Skip to main content
Log in

Control of Plant Architecture: The Role of Phyllotaxy and Plastochron

  • Review
  • Published:
Journal of Plant Biology Aims and scope Submit manuscript

Abstract

Plants display a wide variety of three dimensional forms, or architectures, that are critical for their survival in competitive environments or, in the case of crops, for their productivity. Architecture is generated after embryogenesis through the activities of shoot apical meristems and root apical meristems. Leaves are the principal lateral organ that determines the plant shoot morphology, and they normally develop in very regular patterns in time and space. The spatial pattern of leaf arrangement is called phyllotaxy, and the temporal pattern is determined by the plastochron, which is the time between successive leaf initiation events. Both programs involve many gene activities as well as the hormones auxin and cytokinin. Apparently, the mechanisms controlling phyllotaxy and plastochron share some regulatory components. In this review, the molecular mechanisms for both patterning programs will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Byrne ME, Groover AT, Fontana JR, Martienssen RA (2003) Phyllotactic pattern and stem cell fate are determined by the Arabidopsis homeobox gene BELLRINGER. Development 130:3941–3950

    Article  PubMed  CAS  Google Scholar 

  • Carraro N, Forestan C, Canova S, Traas J, Varotto S (2006) ZmPIN1a and ZmPIN1b encode two novel putative candidates for polar auxin transport and plant architecture determination of maize. Plant Physiol 142:254–264

    Article  PubMed  CAS  Google Scholar 

  • Chaudhury AM, Letham S, Craig S, Dennis ES (1993) amp1 - a mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J 4:907–916

    Article  CAS  Google Scholar 

  • Cockcroft CE, den Boer BGW, Healy JMS, Murray JAH (2000) Cyclin D control of growth rate in plants. Nature 405:575–579

    Article  PubMed  CAS  Google Scholar 

  • de Reuille PB, Bohn-Courseau I, Ljung K, Morin H, Carraro N, Godin C, Traas J (2006) Computer simulations reveal properties of the cell-cell signaling network at the shoot apex in Arabidopsis. Proc Natl Acad Sci U S A 103:1627–1632

    Article  PubMed  Google Scholar 

  • Fleming AJ, McQueenMason S, Mandel T, Kuhlemeier C (1997) Induction of leaf primordia by the cell wall protein expansion. Science 276:1415–1418

    Article  CAS  Google Scholar 

  • Giulini A, Wang J, Jackson D (2004) Control of phyllotaxy by the cytokinin-inducible response regulator homologue ABPHYL1. Nature 430:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Green PB (1985) Surface of the shoot apex: a reinforcement-field theory for phyllotaxis. J Cell Sci 2:181–201

    CAS  Google Scholar 

  • Green PB, Steele CS, Rennich SC (1996) Phyllotactic patterns: A biophysical mechanism for their origin. Ann Bot 77:515–527

    Article  Google Scholar 

  • Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental Patterning by Mechanical Signals in Arabidopsis. Science 322:1650–1655

    Article  PubMed  CAS  Google Scholar 

  • Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13:2115–2125

    Article  PubMed  CAS  Google Scholar 

  • Hofmeister W (1868) Allgemeine morphologie der Gewachse. In: de Bary A, Irmisch TH, Sachs J (eds) Handbuch der Physiologischen Botanik. Ed. Engelmann, Leipzig, pp 405–664

    Google Scholar 

  • Hwang I, Sheen J (2001) Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413:383–389

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Nagasawa N, Nagato Y (2005) ABERRANT PANICLE ORGANIZATION 1 temporally regulates meristem identity in rice. Dev Biol 282:349–360

    Article  PubMed  CAS  Google Scholar 

  • Itoh JI, Hasegawa A, Kitano H, Nagato Y (1998) A recessive heterochronic mutation, plastochron1, shortens the plastochron and elongates the vegetative phase in rice. Plant Cell 10:1511–1521

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Hake S (1999) Control of phyllotaxy in maize by the abphyl1 gene. Development 126:315–323

    PubMed  CAS  Google Scholar 

  • Jonsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E (2006) An auxin-driven polarized transport model for phyllotaxis. Proc Natl Acad Sci U S A 103:1633–1638

    Article  PubMed  Google Scholar 

  • Kawakatsu T, Itoh J, Miyoshi K, Kurata N, Alvarez N, Veit B, Nagato Y (2006) PLASTOCHRON2 regulates leaf initiation and maturation in rice. Plant Cell 18:612–625

    Article  PubMed  CAS  Google Scholar 

  • Lee B-h (2009) Ecotype-dependent genetic regulation of bolting time in the Arabidopsis mutants with increased number of leaves. J Microbiol Biotechnol 19:542–546

    Google Scholar 

  • Lee B-h, Johnston R, Yang Y, Gallavotti A, Kojima M, Travencolo BAN, Costa LdF, Sakakibara H, Jackson D (2009) Studies of abphyl1 phyllotaxy mutants of maize indicate complex interactions between auxin and cytokinin signaling in the shoot apical meristem. Plant Physiol 150:205–216

    Article  PubMed  CAS  Google Scholar 

  • Lee B-h, Kapoor A, Zhu JH, Zhu JK (2006) STABILIZED1, a stress-upregulated nuclear protein, is required for pre-mRNA splicing, mRNA turnover, and stress tolerance in Arabidopsis. Plant Cell 18:1736–1749

    Article  PubMed  CAS  Google Scholar 

  • Leibfried A, To JPC, Busch W, Stehling S, Kehle A, Demar M, Kieber JJ, Lohmann JU (2005) WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators. Nature 438:1172–1175

    Article  PubMed  CAS  Google Scholar 

  • Miyoshi K, Ahn BO, Kawakatsu T, Ito Y, Itoh JI, Nagato Y, Kurata N (2004) PLASTOCHRON1, a timekeeper of leaf initiation in rice, encodes cytochrome P450. Proc Natl Acad Sci U S A 101:875–880

    Article  PubMed  CAS  Google Scholar 

  • Okada K, Ueda J, Komaki MK, Bell CJ, Shimura Y (1991) Requirement of the auxin polar transport system in early stages of Arabidopsis floral bud formation. Plant Cell 3:677–684

    Article  PubMed  CAS  Google Scholar 

  • Peaucelle A, Morin H, Traas J, Laufs P (2007) Plants expressing a miR164-resistant CUC2 gene reveal the importance of post-meristematic maintenance of phyllotaxy in Arabidopsis. Development 134:1045–1050

    Article  PubMed  CAS  Google Scholar 

  • Peaucelle A, Louvet R, Johansen JN, Hofte H, Laufs P, Pelloux J, Mouille G (2008) Arabidopsis Phyllotaxis Is Controlled by the Methyl-Esterification Status of Cell-Wall Pectins. Curr Biol 18:1943–1948

    Article  PubMed  CAS  Google Scholar 

  • Petrasek J, Mravec J, Bouchard R, Blakeslee JJ, Abas M, Seifertova D, Wisniewska J, Tadele Z, Kubes M, Covanova M, Dhonukshe P, Skupa P, Benkova E, Perry L, Krecek P, Lee OR, Fink GR, Geisler M, Murphy AS, Luschnig C, Zazimalova E, Friml J (2006) PIN proteins perform a rate-limiting function in cellular auxin efflux. Science 312:914–918

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Wittwer F, Mandel T, Kuhlemeier C (1998) Localized upregulation of a new expansin gene predicts the site of leaf formation in the tomato meristem. Plant Cell 10:1427–1437

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Frenz M, Mandel T, Kuhlemeier C (2003a) Microsurgical and laser ablation analysis of interactions between the zones and layers of the tomato shoot apical meristern. Development 130:4073–4083

    Article  PubMed  CAS  Google Scholar 

  • Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J, Kuhlemeier C (2003b) Regulation of phyllotaxis by polar auxin transport. Nature 426:255–260

    Article  PubMed  CAS  Google Scholar 

  • Scanlon MJ (2003) The polar auxin transport inhibitor N-1-naphthylphthalamic acid disrupts leaf initiation, KNOX protein regulation, and formation of leaf margins in maize. Plant Physiol 133:597–605

    Article  PubMed  CAS  Google Scholar 

  • Schoute JC (1913) Beitrage zur Blattstellunglehre. I. Die Theorie. Recueilde Travaux Botaniques Neerlandais 10:153–339

    Google Scholar 

  • Smith RS, Guyomarc’h S, Mandel T, Reinhardt D, Kuhlemeier C, Prusinkiewicz P (2006) A plausible model of phyllotaxis. Proc Natl Acad Sci U S A 103:1301–1306

    Article  PubMed  CAS  Google Scholar 

  • Snow M, Snow R (1931) Experiments on phyllotaxis. I. The effect of isolating a primordium. Philos Trans R Soc Lond Ser B-Biol Sci 221B:1–43

    Google Scholar 

  • Snow M, Snow R (1962) A theory of the regulation of phyllotaxis based on Lupinus albus. Philos Trans R Soc Lond Ser B-Biol Sci 244B:483–513

    Article  Google Scholar 

  • To JPC, Haberer G, Ferreira FJ, Deruere J, Mason MG, Schaller GE, Alonso JM, Ecker JR, Kieber JJ (2004) Type-A Arabidopsis response regulators are partially redundant negative regulators of cytokinin signaling. Plant Cell 16:658–671

    Article  PubMed  CAS  Google Scholar 

  • Veit B, Briggs SP, Schmidt RJ, Yanofsky MF, Hake S (1998) Regulation of leaf initiation by the terminal ear 1 gene of maize. Nature 393:166–168

    Article  PubMed  CAS  Google Scholar 

  • Wang JW, Schwab R, Czech B, Mica E, Weigel D (2008) Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 20:1231–1243

    Article  PubMed  CAS  Google Scholar 

  • Wardlaw CW (1949) Experiments on organogenesis in ferns. Growth 13((suppl)):93–131

    Google Scholar 

  • Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmulling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550

    Article  PubMed  CAS  Google Scholar 

  • Werner T, Motyka V, Strnad M, Schmulling T (2001) Regulation of plant growth by cytokinin. Proc Natl Acad Sci U S A 98:10487–10492

    Article  PubMed  CAS  Google Scholar 

  • Wisniewska J, Xu J, Seifertova D, Brewer PB, Ruzicka K, Blilou I, Rouquie D, Scheres B, Friml J (2006) Polar PIN localization directs auxin flow in plants. Science 312:883–883

    Article  PubMed  CAS  Google Scholar 

  • Wyrzykowska J, Fleming A (2003) Cell division pattern influences gene expression in the shoot apical meristem. Proc Natl Acad Sci U S A 100:5561–5566

    Article  PubMed  CAS  Google Scholar 

  • Wyrzykowska J, Pien S, Shen WH, Fleming AJ (2002) Manipulation of leaf shape by modulation of cell division. Development 129:957–964

    PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We thank Robyn Johnston and Joo-hyuk Park for valuable comments on this manuscript. This work was supported by Korea Research Foundation (C00251). S.-i.Y. and B.-h.L. are thankful for their funding by the Brain Korea 21 Fellowship from the Korean Ministry of Education, Science, and Technology and the Sogang University Research Grant of 2008 (200810022.01), respectively. Work in DJ lab on phyllotaxy is supported by the National Science Foundation grant, IOB-0642707.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Byeong-ha Lee.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, Bh., Yu, Si. & Jackson, D. Control of Plant Architecture: The Role of Phyllotaxy and Plastochron. J. Plant Biol. 52, 277–282 (2009). https://doi.org/10.1007/s12374-009-9034-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12374-009-9034-x

Keywords

Navigation