifs of the Arabidopsis proteins APETALA3 and PISTILLATA are dispensable for floral organ identity function. Plant Physiol 145: 1495–1505

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Whipple CJ, Ciceri P, Padilla CM, Ambrose BA, Bandong SL, Schmidt RJ (2004) Conservation of B-class floral homeotic gene function between maize and Arabidopsis. Development 131:6083–6091

    Article  CAS  PubMed  Google Scholar 

  • Wuest SE, O'Maoileidigh DS, Rae L, Kwasniewska K, Raganelli A, Hanczaryk K, Lohan AJ, Loftus B, Graciet E, Wellmer F (2012) Molecular basis for the specification of floral organs by APETALA3 and PISTILLATA. Proc Natl Acad Sci U S A 109:13452–13457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yang Y, Jack T (2004) Defining subdomains of the K domain important for protein-protein interactions of plant MADS proteins. Plant Mol Biol 55:45–59

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Xiang H, Jack T (2003) pistillata-5, an Arabidopsis B class mutant with strong defects in petal but not in stamen development. Plant J 33:177–88

    Article  CAS  PubMed  Google Scholar 

  • Zahn LM, Feng BM, Ma H (2006) Beyond the ABC-Model: Regulation of floral homeotic genes. Adv Bot Res 44:164–196

    Google Scholar 

  • Zhang JS, Li Z, Zhao J, Zhang S, Quan H, Zhao M, He C (2014) Deciphering the Physalis floridana double-layered-lantern1 mutant provides insights into functional divergence of the GLOBOSA duplicates within the Solanaceae. Plant Physiol 164:748–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-Xiong Liu.

Additional information

Contributed equally to this work: Zheng-wu Fang and Xueping Li

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, ZW., Li, XP., Li, XF. et al. FaesPI, a Fagopyrum esculentum PISTILLATA ortholog, is involved only in stamen development. J. Plant Biol. 58, 102–109 (2015). https://doi.org/10.1007/s12374-014-0390-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0390-9

Keywords

Navigation