Skip to main content
Log in

Functional characterization of a chloroplast-targeted RNA-binding protein CRP1 in Arabidopsis thaliana under abiotic stress conditions

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Although recent analysis of proteomes in specific cellular organelles of plants has demonstrated that more than 2,000 nuclear-encoded proteins are targeted to the chloroplast, the physiological functions of a majority of the proteins in chloroplasts are largely unknown. Here, we investigated the functional role of a chloroplast-targeted RNA-binding protein in Arabidopsis thaliana (At4g20030), designated CRP1 (for chloroplast-targeted ṞNA-binding protein1), during seed germination and seedling growth under different light environments and various stress conditions. Confocal analysis of subcellular localization of CRP1-GFP fusion protein revealed that CRP1 protein is localized to the chloroplast. The T-DNA insertion loss-offunction crp1 mutant displayed poorer seedling growth than the wild-type plants under UV and high temperature stress conditions. Germination of crp1 mutant seeds was delayed compared with that of the wild-type seeds under cold or salt stress but not under dehydration stress conditions. The transgenic Arabidopsis plants that overexpress CRP1 showed better root and hypocotyl growth than wild type under heat stress conditions. Taken together, these results suggest that the chloroplast-targeted CRP1 plays a role in seed germination and seedling growth under UV, heat, cold, or salt stress but not under dehydration stress conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ambrosone A, Costa A, Leone A, Grillo S (2012) Beyond transcription: RNA-binding proteins as emerging regulators of plant response to environmental constraints. Plant Sci 182:12–1.

    Article  CAS  PubMed  Google Scholar 

  • Asakura Y, Galarneau E, Watkins KP, Barkan A, van Wijk KJ (2012) Chloroplast RH3 DEAD box RNA helicases in maize and Arabidopsis function in splicing of specific group II introns and affect chloroplast ribosome biogenesis. Plant Physiol 159:961–97.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum inltration. Methods Mol Biol 82:259–26.

    CAS  PubMed  Google Scholar 

  • Bhaskaran H, Russell R (2007) Kinetic redistribution of native and misfolded RNAs by a DEAD-box chaperone. Nature 449:1014–101.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • del Campo M, Mohr S, Jiang Y, Jia HJ, Jankowsky E, Lambowitz AM (2009) Unwinding by local strand separation is critical for the function of DEAD-box proteins as RNA chaperones. J Mol Biol 389:674–69.

    Article  PubMed Central  PubMed  Google Scholar 

  • Chi W, He B, Mao J, Li Q, Ma J, Ji D, Zou M, Zhang L (2012) The function of RH22, a DEAD RNA helicase, in the biogenesis of the 50S ribosomal subunits of Arabidopsis chloroplasts. Plant Physiol 158:693–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gu L, Xu T, Lee K, Lee KH, Kang H (2014) A chloroplast-localized DEAD-box RNA helicaseAtRH3 is essential for intron splicing and plays an important role in the growth and stress response in Arabidopsis thaliana. Plant Physiol Biochem 82:309–31.

    Article  CAS  PubMed  Google Scholar 

  • Halls C, Mohr S, del Campo M, Yang Q, Jankowsky E, Lambowitz AM (2007) Involvement of DEAD-box proteins in group I and group II intron splicing. Biochemical characterization of Mss116p, ATP hydrolysis-dependent and-independent mechanisms, and general RNA chaperone activity. J Mol Biol 365:835–85.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jacobs J, Kück U (2011) Function of chloroplast RNA-binding proteins. Cell Mol Life Sci 68:735–74.

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Kang H (2014) The Arabidopsis U11/U12-65K is an indispensible component of minor spliceosome and plays a crucial role in U12 intron splicing and plant development. Plant J 78:799–81.

    Article  CAS  PubMed  Google Scholar 

  • Jung HJ, Park SJ, Kang H (2013) Regulation of RNA metabolism in plant development and stress responses. J Plant Biol 56:123–12.

    Article  CAS  Google Scholar 

  • Kang H, Park SJ, Kwak KJ (2013) Plant RNA chaperones in stress response. Trends Plant Sci 18:100–10.

    Article  CAS  PubMed  Google Scholar 

  • Kim JS, Jung HJ, Lee HJ, Kim KA, Goh CH, Woo YM, Oh SH, Han YS, Kang H. (2008) Glycine-rich RNA-binding protein 7 affects abiotic stress responses by regulated stomata opening and closing in Arabidopsis thaliana. Plant J 55:455–46.

    Article  CAS  PubMed  Google Scholar 

  • Kim WY, Jung HJ, Kwak KJ, Kim MK, Oh SH, Han Y, Kang H (2010) The Arabidopsis U12-type spliceosomal protein U11/U12-31K is involved in U12 intron splicing via RNA chaperone activity and affects plant development. Plant Cell 22:3951–396.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kupsch C, Ruwe H, Gusewski S, Tillich M, Small I, Schmitz-Linneweber C (2012) Arabidopsis chloroplast RNA binding proteins CP31A and CP29A associate with large transcript pools and confer cold stress tolerance by influencing multiple chloroplast RNA processing steps. Plant Cell 24:4266–428.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kwak KJ, Jung HJ, Lee KH, Kim YS, Kim WY, Ahn SJ, Kang H (2012) The minor spliceosomal protein U11/U12-31K is an RNA chaperone crucial for U12 intron splicing and the development of dicot and monocot plants. PLoS ONE 7:e43707 1–7

    Article  Google Scholar 

  • Lee K, Lee HJ, Kim DH, Jeon Y, Pai H-S, Kang H (2014a) A nuclearencoded chloroplast protein harboring a single CRM domain plays an important role in the Arabidopsis growth and stress response. BMC Plant Biol 14:98

    Article  PubMed Central  PubMed  Google Scholar 

  • Lee KH, Park J, Williams DS, Xiong Y, Hwang I, Kang BH (2013) Defective chloroplast development inhibits maintenance of normal levels of abscisic acid in a mutant of the Arabidopsis RH3 DEAD-box protein during early post-germination growth. Plant J 73:720–73.

    Article  CAS  PubMed  Google Scholar 

  • Lee SY, Seok HY, Tarte VN, Woo DH, Le DH, Lee EH, Moon YH. (2014b) The Arabidopsis chloroplast protein S-RBP11 is involved in oxidative and salt stress responses. Plant Cell Rep 33:837–84.

    Article  CAS  PubMed  Google Scholar 

  • Lorkoviæ ZJ (2009) Role of plant RNA-binding proteins in development, stress response and genome organization. Trends Plant Sci 14:229–23.

    Article  Google Scholar 

  • Mohr S, Stryker JM, Lambowitz AM (2002) A DEAD-box protein functions as an ATP-dependent RNA chaperone in group I intron splicing. Cell 109:769–77.

    Article  CAS  PubMed  Google Scholar 

  • Nishimura K, Ashida H, Ogawa T, Yokota A (2010) A DEAD box protein is required for formation of a hidden break in Arabidopsis chloroplast 23S rRNA. Plant J 63:766–77.

    Article  CAS  PubMed  Google Scholar 

  • Olinares PD, Ponnala L, van Wijk KJ (2010) Megadalton complexes in the chloroplast stroma of Arabidopsis thaliana characterized by size exclusion chromatography, mass spectrometry, and hierarchical clustering. Mol Cell Proteom 9:1594–161.

    Article  CAS  Google Scholar 

  • Peltier JB, Cai Y, Sun Q, Zabrouskov V, Giacomelli L, Rudella A, Ytterberg AJ, Rutschow H, van Wijk KJ (2006) The oligomeric stromal proteome of Arabidopsis thaliana chloroplasts. Mol Cell Proteom 5:114–13.

    Article  CAS  Google Scholar 

  • Phadtare S, Alsina J, Inouye M (1999) Cold-shock response and coldshock proteins. Curr Opin Microbiol 2:175–18.

    Article  CAS  PubMed  Google Scholar 

  • Rajkowitsch L, Chen D, Stampf S, Semrad K, Waldsich C, Mayer O, Jantsch MF, Konrat R, Blçsi U, Schroeder R (2007) RNA chaperones, RNA annealers and RNA helicases. RNA Biol 4:118–13.

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Small I (2008) Pentatricopeptide repeat proteins: A socket set for organelle gene expression. Trends Plant Sci 13:663–67.

    Article  CAS  PubMed  Google Scholar 

  • Semrad K (2011) Proteins with RNA chaperone activity: A world of diverse proteins with a common task-Impediment of RNA misfolding. Biochem Res Int ID532908:1–1.

    Article  Google Scholar 

  • Sharma MR, Donhofer A, Barat C, Marquez V, Datta PP, Fucini P, Wilson DN, Agrawal RK (2010) PSRP1 is not a ribosomal protein, but a ribosome-binding factor that is recycled by the ribosome-recycling factor (RRF) and elongation factor G (EFG). J Biol Chem 285:4006–401.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP, Barat C, Schluenzen F, Fucini P, Agrawal RK (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastidspecific ribosomal proteins. Proc Natl Acad Sci USA 104: 19315–1932.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shiina T, Tsunoyama Y, Nakahira Y, Khan MS. (2005) Plastid RNA polymerases, promoters, and transcription regulators in higher plants. Int Rev Cytol 244:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Singleton MR, Dillingham MS, Wigley DB (2007) Structure and mechanism of helicases and nucleic acid translocases. Ann Rev Biochem 76:23–5.

    Article  CAS  PubMed  Google Scholar 

  • Stern DB, Goldschmidt-Clermont M, Hanson MR (2010) Chloroplast RNA metabolism. Ann Rev Plant Biol 61:125–15.

    Article  CAS  Google Scholar 

  • Tan JJ, Tan ZH, Wu FQ, Sheng PK, Heng YQ, Wang XH, Ren YL, Wang JL, Guo XP, Zhang X, Cheng ZJ, Jiang L, Liu XM, Wang HY, Wan JM (2014) A novel chloroplast-localized pentatricopeptide repeat protein involved in splicing affects chloroplast development and abiotic stress response in rice. Mol Plant doi:10.1093/mp/ssu054

    Google Scholar 

  • Tanner NK, Linder P (2001) DExD/H box RNA helicases: from generic motors to specific dissociation functions. Mol Cell 8:251–26.

    Article  CAS  PubMed  Google Scholar 

  • Tiller N, Weingartner M, Thiele W, Maximova E, Schottler MA, Bock R (2012) The plastid-specific ribosomal proteins of Arabidopsis thaliana can be divided into non-essential proteins and genuine ribosomal proteins. Plant J 69:302–31.

    Article  CAS  PubMed  Google Scholar 

  • Xia B, Ke H, Inouye M (2001) Acquirement of cold sensitivity by quadruple deletion of the cspA family and its suppression by PNPase S1 domain in Escherichia coli. Mol Microbiol 40:179–18.

    Article  CAS  PubMed  Google Scholar 

  • Xu T, Lee K, Gu L, Lim J-I, Kang H (2013). Functional characterization of a plastid-specific ribosomal protein PSRP2 in Arabidopsis thaliana under abiotic stress conditions. Plant Physiol Biochem 73:405–41.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins: Identification of all the proteins in the 30S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–2846.

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins: Identification of all the proteins in the 50S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–2848.

    Article  CAS  PubMed  Google Scholar 

  • Zybailov B, Rutschow H, Friso G, Rudella A, Emanuelsson O, Sun Q, van Wijk KJ (2008) Sorting signals, N-terminal modifications and abundance of the chloroplast proteome. PLoS ONE 3:e1994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hunseung Kang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Sy, N.D., Lee, H.J. et al. Functional characterization of a chloroplast-targeted RNA-binding protein CRP1 in Arabidopsis thaliana under abiotic stress conditions. J. Plant Biol. 57, 349–356 (2014). https://doi.org/10.1007/s12374-014-0372-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0372-y

Keywords

Navigation