Skip to main content
Log in

Accumulation of High Levels of ABA Regulates the Pleiotropic Response of the nhr1 Arabidopsis Mutant

  • ORIGINAL RESEARCH
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants have evolved a variety of mechanisms for responding to environmental cues, which allows them to survive in the presence of limited resources or environmental stresses. One of the most significant growth adaptations plants have attained is tropism, a growth response that involves bending of plant organs toward or away from a stimulus. Roots exhibit hydrotropism in response to moisture gradients, which is thought to be critical in acquiring water and establishing their stand in the soil. However, the mechanism underlying hydrotropism remains unsolved. Here, we report that the no hydrotropic response (nhr1) mutant of Arabidopsis, which is impaired in hydrotropism, is tolerant to drought. The no hydrotropic response phenotype of nhr1 was repressed by AbamineSG, an inhibitor of abscisic acid (ABA) biosynthesis, indicating that ABA negatively regulates hydrotropism. Furthermore, the content of ABA was higher in nhr1 compared to those of wild type (wt). However, the higher ABA levels in nhr1 plants were not due to higher transcript levels of 9-cis-epoxycarotenoid dioxygenase (NCED3), since these were diminished compared to those of wt. Our results indicated that the root hydrotropic response of the nhr1 mutant is modulated by ABA and that the higher ABA levels of the mutant might confer it drought resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ali-Rachedi S, Bouinot D, Wagner MH, Bonnet M, Sotta B, Grappin P, Jullien M (2004) Changes in endogenous abscisic acid levels during dormancy release and maintenance of mature seeds: studies with the Cape Verde Islands ecotype, the dormant model of Arabidopsis thaliana. Planta 219:479–488

    Article  CAS  PubMed  Google Scholar 

  • Battisti D, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323:240–244

    Article  CAS  PubMed  Google Scholar 

  • Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P (1993) Physiological signals that induce flowering. The Plant Cell 5:1147–1155

    Article  CAS  PubMed  Google Scholar 

  • Bohnert HJ, Nelson DE, Jensen RG (1995) Adaptations to environmental stresses. The Plant Cell 7:1099–1111

    Article  CAS  PubMed  Google Scholar 

  • Cassab GI (2008) Other tropisms and relationship to gravitropism. In: Gilroy S, Masson PH (eds) Plant tropisms. Blackwell, London, pp 123–139

    Google Scholar 

  • Dai X, Yun Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB Gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1881) The power of movement in plants. Da Capo, New York, pp 1–592, edition published by D. Appleton and Co. 1966

    Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trends Plant Sci 12:474–481

    Article  PubMed  Google Scholar 

  • De Smet I, Zhang H, Inzé D, Beeckman T (2006) A novel role for abscisic acid emerges from underground. Trends Plant Sci 11:434–439

    Article  PubMed  Google Scholar 

  • Eapen D, Barroso ML, Campos ME, Ponce G, Corkidi G, Dubrovsky JG, Cassab GI (2003) A no hydrotropic response root mutant that responds positively to gravitropism in Arabidopsis. Plant Physiol 131:536–546

    Article  CAS  PubMed  Google Scholar 

  • Eapen D, Barroso ML, Ponce G, Campos ME, Cassab GI (2005) Hydrotropism: root growth responses to water. Trends Plant Sci 10:44–50

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SSL, Rock CD (2002) Abscisic acid signaling in seeds and seedlings. The Plant Cell 14:S15–S45

    CAS  PubMed  Google Scholar 

  • Gubler F, Millar AA, Jacobsen JV (2005) Dormancy release, ABA and pre-harvest sprouting. Curr Opin Plant Biol 8:183–187

    Article  CAS  PubMed  Google Scholar 

  • Han SY, Kitahata N, Sekimata K, Saito T, Kobayashi M, Nakashima K, Yamaguchi-Shinozaki K, Shinozaki K, Yoshida S, Asami T (2004) A novel inhibitor of 9-cis-epoxycarotenoid dioxygenase in abscisic acid biosynthesis in higher plants. Plant Physiol 135:1574–1582

    Article  CAS  PubMed  Google Scholar 

  • Ho MD, McCannon BC, Lynch JP (2004) Optimization modeling of plant root architecture for water and phosphorus acquisition. J Theor Biol 226:331–340

    Article  CAS  PubMed  Google Scholar 

  • Ho MD, Rosas JC, Brown KM, Lynch JP (2005) Root architectural tradeoffs for water and phosphorus acquisition. Funct Plant Biol 32:737–748

    Article  CAS  Google Scholar 

  • Iuchi S, Kobayashi M, Taji T, Naramoto M, Seki M, Kato T, Tabata S, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (2001) Regulation of drought tolerance by gene manipulation of 9-cis-epoxycarotenoid dioxygenase, a key enzyme in abscisic acid biosynthesis in Arabidopsis. Plant J 27:325–333

    Article  CAS  PubMed  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17:287–291

    Article  CAS  PubMed  Google Scholar 

  • Kitahata N, Han SY, Noji N, Saito T, Kobayashi M, Nakano T, Kuchitsu K, Shinozaki K, Yoshida S, Matsumoto S, Tsujimoto M, Asami T (2006) A 9-cis-epoxycarotenoid dioxygenase inhibitor for use in the elucidation of abscisic acid action mechanisms. Bioorg Med Chem 14:5555–5561

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi A, Takahashi A, Kakimoto Y, Miyazawa Y, Fujii N, Higashitani A, Takahashi H (2007) A gene essential for hydrotropism in roots. Proc Natl Acad Sci U S A 104:4724–4729

    Article  CAS  PubMed  Google Scholar 

  • Koornneef M, Reuling G, Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61:377–383

    Article  CAS  Google Scholar 

  • Lynch J, Brown KM (1997) Ethylene and plant responses to nutritional stress. Physiol Plant 100:613–619

    Article  CAS  Google Scholar 

  • Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2008) The GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840

    Article  PubMed  Google Scholar 

  • Miyazawa Y, Takahashi A, Kobayashi A, Kaneyasu T, Fujii N, Takahashi H (2009) The GNOM-mediated vesicular trafficking plays an essential role in hydrotropism of Arabidopsis roots. Plant Physiol 149:835–840

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nelson DE, Repetti PP, Adams TR, Creelman RA, Wu J, Warner DC, Anstrom DC, Bensen RJ, Castiglioni PP, Donnarummo MG, Hinchey BS, Kumimoto RW, Maszle DR, Canales RD, Krolikowski KA, Dotson SB, Gutterson N, Ratcliffe OJ, Heard JE (2007) Plant nuclear factor Y (NF-Y) B subunits confer drought tolerance and lead to improved corn yields on water-limited acres. Proc Natl Acad Sci USA 104(42):16450–16455

    Google Scholar 

  • Niklas KJ (1997) The evolutionary biology of plants. The University of Chicago Press, USA, pp 1–449

    Google Scholar 

  • Nishimura N, Kitahata N, Seki M, Narusaka Y, Narusaka M, Kuromori T, Asami T, Shinozaki K, Hirayama T (2005) Analysis of ABA hypersensitive germination2 revealed the pivotal functions of PARN in stress response in Arabidopsis. Plant J 44:972–984

    Article  CAS  PubMed  Google Scholar 

  • Ponce G, Rasgado FA, Cassab GI (2008) Roles of amyloplasts and water deficit in root tropisms. Plant Cell Environ 31:205–217

    CAS  PubMed  Google Scholar 

  • Rossel JB, Walter PB, Hendrickson L, Chow WS, Poole A, Mullineaux PM, Pogson BJ (2006) A mutation affecting ASCORBATE PEROXIDASE 2 gene expression reveals a link between responses to high light and drought tolerance. Plant Cell Environ 29:269–281

    Article  CAS  PubMed  Google Scholar 

  • Schwartz SH, Tan BC, Gage DA, Zeevaart JA, McCarty DR (1997) Specific oxidative cleavage of carotenoids by VP14 of Maize. Science 276:1872–1874

    Article  CAS  PubMed  Google Scholar 

  • Sharp RE, Poroyko V, Hejlek LG, Spollen WG, Springer GK, Bohnert HJ, Nguyen HT (2004) Root growth maintenance during water deficits: physiology to functional genomics. J Exp Bot 55:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (2007) Gene networks involved in drought stress response and tolerance. J Exp Bot 58:221–227

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6:410–417

    Article  CAS  PubMed  Google Scholar 

  • Simpson GG, Dean C (2002) Arabidopsis, the Rosetta stone of flowering time? Science 296:285–289

    Article  CAS  PubMed  Google Scholar 

  • Takahashi N, Yamazaki Y, Kobayashi A, Higashitani A, Takahashi H (2003) Hydrotropism interacts with gravitropism by degrading amyloplasts in seedling roots of Arabidopsis and radish. Plant Physiol 132:805–810

    Article  CAS  PubMed  Google Scholar 

  • Vartanian N, Marcotte L, Giraudat J (1994) Drought rhizogenesis in Arabidopsis thaliana (differential responses of hormonal mutants). Plant Physiol 104:761–767

    CAS  PubMed  Google Scholar 

  • Xiong L, Wang RG, Mao G, Koczan JM (2006) Identification of drought tolerance determinants by genetic analysis of root response to drought stress and abscisic acid. Plant Physiol 142:1065–1074

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci 10:88–94

    Article  CAS  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using information from Arabidopsis to engineer salt, cold, and drought tolerance in crops. Plant Physiol 135:615–621

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We warmly thank R. Martínez for assisting with computer maintenance and E. López, S. Becerra, J. Yáñez, and P. Gaytán from the Unidad de Síntesis y Secuenciación IBT-UNAM for providing good oligonucleotides on time. This work was supported by grants from the Dirección General de Asuntos del Personal Académico (UNAM, Grants No. IN214207 and IN220807) and by the Consejo Nacional de Ciencia y Tecnología (Grants No. 46022Q and 81533).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gladys I. Cassab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quiroz-Figueroa, F., Rodríguez-Acosta, A., Salazar-Blas, A. et al. Accumulation of High Levels of ABA Regulates the Pleiotropic Response of the nhr1 Arabidopsis Mutant. J. Plant Biol. 53, 32–44 (2010). https://doi.org/10.1007/s12374-009-9083-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9083-1

Keywords

Navigation