Skip to main content
Log in

Increased expression of mitochondria-localized carbonic anhydrase activity resulted in an increased biomass accumulation in Arabidopsis thaliana

  • Original Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the interconversion of CO2 and HCO3 - and plays an important role in photosynthetic carbon assimilation. We report that the effect of manipulating AtβCA6 expression on the growth and biomass accumulation of Arabidopsis thaliana shows that AtβCA6 was expressed in mitochondria. Overexpression of AtβCA6 increased the fresh weight, dry weight and rosette leaf area and it was also linked to a slight decrease in the rate of respiration. By contrast, when the respiration rate in the AtβCA6 knock-out mutant SALK_065611 increased, the fresh weight, dry weight and rosette leaf area decreased. The expression level of AtβCA6 mainly affected the expression of the genes that were related to metabolism, photosynthesis and respiration. We discuss these data with respect to a potential role of AtβCA6 in refixation of CO2 released from respiration and its potential as an option to increase biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkin OK, Westbeek MHM, Cambridge ML, Lambers H, Pons TL (1997) Leaf respiration in light and darkness. Plant Physiol 113:961–96.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixedeffects models using Eigen and S4. R package version 1.1–7

    Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip:a simplied method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–74.

    Article  CAS  PubMed  Google Scholar 

  • Eriksson M, Karlsson J, Ramazanov Z, Gardeström P, Samuelsson G (1996) Discovery of an algal mitochondrial carbonic anhydrase: molecular cloning and characterization of a low-CO2-induced polypeptide in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 93:12031–1203.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J EXP BOT 60:2235–224.

    Article  CAS  PubMed  Google Scholar 

  • Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D (2007) Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ 30:617–62.

    Article  CAS  PubMed  Google Scholar 

  • Ferreira FJ, Guo C, Coleman JR (2008) Reduction of plastid-localized carbonic anhydrase activity results in reduced Arabidopsis seedling survivorship. Plant Physiol 147:585–59.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–213.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Graham D, Reed ML, Patterson BD, Hockley DG, Dwyer MR (1984) Chemical properties, distribution, and physiology of plant and algal carbonic anhydrases. Ann NY Acad Sci 429:222–23.

    Article  CAS  PubMed  Google Scholar 

  • Hewett-Emmett D (2000) Evolution and distribution of the carbonic anhydrase gene families. The Carbonic Anhydrases. Ed. Chegwidden WR, Carter ND, Edwards YH. 90:29–7.

    Article  CAS  Google Scholar 

  • Hewett-Emmett D, Tashian RE (1996) Functional Diversity, Conservation, and Convergence in the Evolution of the α-,β-, and γ-Carbonic Anhydrase Gene Families. Mol Phylogenet Evol 5:50–7.

    Article  CAS  PubMed  Google Scholar 

  • Hou L, Chen L, Wang J, Xu D, Dai L, Zhang H, Zhao Y (2012) Construction of stress responsive synthetic promoters and analysis of their activity in transgenic Arabidopsis thaliana. Plant Mol Biol Rep 30:1496–150.

    Article  CAS  Google Scholar 

  • Hu H, Boisson-Dernier A, Israelsson-Nordstrom M, Bohmer M, Xue S, Ries A, Godoski J, Kuhn JM, Schroeder JI (2010) Carbonic anhydrases are upstream regulators of CO2-controlled stomatal movements in guard cells. Nat Cell Biol 12:87–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kocabek T, Repkova J, Dudova M, Hoyerova K, Vrba L (2006) Isolation and characterization of a novel semi-lethal Arabidopsis thaliana mutant of gene for pentatricopeptide (PPR) repeatcontaining protein. Genetica 128:395–40.

    Article  CAS  PubMed  Google Scholar 

  • Kraus E, Lambers H (2001) Leaf and root respiration of Lolium perenne populations selected for contrasting leaf respiration rates are affected by intra- and interpopulation interactions. Plant Soil 231:267–27.

    Article  CAS  Google Scholar 

  • Majeau N, Coleman JR (1996) Effect of CO2 concentration on carbonic anhydrase and ribulose-1,5-bisphosphate carboxylase/oxygenase expression in pea. Plant Physiol 112:569–57.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Martin V, Villarreal F, Miras I, Navaza A, Haouz A, González-Lebrero RM, Kaufman SB, Zabaleta E (2009) Recombinant plant gamma carbonic anhydrase homotrimers bind inorganic carbon. FEBS letters 583:3425–3430.

    Article  CAS  PubMed  Google Scholar 

  • Moroney JV, Bartlett SG, Samuelsson G (2001) Carbonic anhydrases in plants and algae. Plant Cell Environ 24:141–15.

    Article  CAS  Google Scholar 

  • Murashige T and Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plantarum 15: 473–49.

    Article  CAS  Google Scholar 

  • Parisi G, Perales M, Fornasari MS, Colaneri A, González-Schain N, Gómez-Casati D, Zimmermann S, Brennicke A, Araya A, Ferry JG, Echave J, Zabaleta E (2004) Gamma carbonic anhydrases in plant mitochondria. Plant Mol Biol 55:193–20.

    Article  CAS  PubMed  Google Scholar 

  • Perales M, Eubel H, Heinemeyer J, Colaneri A, Zabaleta E, Braun H (2005) Disruption of a nuclear gene encoding a mitochondrial gamma carbonic anhydrase reduces complex I and supercomplex I + III2 levels and alters mitochondrial physiology in Arabidopsis. J Mol Biol 350:263–27.

    Article  CAS  PubMed  Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Poorter H, Remkes C (1990) Leaf area ratio and net assimilation rate of 24 wild species differing in relative growth rate. Oecologia 83:553–55.

    Article  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A, Badger MR (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193:331–34.

    Article  CAS  Google Scholar 

  • Raines CA, Horsnell PR, Holder C, Lloyd JC (1992) Arabidopsis thaliana carbonic anhydrase: cDNA sequence and effect of CO2 on mRNA levels. Plant Mol Biol 20:1143–114.

    Article  CAS  PubMed  Google Scholar 

  • Raven J (2001) A role for mitochondrial carbonic anhydrase in limiting CO2 leakage from low CO2-grown cells of Chlamydomonas reinhardtii. Plant Cell Environ 24:261–26.

    Article  CAS  Google Scholar 

  • Reich PB, Walters MB, Tjoelker MG, Vanderklein D, Buschena C (1998) Photosynthesis and respiration rates depend on leaf and root morphology and nitrogen concentration in nine boreal tree species differing in relative growth rate. Funct Ecol 12:395–40.

    Article  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–14.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shang Y, Yan L, Liu ZQ, Cao Z, Chao Mei, Xin Q, Wu FQ, Wang XF, Du SY, Jiang T, Zhang XF, Zhao R, Sun HL, Liu R, Yu YT, Zhang DP (2010) The Mg-chelatase H subunit of Arabidopsis antagonizes a group of transcription repressors to relieve ABAresponsive genes of inhibition. Plant Cell 22:1909–193.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sharkey TD (1988) Estimating the rate of photorespiration in leaves. Physiol Plantarum 73:147–15.

    Article  CAS  Google Scholar 

  • Sharmanatu P, Ghildiyal MC (2005) Potential targets for improving photosynthesis and crop yield. Curr Sci 88:1918–192.

    CAS  Google Scholar 

  • Stitt M (1999) Nitrate regulation of metabolism and growth. Curr Opin Plant Biol 2:178–18.

    Article  CAS  PubMed  Google Scholar 

  • Thimm O, Blasing O, Gibon Y, Nagel A, Meyer S, Kruger P, Selbig J, Muller LA, Rhee SV, Stitt M (2004) MAPMAN: a user-driven tool to display genomics datasets onto diagrams of metabolic pathways and other biological processes. Plant J 37:914–93.

    Article  CAS  PubMed  Google Scholar 

  • Hothorn T, Bretz F, Westfall P (2008) Simultaneous Inference in General Parametric Models. Biometrical J 50:346–36.

    Article  Google Scholar 

  • Trapnell C, Pachter L, Salzberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–111.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Villarejo A, Buren S, Larsson S, Dejardin A, Monne M, Rudhe C, Karlsson J, Jansson S, Lerouge P, Rolland N, Heijne G, Grebe M, Bako L, Samuelsson G (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–123.

    Article  PubMed  Google Scholar 

  • von Caemmerer S (2000) Biochemical Models of Leaf Photosynthesis. CSIRO Publishing, Canberra, Australia

    Google Scholar 

  • von Caemmerer S, Quinn V, Hancock NC, Price GD, Furbank RT, Ludwig M (2004) Carbonic anhydrase and C4 photosynthesis a transgenic analysis. Plant Cell Environ 27:697–70.

    Article  Google Scholar 

  • Walker BJ, Cousins AB (2013) Influence of temperature on measurements of the CO2 compensation point: differences between the Laisk and O2-exchange methods. J EXP BOT 64:1893–190.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson D and Jones JG (1982) Effect of selection for dark respiration rate of mature leaves on crop yields of Lolium perenne cv. S23. Ann Bot 49:313–32.

    Google Scholar 

  • Winzeler M, McCullough DE, Hunt LA (1989). Leaf gas exchange and plant growth of winter rye, triticale, and wheat under contrasting temperature regimes. Crop Sci 29:1256–126.

    Article  Google Scholar 

  • Xu JJ, Li YY, Ma XL, Ding JF, Wang K, Wang SS, Tian Y, Zhang H, Zhu XG (2013) Whole transcriptome analysis using next-generation sequencing of model species Setaria viridisto support C4 photosynthesis research. Plant Mol Biol 83:77–8.

    Article  CAS  PubMed  Google Scholar 

  • Zabaleta E, Martin MV, Braun HP (2012) A basal carbon concentrating mechanism in plants? Plant Sci 187:97–10.

    Article  CAS  PubMed  Google Scholar 

  • Zhang JX, Wang C, Yang CY, Wang JY, Chen L, Bao XM, Zhao YX, Zhang H, Liu J (2010) The role of Arabidopsis AtFes1A in cytosolic Hsp70 stability and abiotic stress tolerance. Plant J 62:539–54.

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Current Opin Biotechnol 19:153–5.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xinguang Zhu or Yanxiu Zhao.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, C., Tholen, D., Xu, J.M. et al. Increased expression of mitochondria-localized carbonic anhydrase activity resulted in an increased biomass accumulation in Arabidopsis thaliana . J. Plant Biol. 57, 366–374 (2014). https://doi.org/10.1007/s12374-014-0330-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-014-0330-8

Keywords

Navigation