Skip to main content
Log in

Biotic Stress-Responsive Rice Proteome: An Overview

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Biotic stresses affect the plant growth, seed quality, and crop yield. The monocot model rice crop plant is no exception and is affected by a variety of biotic stress factors. High-throughput proteomics approaches are being applied in rice for the past several years to exploit better understanding the biotic stresses-responsive regulatory mechanisms. A large number of proteins responsive to biotic stresses, including pathogens and herbivores, have been cataloged. Cataloged proteins mainly belong to functional categories into metabolism, energy, defense mechanisms, and signaling. To date, majority of these proteins have not been functionally characterized yet, except the pathogen-related 10 protein, PBZ1. This review will briefly summarize and discuss: (1) the proteomics-based investigation of biotic stress-responsive proteins in rice and (2) increasing importance of proteomics approach in defense biology and engineering the next-generation rice/crop plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Agrawal GK, Rakwal R (2006) Rice proteomics: a cornerstone for cereal food crop proteomes. Mass Spectrom Rev 25:1–53

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Rakwal R (2008) In: Agrawal GK, Rakwal R (eds) Plant proteomics: technologies, strategies, and applications. Wiley & Sons, Hoboken, NJ, USA

    Google Scholar 

  • Agrawal GK, Rakwal R (2011) Rice proteomics: a move toward expanded proteome coverage to comparative and functional proteomics uncovers the mysteries of rice and plant biology. Proteomics. doi:10.1002/pmic.201000696

    Google Scholar 

  • Agrawal GK, Rakwal R, Tamogami S, Yonekura M, Kubo A, Saji H (2002) Chitosan activates defense/stress response(s) in the leaves of Oryza sativa seedlings. Plant Physiol Biochem 40:1061–1069

    Article  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Iwahashi Y, Yonekura M, Iwahashi H, Rakwal R (2006) Rejuvenating rice proteomics: facts, challenges, and visions. Proteomics 6:5549–5576

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Rakwal R (2009) Rice proteomics: ending phase I and the beginning of phase II. Proteomics 9:935–963

    Article  PubMed  CAS  Google Scholar 

  • Agrawal GK, Jwa NS, Lebrun MH, Job D, Rakwal R (2010) Plant secretome: unlocking secrets of the secreted proteins. Proteomics 10:799–827

    Article  PubMed  CAS  Google Scholar 

  • Agrios GN (2005) Plant pathology, 5th edn. Elsevier Academic Press, San Diego

    Google Scholar 

  • Akiyama T, Pillai MA (2001) Molecular cloning, characterization and in vitro expression of a novel endo-1,3-β-glucanase up-regulated by ABA and drought stress in rice (Oryza sativa L.). Plant Sci 161:1089–1098

    Article  CAS  Google Scholar 

  • Allwood JW, Ellis DI, Goodacre R (2008) Metabolomic technologies and their application to the study of plants and plant-host interactions. Physiol Plant 132:117–135

    PubMed  CAS  Google Scholar 

  • Chen F, Li Q, He ZH (2007a) Proteomic analysis of rice plasma membrane-associated proteins in response to chitooligosaccharide elicitors. J Inter Plant Biol 49:1–5

    Google Scholar 

  • Chen F, Yuan Y, Li Q, He Z (2007b) Proteomic analysis of rice plasma membrane reveals proteins involved in early defense response to bacterial blight. Proteomics 7:1529–1539

    Article  PubMed  CAS  Google Scholar 

  • Chi F, Yang P, Han F, Jing Y, Shen S (2010) Proteomic analysis of rice seedlings infected by Sinorhizobium meliloti 1021. Proteomics 10:1861–1874

    Article  PubMed  CAS  Google Scholar 

  • De Wit PJ, Mehrabi R, Van den Burg HA, Stergiopoulos I (2009) Fungal effector proteins: past, present and future. Mol Plant Pathol 10:735–747

    Article  PubMed  Google Scholar 

  • Fan W, Cui W, Li X, Chen S, Liu G, Shen S (2011) Proteomics analysis of rice seedling responses to ovine saliva. J Plant Physiol 168:500–509

    Article  PubMed  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu RePhytopathol 134:387–412

    Article  Google Scholar 

  • Henning J, Dewey RE, Cutt JR, Klessig DF (1993) Pathogen, salicylic acid and developmental dependent expression of a β-1,3-glucanase/GUS gene fusion in transgenic tobacco plants. Plant J 4:481–493

    Article  Google Scholar 

  • Hwang DH, Kim ST, Kim SG, Kang KY (2007) Comprehensive analysis of the expression of twenty-seven beta-1, 3-glucanase genes in rice (Oryza sativa L.). Mol Cells 23:207–214

    CAS  Google Scholar 

  • Iwai T, Seo S, Mitsuhara I, Ohashi Y (2007) Probenazole-induced accumulation of salicylic acid confers resistance to Magnaporthe grisea in adult rice plants. Plant Cell Physiol 48:915–924

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Li J, Xu Y, Han Y, BaiY ZG, Lou Y, Xu Z, Chong K (2007) RNAi knockdown of Oryza sativa root meander curling gene led to altered root development and coiling which were mediated by jasmonic acid signalling in rice. Plant Cell Environ 30:690–699

    Article  PubMed  CAS  Google Scholar 

  • Jorrín JV, Maldonado AM, Castillejo MA (2007) Plant proteome analysis: a 2006 update. Proteomics 7:2947–2962

    Article  PubMed  Google Scholar 

  • Kandasamy S, Loganathan K, Muthuraj R, Duraisamy S, Seetharaman S, Thiruvengadam R, Ponnusamy B, Ramasamy S (2009) Understanding the molecular basis of plant growth promotional effect of Pseudomonas fluorescens on rice through protein profiling. Proteome Sci 7:47–55

    Article  PubMed  Google Scholar 

  • Kim ST, Cho KS, Yu S, Kim SG, Hong JC, Han CD, Bae DW, Nam MH, Kang KY (2003) Proteomic analysis of differentially expressed proteins induced by rice blast fungus and elicitor in suspension-cultured rice cells. Proteomics 3:2368–2378

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Hwang DH, Kang SY, Kim HJ, Lee BH, Lee JJ, Kang KY (2004) Proteomic analysis of pathogen-responsive proteins from rice leaves induced by rice blast fungus, Magnaporthe grisea. Proteomics 4:3569–3578

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Yu S, Kang YH, Kim SG, Kim JY, Kim SH, Kang KY (2008a) The rice pathogen-related protein 10 (JIOsPR10) is induced by abiotic and biotic stresses and exhibits ribonuclease activity. Plant Cell Rep 27:593–603

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kim SG, Kang YH, Wang Y, Kim JY, Yi N, Kim JK, Rakwal R, Koh HJ, Kang KY (2008b) Proteomics analysis of rice lesion mimic mutant (spl1) reveals tightly localized probenazole-induced protein (PBZ1) in cells undergoing programmed cell death. J Proteome Res 7:1750–1760

    Article  PubMed  CAS  Google Scholar 

  • Kim ST, Kang YH, Wang Y, Wu J, Park ZY, Rakwal R, Agrawal GK, Lee SY, Kang KY (2009) Secretome analysis of differentially induced proteins in rice suspension-cultured cells triggered by rice blast fungus and elicitor. Proteomics 9:1302–1313

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Kim ST, Wang Y, Yu S, Choi IS, Kim YC, Kim WT, Agrawal GK, Rakwal R, Kang KY (2011) The RNase activity of rice probenazole-induced protein1 (PBZ1) plays a key role in cell death in plants. Mol Cells 31:25–31

    Article  PubMed  CAS  Google Scholar 

  • Lee J, Bricker TM, Lefevre M, Pinson SR, Oard JH (2006) Proteomic and genetic approaches to identifying defence-related proteins in rice challenged with the fungal pathogen Rhizoctoniasolani. Mol Plant Pathol 7:405–416

    Article  PubMed  CAS  Google Scholar 

  • Lee SW, Han SW, Sririyanum M, Park CJ, Seo YS, Ronald PC (2009) A type I-secreted, sulfated peptide triggers XA21-mediated innate immunity. Science 326:850–853

    Article  PubMed  CAS  Google Scholar 

  • Leubner-Metzger G, Petruzzelli L, Waldvogel R, Vogeli-Lange R, Meins F Jr (1998) Ethylene-responsive element binding protein (EREBP) expression and the transcriptional regulation of class I β-1,3-glucanase during tobacco seed germination. Plant Mol Biol 38:785–795

    Article  PubMed  CAS  Google Scholar 

  • Liao M, Li Y, Wang Z (2009) Identification of elicitor-responsive proteins in rice leaves by a proteomic approach. Proteomics 9:2809–2819

    Article  PubMed  CAS  Google Scholar 

  • Li Y, Wang Z, Jia X (2004) Specificity and characterization of an elicitor (CSB I) from Magnaporthe grisea. Acta Phytopathol Sin 34:237–243

    Google Scholar 

  • Lin YZ, Chen HY, Kao R, Chang SP, Chang SJ, Lai EM (2008) Proteomic analysis of rice defense response induced by probenazole. Phytochemistry 69:715–728

    Article  PubMed  CAS  Google Scholar 

  • Mahmood T, Jan A, Kakishima M, Komatsu S (2006) Proteomic analysis of bacterial-blight defense-responsive proteins in rice leaf blades. Proteomics 6:6053–6065

    Article  PubMed  CAS  Google Scholar 

  • Nanda AK, Andrio E, Marino D, Pauly N, Dunand C (2010) Reactive oxygen species during plant-microorganism early interactions. J Integr Plant Biol 52:195–204

    Article  PubMed  CAS  Google Scholar 

  • Seo YS, Chern M, Bartley LE, Han M, Jung KH, Lee I, Walia H, Richter T, Xu X, Cao P, Bai W, Ramanan R, Amonpant F, Arul L, Canlas PE, Ruan R, Park CJ, Chen X, Hwang S, Jeon JS, Ronald PC (2011) Towards establishment of a rice stress response interactome. PLoS Genet 7:e1002020

    Article  PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald PC (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  PubMed  CAS  Google Scholar 

  • Talbot NJ (1995) Having a blast: exploring the pathogenicity of Magnaporthe grisea. Trends Microbiol 3:9–16

    Article  PubMed  CAS  Google Scholar 

  • Ventelon-Debout M, Delalande F, Brizard JP, Diemer H, Van Dorsselaer A, Brugidou C (2004) Proteome analysis of cultivar-specific deregulations of Oryza sativa indica and O. sativa japonica cellular suspensions undergoing rice yellow mottle virus infection. Proteomics 4:216–225

    Article  PubMed  CAS  Google Scholar 

  • Vogeli-Lange R, Frondt C, Hart CM, Nagy F, MeinsJr F (1994) Developmental, hormonal, and pathogenesis related regulation of the tobacco class I beta-1,3-glucanase B promoter. Plant Mol Biol 2:299–311

    Article  Google Scholar 

  • Wei Z, Hu W, Lin Q, Cheng X, Tong M, Zhu L, Chen R, He G (2009) Understanding rice plant resistance to the brown planthopper (Nilaparvata lugens): a proteomic approach. Proteomics 9:2798–2808

    Article  PubMed  CAS  Google Scholar 

  • Wrzaczek M, Brosché M, Salojärvi J, Kangasjärvi S, Idänheimo N, Mersmann S, Robatzek S, Karpiński S, Karpińska B, Kangasjärvi J (2010) Transcriptional regulation of the CRK/DUF26 group of receptor-like protein kinases by ozone and plant hormones in Arabidopsis. BMC Plant Biol 10:95

    Article  PubMed  Google Scholar 

  • Yoshioka H, Asai S, Yoshioka M, Kobayashi M (2009) Molecular mechanisms of generation for nitric oxide and reactive oxygen species, and role of the radical burst in plant immunity. Mol Cells 28:321–329

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916–928

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011–0018092 and 2010–0027988), and by scholarships from the Brain Korea 21 Program (Y. Wang).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyu Young Kang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Kim, S.G., Kim, S.T. et al. Biotic Stress-Responsive Rice Proteome: An Overview. J. Plant Biol. 54, 219–226 (2011). https://doi.org/10.1007/s12374-011-9165-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-011-9165-8

Keywords

Navigation