Skip to main content
Log in

Molecular sensors for plant immunity; pattern recognition receptors and race-specific resistance proteins

  • Review Article
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants have to molecularly sense invasions from pathogenic microbes to activate their built-in immune responses. There are two different types of sensor proteins, called immune receptors. They are the indispensible molecular instruments to perceive non-self molecules derived from microbes. A genetic defect of the immune receptors fails to activate immune responses, consequently resulting in disease susceptibility. In general, membrane-bound immune receptors, known to be pattern recognition receptors and exposed on the outside of the cell, recognize microbe-associated molecular patterns from pathogens. Intracellular immune receptors, also called plant disease resistance proteins, directly perceive pathogen-derived effectors or indirectly recognize the effector-mediated modification of host proteins inside the cells. In this review, we introduce the classes and functions of pattern recognition receptors that were molecularly identified so far. Additionally, we summarize recent progresses in structural functions and molecular dynamics of the plant disease resistance proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ade J, DeYoung BJ, Golstein C, Innes RW (2007) Indirect activation of a plant nucleotide binding site-leucine-rich repeat protein by a bacterial protease. Proc Natl Acad Sci USA 104:2531–2536

    PubMed  CAS  Google Scholar 

  • Albrecht M, Takken FLW (2006) Update on the domain architectures of NLRs and R proteins. Biochem Biophys Res Commun 339: 459–462

    PubMed  CAS  Google Scholar 

  • Ashikawa I, Hayashi N, Yamane H, Kanamori H, Wu J, Matsumoto T, Ono K, Yano M (2008) Two adjacent nucleotide-binding siteleucine-rich repeat class genes are required to confer Pikmspecific rice blast resistance. Genetics 180:2267–2276

    PubMed  CAS  Google Scholar 

  • Axtell MJ, Staskawicz BJ (2003) Initiation of RPS2-specified disease resistance in Arabidopsis is coupled to the AvrRpt2-directed elimination of RIN4. Cell 113:369–377

    Google Scholar 

  • Bai S, Liu J, Chang C, Zhang L, Maekawa T, Wang Q, Xiao W, Liu Y, Chai J, Takken FLW, Schulze-Lefert P, Shen Q (2012) Structure-function analysis of barley NLR immune receptor MLA10 reveals its cell compartment specific activity in cell death and disease resistance. PLoS Pathog 8:e1002752

    PubMed  CAS  Google Scholar 

  • Bar M, Avni A (2009) EHD2 inhibits ligand-induced endocytosis and signaling of the leucine-rich repeat receptor-like protein LeEix2. Plant J 59:600–611

    PubMed  CAS  Google Scholar 

  • Belkhadir Y, Nimchuk Z, Hubert DA, Mackey DA, Dangl JL (2004) Arabidopsis RIN4 negatively regulates disease resistance mediated by RPS2 and RPM1 downstream or independent of the NDR1 signal modulator and is not required for the virulence functions of bacterial type III effectors AvrRpt2 or AvrRpm1. Plant Cell 16:2822–2835

    PubMed  CAS  Google Scholar 

  • Bendahmane A, Farnham G, Moffett P, Baulcombe DC (2002) Constitutive gain-of-function mutants in a nucleotide binding site-leucine-rice repeat protein encoded at the Rx locus of potato. Plant J 32:195–204

    PubMed  CAS  Google Scholar 

  • Bernoux M, Ellis JG, Dodds PN (2011) New insight in plant immunity signaling activation. Curr Opin Plant Biol 14:512–518

    PubMed  CAS  Google Scholar 

  • Bernoux M, Ve T, Williams S, Warren C, Hatters D, Valkov E, Zhang X, Ellis J, Kobe B, Dodds PN (2011) Structural and functional analysis of a plant resistance protein TIR domains reveals interfaces for self-association, signaling, and autoregulation. Cell Host Microbe 9:200–211

    PubMed  CAS  Google Scholar 

  • Bisgrove SR, Simonich MT, Smith NM, Sattler A, Innes RW (1994) A disease resistance gene in Arabidopsis with specificity for two different pathogen avirulence genes. Plant Cell 6:927–933

    PubMed  CAS  Google Scholar 

  • Boller T, Felix G (2009) A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 60:379–406

    PubMed  CAS  Google Scholar 

  • Boyes DC, Nam J, Dangl JL (1998) The Arabidopsis thaliana RPM1 disease resistance gene product is a peripheral plasma membrane protein that is degraded coincident with the hypersensitive response. Proc Natl Acad Sci USA 95:15849–15854

    PubMed  CAS  Google Scholar 

  • Cannon SB, Zhu H, Baumgarten AM, Spangler R, May G, Cook DR, Young ND (2002) Diversity, distribution, and ancient taxonomic relationships within the TIR and non-TIR NBS-LRR resistance gene subfamilies. J Mol Evol 54:548–562

    PubMed  CAS  Google Scholar 

  • Caplan JL, Mamillapalli P, Burch-Smith TM, Czymmek K, Dinesh-Kumar SP (2008) Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132:449–462

    PubMed  CAS  Google Scholar 

  • Cavatorta JR, Savage AE, Yeam I, Gray SM, Jahn MM (2008) Positive Darwinian selection at single amino acid sites conferring plant virus resistance. J Mol Evol 67:551–559

    PubMed  CAS  Google Scholar 

  • Cesari S, Thilliez G, Ribot C, Chalvon V, Michel C, Jauneau A, Rivas S, Alaux L, Kanzaki H, Okuyama Y, Morel J-B, Fournier E, Tharreau D, Terauchi R, Kroj T (2013) The rice resistance protein pair RGA4/RGA5 recognizes the Magnaporthe oryzae effectors AVR-Pia ad AVR1-CO39 by direct binding. Plant Cell 25:1463–1481

    PubMed  CAS  Google Scholar 

  • Chan SL, Low LY, Hsu S, Li S, Liu T, Santelli E, Le Negrate G, Reed JC, Woods VL, Psacual J (2009) Molecular mimicry in innate immunity: crystal structure of a bacterial TIR domain. J Biol Chem 284:21386–21392

    PubMed  CAS  Google Scholar 

  • Chan SL, Mukasa T, Santelli E, Low LY, Pascual, J (2010) The crystal structure of a TIR domain from Arabidopsis thaliana reveals a conserved helical region unique to plants. Protein Sci 19:155–161

    PubMed  CAS  Google Scholar 

  • Chang JH, Rathjen JP, Bernal AJ, Staskawicz BJ, Michelmore RW (2000) avrPto enhances growth and necrosis caused by Pseudomonas syringae pv. tomato in tomato lines lacking either Pto or Prf. Mol Plant-Microbe Interact 13:568–571

    PubMed  CAS  Google Scholar 

  • Dangl JL, Jones, JDG (2001) Plant pathogens and integrated defense responses to infection. Nature 411:826–833

    PubMed  CAS  Google Scholar 

  • Dardick C, Ronald P (2006) Plant and animal pathogen recognition receptors signal through non-RD kinases. PLoS Pathog 2:e2

    PubMed  Google Scholar 

  • Dempsey DA, Klessig DF (2012) SOS-too many signals for systemic acquired resistance? Trends Plant Sci 17:538–545

    PubMed  CAS  Google Scholar 

  • Deslandes L, Olivier J, Peeters N, Feng DX, Khounlotham M, Boucher C, Somssich I, Genin S, Marco Y (2003) Physical interaction between RRS1-R, a protein conferring resistance to bacterial wilt, and PopP2, a type III effector targeted to the plant nucleus. Proc Natl Acad Sci USA 100:8024–8029

    PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Tham WH, Baker BJ (2000) Structure-function analysis of the tobacco mosaic virus resistance gene N. Proc Natl Acad Sci USA 97:14789–14794

    PubMed  CAS  Google Scholar 

  • Dixon MS, Golstein C, Thomas CM, van der Biezen EA, Jones JDG (2000) Genetic complexity of pathogen perception by plants: The example of Rcr3, a tomato gene required specifically by Cf-2. Proc Natl Acad Sci USA 97:8807–8814

    PubMed  CAS  Google Scholar 

  • Dodds PN, Lawrence GJ, Catanzariti A-M, Teh T, Wang CA, Ayliffe MA, Kobe B, Ellis JG (2006) Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proc Natl Acad Sci USA 103:8888–8893

    PubMed  CAS  Google Scholar 

  • Eitas T, Nimchuk ZL, Dangl JL (2008) Arabidopsis TAO1 is a TIRNB-LRR protein that contributes to disease resistance induced by the Pseudomonas syringae effector AvrB. Proc Natl Acad Sci USA 105:6475–6480

    PubMed  CAS  Google Scholar 

  • Ellis JG, Lawrence GJ, Luck JE, Dodds PN (1999) Identification of regions in alleles of the flax rust resistance gene L that determine differences in gene-for-gene specificity. Plant Cell 11:495–506

    PubMed  CAS  Google Scholar 

  • Felix G, Duran JD, Volko S, Boller T (1999) Plants have a sensitive perception system for the most conserved domain of bacterial flagellin. Plant J 18:265–276

    PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Google Scholar 

  • Gao Z, Chung EH, Eitas TK, Dangl JL (2011) Plant intracellular innate immune receptor resistance to Pseudomonas syringae pv. maculicola 1 (RPM1) is activated at, and function on, the plasma membrane. Proc Natl Acad Sci USA 108:7619–7624

    PubMed  CAS  Google Scholar 

  • Gassmann W, Hinsch ME, Staskawicz BJ (1999) The Arabidopsis RPS4 bacterial-resistance gene is a member of the TIS-NBSLRR family of disease-resistance genes. Plant J 20:265–277

    PubMed  CAS  Google Scholar 

  • Geldner N, Robatzek S (2008) Plant receptors go endosomal: a moving view on signal transduction. Plant Physiol 147:1565–1574

    PubMed  CAS  Google Scholar 

  • Gomez-Gomez L, Boller T (2000) FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol Cell 5:1003–1011

    PubMed  CAS  Google Scholar 

  • Gust AA, Willmann R, Desaki Y, Grabherr HM, Nurnberger T (2012) Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci 17:495–502

    PubMed  CAS  Google Scholar 

  • Han SW, Lee SW, Bahar O, Schwessinger B, Robinson MR, Shaw JB, Madsen JA, Brodbelt JS, Ronald PC (2012) Tyrosine sulfation in a Gram-negative bacterium. Nat Commun 3:1153

    PubMed  Google Scholar 

  • Heidrich K, Wirthmueller L, Tasset C, Pouzet C, Deslandes L, Parker JE (2011) Arabidosis EDS1 connects pathogen effector recognition to cell compartment-specific immune responses. Science 334: 1401–1404

    PubMed  CAS  Google Scholar 

  • Hogenhout SA, van der Hoorn RAL, Terauchi R, Kamoun S (2009) Emerging concepts in effector biology of plant-associated organisms. Mol Plant-Microbe Interact 22:115–122

    PubMed  CAS  Google Scholar 

  • Holub EB, Beynon JL, Crute IR (1994) Phenotypic and genotypic characterization of interactions between isolates of Peronospora parasitica and accessions of Arabidopsis thaliana. Mol Plant-Microbe Interact 7:223–239

    CAS  Google Scholar 

  • Husebye H, Halaas O, Stenmark H, Tunheim G, Sandanger O, Bogen B, Brech A, Latz E, Espevik T (2006) Endocytic pathways regulate Toll-like receptor 4 signaling and link innate and adaptive immunity. EMBO J 25:683–692

    PubMed  CAS  Google Scholar 

  • Inoue H, Hayashi N, Matsushita A, Xinqiong L, Nakayama A, Sugano S, Jiang C-J, Takatsuji H (2013) Blast resistance of CCNB-LRR protein Pb1 is mediated by WRKY45 through proteinprotein interaction. Proc Natl Acad Sci USA 110:9577–9582

    PubMed  CAS  Google Scholar 

  • Jones JDG, Dangl JL (2006) The plant immune system. Nature 444:323–329

    PubMed  CAS  Google Scholar 

  • Kaku H, Nishizawa Y, Ishii-Minami N, Akimoto-Tomiyama C, Dohmae N, Takio K, Minami E, Shibuya N (2006) Plant cells recognize chitin fragments for defense signaling through a plasma membrane receptor. Proc Natl Acad Sci USA 103:11086–11091

    PubMed  CAS  Google Scholar 

  • Kobe B, Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19:415–421

    PubMed  CAS  Google Scholar 

  • Krasileva KV, Dahlbeck D, Staskawicz BJ (2010) Activation of an Arabidopsis resistance proein is specified by the in planta association of its leucine-rich repeat domain with the cognate oomucetes effector. Plant Cell 22:2444–2458

    PubMed  CAS  Google Scholar 

  • Kunze G, Zipfel C, Robatzek S, Niehaus K, Boller T, Felix G (2004) The N terminus of bacterial elongation factor Tu elicits innate immunity in Arabidopsis plants. Plant Cell 16:3496–3507

    PubMed  CAS  Google Scholar 

  • Lacombe S, Rougon-Cardoso A, Sherwood E, Peeters N, Dahlbeck D, van Esse HP, Smoker M, Rallapalli G, Thomma BP, Staskawicz B, Jones JD, Zipfel C (2010) Interfamily transfer of a plant patternrecognition receptor confers broad-spectrum bacterial resistance. Nat Biotechnol 28:365–369

    PubMed  CAS  Google Scholar 

  • Lee SK, Song MY, Seo YS, Kim HK, Ko S, Cau PJ, Suh JP, Yi G, Roh JH, Lee S, An G, Hahn TR, Wang GL, Ronald P, Jeon JS (2009) Rice Pi5-mediated resistance to Magnaporthe oryzae requires the presence of two coiled-coil-nucleotide-binding-leucinerich repeat genes. Genetics 181:1627–1638

    PubMed  CAS  Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2009) A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    PubMed  CAS  Google Scholar 

  • Leipe DD, Koonin EV, Aravind L (2004) STAND, a class of P-loop NTPases including animal and plant regulators of programmed cell death: multiple, complex domain architectures, unusal phyletic patterns, and evolution by horizontal gene transfer. J Mol Biol 343:1–28

    PubMed  CAS  Google Scholar 

  • Lim MTS, Kunkel BN (2004) The Pseudomonas syringae type III effector AvrRpt2 promotes virulence independently of RIN4, a predicted virulence target in Arabidopsis thaliana. Plant J 40:790–798

    PubMed  CAS  Google Scholar 

  • Liu J, Elmore JM, Lin Z0LD, Coaker G (2011) A receptor-like cytoplasmic kinase phosphorylates the host target RNI4, leading to the activation of a plant innate immune receptor. Cell Host Microbe 9:137–146

    PubMed  CAS  Google Scholar 

  • Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B (2009) Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. Plant J. 60:1043–1054

    PubMed  CAS  Google Scholar 

  • Mackey D, Holt III BF, Wiig A, Dangl JL (2002) RIN4 interacts with Pseudomonas syringae type III effector molecules and is required for RPM1-mediated resistance in Arabidopsis. Cell 108:743–764

    PubMed  CAS  Google Scholar 

  • Maekawa T, Cheng W, Spiridon LN, Töller A, Lukasik E, Saijo Y, Liu P, Shen QH, Micluta MA, Somssich IE, Takken FL, Petrescu AJ, Chai J, Schulze-Lefert P (2011) Coiled-coil domain-dependent homodimerization of intracellular barley immune receptors defines a minimal functional module for triggering cell death. Cell Host Microbe 9:187–199

    PubMed  CAS  Google Scholar 

  • Medzhitov R, Janeway CA (1997) Innate immunity: impact on the adaptive immune response. Curr Opin Immunol 9:4–9

    PubMed  CAS  Google Scholar 

  • Meyers BC, Dickerman AW, Michelmore RW, Sivaramakrishnan S, Sobral BW, Young ND (1999) Plant disease resistance genes encode members of an ancient and diverse protein family within the nucleotide-binding superfamily. Plang J 20:317–332

    CAS  Google Scholar 

  • Meyers BC, Morgante M, Michelmore RW (2002) TIR-X and TIRNBS proteins: two new families related to disease resistance TIR-NBS-LRR proteins encoded in Arabidopsis and other plant genome. Plant J 32:77–92

    PubMed  CAS  Google Scholar 

  • Meyers BC, Shen KA, Rohani P, Gaut BS, Michelmore RW (1998) Receptor-like genes in the major resistance locus of lettuce are subject to divergent selection. Plant Cell 10:1833–1846

    PubMed  CAS  Google Scholar 

  • Miya A, Albert P, Shinya T, Desaki Y, Ichimura K, Shirasu K, Narusaka Y, Kawakami N, Kaku H, Shibuya N (2007) CERK1, a LysM receptor kinase, is essential for chitin elicitor signaling in Arabidopsis. Proc Natl Acad Sci USA 104:19613–19618

    PubMed  CAS  Google Scholar 

  • Moffett P, Farnham G, Peart J, Baulcombe DC (2002) Interaction between domains of a plant NBS-LRR protein in disease resistance-related cell death. EMBO J 21:4511–4519

    PubMed  CAS  Google Scholar 

  • Mucyn TS, Clemente A, Andriotis VME, Balmuth AL, Oldroyd GED, Staskawicz BJ, Rathjen JP (2006) The tomato NBARCLRR protein Prf interacts with Pto kinase in vivo to regulate specific plant immunity. Plant Cell 18:2792–2806

    PubMed  CAS  Google Scholar 

  • Mysore KS, Ryu C-M (2004) Nonhost resistance: how much do we know? Trends Plant Sci 9:97–104

    PubMed  CAS  Google Scholar 

  • Narusaka M, Shirasu K, Noutoshi Y, Kubo Y, Shiraishi T, Iwabuchi M, Narusaka Y (2009) RRS1 and RPS4 provide a dual resistancegene system against fungal and bacterial pathogens. Plant J 60:218–226

    PubMed  CAS  Google Scholar 

  • Nimchuk Z, Marios E, Kjemtrup S, Leister ET, Katagir F, Dangl JL (2000) Eukaryotic fatty acylation drives plasma membrane targeting and enhances function of several type III effector proteins from Pseudomonas syringae. Cell 101:353–363

    PubMed  CAS  Google Scholar 

  • Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–223

    PubMed  CAS  Google Scholar 

  • Ohnishi H, Tochio H, Kato Z, Orii KE, Li A, Kimura T, Hiroaki H, Kondo N, Shirakawa M (2009) Structural basis for the multiple interactions of the MyD88 TIR domain in TLR4 signaling. Proc Natl Acad Sci USA 106:10260–10265

    PubMed  CAS  Google Scholar 

  • Padmanabhan MS, Ma S, Burch-Smith TM, Czymmek K, Huijser P, Dinesh-Kumar SP (2013) Novel positive regularatory role for the SPL6 transcription factor in the N TIR-NB-LRR receptormediated plant innate immunity. PLoS Pathog 9:e1003235

    PubMed  CAS  Google Scholar 

  • Pan Q, Wendel J, Fluhr R (2000) Divergent evolution of plant NBSLRR resistance gene homologues in dicot and cereal genomes. J Mol Evol 50:203–213

    PubMed  CAS  Google Scholar 

  • Park CJ, Ronald PC (2012) Cleavage and nuclear localization of the rice XA21 immune receptor. Nat Commun 3:920

    PubMed  Google Scholar 

  • Peart JR, Mestre P, Lu R, Malcuit I, Baulcombe DC (2005) NRG1, a CC-NB-LRR protein, together with N, a TIR-NB-LRR protein, mediates resistance against tobacco mosaic virus. Curr Biol 15:968–73

    PubMed  CAS  Google Scholar 

  • Poltorak A, He X, Smimova I, Liu MY, van Huffel C, Du X, Birdwell D, Alejos E, Silva M, Galanos C, Freudenberg M, Ricciardi-Castagnoli P, Layton B, Beutler B (1998) Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: muations in Tlr4 gene. Science 282:2085–2088

    PubMed  CAS  Google Scholar 

  • Qi D, DeYoung J, Innes RW (2012) Sturucture-function analysis of the coiled-coil and leucine-rich repeat domains of the RPS5 disease resistance protein. Plant Physiol 158:1819–1832

    PubMed  CAS  Google Scholar 

  • Rairdan GJ, Moffett P (2006) Distinct domains in the ARC region of the potato resistance protein Rx mediate LRR binding and inhibition of activation. Plant Cell 18:2082–2093

    PubMed  CAS  Google Scholar 

  • Riedi SJ, Li W, Chao Y, Schwarzenbacher R, Shi Y (2005) Structure of the apoptoic protease-activating factor 1 bound to ADP. Nature 434:926–933

    Google Scholar 

  • Robatzek S, Bittel P, Chinchilla D, Kochner P, Felix G, Shiu SH, Boller T (2007) Molecular identification and characterization of the tomato flagellin receptor LeFLS2, an orthologue of Arabidopsis FLS2 exhibiting characteristically different perception specificities. Plant Mol Biol 64:539–547

    PubMed  CAS  Google Scholar 

  • Robatzek S, Chinchilla D, Boller T (2006) Ligand-induced endocytosis of the pattern recognition receptor FLS2 in Arabidopsis. Gen Dev 20:537–542

    CAS  Google Scholar 

  • Ronald PC, Beutler B (2010) Plant and animal sensors of conserved microbial signatures. Science 330:1061–1064

    PubMed  CAS  Google Scholar 

  • Sacco MA, Mansoor S, Moffett P (2007) A RanGAP protein physically interacts with the NB-LRR protein Rx, and is required for Rxmediated viral resistance. Plant J 52:82–93

    PubMed  CAS  Google Scholar 

  • Sela H, Spiridon LN, Petrescu AJ, Akerman M, Mandel-Gutfreund Y, Nevo E, Loutre C, Keller B, Schulman AH, Fahima T (2012) Ancient diversity of splicing motifs and protein surfaces in the wild emmer wheat (Tritichum dicoccoides) LR10 coiled coil (CC) and leucine-rich repeat (LRR) domains. Mol Plant Pathol 13:276–287

    PubMed  CAS  Google Scholar 

  • Sharfman M, Bar M, Ehrlich M, Schuster S, Melech-Bonfil S, Ezer R, Sessa G, Avni A (2011) Endosomal signaling of the tomato leucine-rich repeat receptor-like protein LeEix2. Plant J 68:413–423

    PubMed  CAS  Google Scholar 

  • Shen QH, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich IE, Schulze-Lefert P (2007) Nuclear activity of MLA immune receptors links isolate-specific and basal disease resistance responses. Science 315:1098–1103

    PubMed  CAS  Google Scholar 

  • Shen QH, Zhou F, Bieri S, Haizel T, Chirasu K, Schulze-Lefert P (2003) Recognition specificity and RAR1/SGT1 dependence in barley Mla disease resistance genes to the powdery mildew fungus. Plant Cell 15:732–744

    PubMed  CAS  Google Scholar 

  • Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N, Nishizawa Y, Minami E, Okada K, Yamane H, Kaku H, Shibuya N (2010) Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J 64:204–214

    PubMed  CAS  Google Scholar 

  • Shirano Y, Kachroo P, Shah J, Klessig DF (2002) A gain-of-function mutation in an Arabidopsis Toll interleukin1 receptor-nucleotide binding site-leucine-rich repeat type R gene triggers defense responses and results in enhanced disease resistance. Plant Cell 14:3149–3162

    PubMed  CAS  Google Scholar 

  • Sinapidou E, Williams K, Nott L, Bahkt S, Tör M, Crute I, Bittner-Eddy P, Beynon J (2004) Two TIR:NB:LRR genes are required to specify resistance to Peronospora parasitica isolate Cala2 in Arabidopsis. Plant J 38:898–909

    PubMed  CAS  Google Scholar 

  • Slootweg E, Roosien J, Spiridon LN, Petrescu AJ, Tameling W, Joosten M, Pomp R, van Schaik C, Dees R, Norst JW (2010) Nucleocytoplamic distribution is required for activation of resistance by the potato NB-LRR receptor Rx1 and is balanced by its functional domains. Plant Cell 22:4195–4215

    PubMed  CAS  Google Scholar 

  • Slootweg EJ, Spiridon LN, Roosien J, Butterbach P, Pomp R, Westerhof L, Wilbers R, Bakker E, Bakker J, Petresu A-J, Smant G, Goverse A (2013) Structural determinants at the interface of the ARC2 and leucine-rich repeat domains control the activation of the plant immune receptors Rx1 and GPA2. Plant Physiol 163:1510–1528

    Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    PubMed  CAS  Google Scholar 

  • Sun W, Cao Y, Jansen Labby K, Bittel P, Boller T, Bent AF (2012) Probing the Arabidopsis flagellin receptor: FLS2-FLS2 association and the contributions of specific domains to signaling function. Plant Cell 24:1096–1113

    PubMed  CAS  Google Scholar 

  • Swiderski MR, Birker D, Jones, JD (2009) The TIR domain of TIRNB-LRR resistance proteins is a signaling domain involved in cell death induction. Mol Plant-Microbe Interact 22:157–165

    PubMed  CAS  Google Scholar 

  • Takai R, Isogai A, Takayama S, Che FS (2008) Analysis of flagellin perception mediated by flg22 receptor OsFLS2 in rice. Mol Plant-Microbe Interact 21:1635–164

    PubMed  CAS  Google Scholar 

  • Takemoto D, Rafiqi M, Hurley U, Lawrence GJ, Bernoux M, Hardham AR, Ellis JG, Dodds PN, Jones DA (2012) N-terminal motifs in some plant disease resistance proteins function in membrane attachment and contribute to disease resistance. Mol Plant-Microbe Interact 25:379–392

    PubMed  CAS  Google Scholar 

  • Takken FLW, Albrecht M, Tameling WI (2006) Resistance proteins: molecular switches of palnt defence. Curr Opin Plant Biol 9:383–390

    PubMed  CAS  Google Scholar 

  • Takken FLW, Tameling WIL (2009) To nibble at plant resistance proteins. Science 324:744–746

    PubMed  CAS  Google Scholar 

  • Tameling WI, Elzinga SD, Darmin PS, Vossen JH, Takken FLW, Haring MA, Cornelissen BJ (2002) The tomato R gene products I-2 and Mi-1 are functional ATP binding proteins with ATPase activity. Plant Cell 14:2929–2939

    PubMed  CAS  Google Scholar 

  • Tameling WI, Nooijen C, Ludwig N, Boter M, Slootweg E, Goverse A, Shirasu K, Joosten MH (2010) RanGAP2 mediates nucleocytoplasmic partitioning of the NB-LRR immune receptor Rx in the Solanaceae, thereby dictating Rx function. Plant Cell 22:4176–4194

    PubMed  CAS  Google Scholar 

  • Tameling WIL, Vossen JH, Albrecht M, Lengauer T, Berden JA, Haring MA, Cornelissen JC, Takken FLW (2006) Mutations in the NBARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol 140:1233–1245

    PubMed  CAS  Google Scholar 

  • Tao Y, Yuan F, Leister RT, Ausubal FM, Katagiri F (2000) Mutational analysis of the Arabidopsis nucleotide binding site-leucine-rice repeat resistance gene RPS2. Plant Cell 12:2541–2554

    PubMed  CAS  Google Scholar 

  • Tapping RI (2009) Innate immune sensing and activation of cell surface Toll-like receptors. Semin Immunol 21:175–184

    PubMed  CAS  Google Scholar 

  • Tornero P, Chao RA, Luthin WN, Goff SA, Dangl JL (2002) Largescale structure-function analysis of the Arabidopsis RPM1 disease resistance protein. Plant Cell 14:435–450

    PubMed  CAS  Google Scholar 

  • van der Biezen EA, Jones JDG (1998) The NB-ARC domain: a novel signaling motif shared by plant resistance gene products and regulators of cell death in animals. Curr Biol 8:R226–R227

    PubMed  Google Scholar 

  • van der Hoorn RAL, Kamoun S (2008) From guard to decoy: a new model for perception of plant pathogen effectors. Plant Cell 20:2009–2017

    PubMed  Google Scholar 

  • van Ooijen G, Mayr G, Albrecht M, Cornelissen BJ, Takken FLW (2008) Transcomplementation, but not physical association of the CC-NB-ARC and LRR domain of tomato R protein Mi1.2 is altered by mutations in the ARC2 subdomain. Mol Plant 1:401–410

    PubMed  Google Scholar 

  • Weaver ML, Swiderski MR, Li Y, Jones JD (2006) The Arabidopsis thaliana TIR-NB-LRR R-protein, RPP1A; protein localization and constitutive activation of defense by truncated alleles in tobacco and Arabidopsis. Plant J 47:829–840

    CAS  Google Scholar 

  • Williams SJ, Sornaraj P, deCourcy-lreland E, Menz RI, Kobe B, Ellis JG, Dodds PN, Anderson PA (2011) An autoactive mutant of the M flax rust resistance protein has a preference for binding ATP, whereas wild-type M proteins binds ADP. Mol Plant-Microbe interact 24:897–906

    PubMed  CAS  Google Scholar 

  • Willmann R, Lajunen HM, Erbs G, Newman MA, Kolb D, Tsuda K, Katagiri F, Fliegmann J, Bono JJ, Cullimore JV, Jehle AK, Gotz F, Kulik A, Molinaro A, Lipka V, Gust AA, Nurnberger T (2011). Arabidopsis lysin-motif proteins LYM1 LYM3 CERK1 mediate bacterial peptidoglycan sensing and immunity to bacterial infection. Proc Natl Acad Sci U S A 108:19824–19829

    PubMed  CAS  Google Scholar 

  • Wirthmueller L, Zhang Y, Jones JD, Parker JE (2007) Nuclear accumulation of the Arabidopsis immune receptor RPS4 is necessary for triggering EDS1-dependent defense. Curr Biol 17:2023–2029

    PubMed  CAS  Google Scholar 

  • Wolf E, Kim PS, Berger B (1997) MultiCoil: a program for predicting two- and three-stranded coiled coils. Protein Sci 6:1179–1189

    PubMed  CAS  Google Scholar 

  • Xu Y, Tao X, Shen B, Horng T, Medzhitov R, Manley JL, Tong L (2000) Structural basis for signal transduction by the Toll/interleukin-1 receptor domains. Nature 408:111–115

    PubMed  CAS  Google Scholar 

  • Zhang Y, Goritschnig S, Dong X, Li X (2003) A gain-of-function mutation in a plant disease resistance gene leads to constitutive activation of downstream signal transduction pathways in suppressor of npr1-1, constitutive 1. Plant Cell 15:2636–2646

    PubMed  CAS  Google Scholar 

  • Zhu Z, Xu, F, Zhang Y, Cheng YT, Wiermer M, Li X, Zhang Y (2010) Arabidopsis resistance protein SNC1 activates immune reponses through association with a transcriptional corepressor. Proc Natl Acad Sci USA 107:13960–13965

    PubMed  CAS  Google Scholar 

  • Zipfel C, Kunze G, Chinchilla D, Caniard A, Jones JD, Boller T, Felix G (2006) Perception of the bacterial PAMP EF-Tu by the receptor EFR restricts Agrobacterium-mediated transformation. Cell 125:749–760

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho Won Jung.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, SW., Jung, H.W. Molecular sensors for plant immunity; pattern recognition receptors and race-specific resistance proteins. J. Plant Biol. 56, 357–366 (2013). https://doi.org/10.1007/s12374-013-0323-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-013-0323-z

Keywords

Navigation