Journal of Plant Biology

, Volume 52, Issue 3, pp 177–185 | Cite as

The LEAFY Floral Regulators in Angiosperms: Conserved Proteins with Diverse Roles

  • Edwige Moyroud
  • Gabrielle Tichtinsky
  • François ParcyEmail author


Genetic analyses in model angiosperms have shown that the LEAFY/FLORICAULA transcription factor plays a central role in flower development. In Arabidopsis, LEAFY (LFY) triggers the development of floral meristems and controls their patterning through the activation of floral organ identity genes. Several recent reports enlighten the structure and function of this conserved protein but also illustrate the variety of roles it plays in different angiosperms.


LEAFY Angiosperms Flower Evolution Architecture 



We thank M. Blazquez, E. Gomez-Minguet, M. Monniaux, T. Spencer, and S. Perry for the critical reading of the manuscript. E.M. is supported by a Ph.D. grant from the French Ministry of Research. The work in our laboratory is supported by the ANR-07-BLAN-0211-01 (“Plant TF-Code”) and ATIP+ from the CNRS.


  1. Aagaard JE, Willis JH, Phillips PC (2006) Relaxed selection among duplicate floral regulatory genes in Lamiales. J Mol Evol 63:493–503PubMedCrossRefGoogle Scholar
  2. Ahearn KP, Johnson HA, Weigel D, Wagner DR (2001) NFL1, a Nicotiana tabacum LEAFY-like gene, controls meristem initiation and floral structure. Plant Cell Physiol 42:1130–1139PubMedCrossRefGoogle Scholar
  3. Aravind L, Anantharaman V, Balaji S, Babu MM, Iyer LM (2005) The many faces of the helix-turn-helix domain: transcription regulation and beyond. FEMS Microbiol Rev 29:231–262PubMedCrossRefGoogle Scholar
  4. Archambault A, Bruneau A (2004) Phylogenetic utility of the LEAFY/FLORICAULA gene in the Caesalpinioideae (Leguminosae): gene duplication and a novel insertion. Syst Bot 29:609–626CrossRefGoogle Scholar
  5. Baum DA, Yoon HS, Oldham RL (2005) Molecular evolution of the transcription factor LEAFY in Brassicaceae. Mol Phylogenet Evol 37:1–14PubMedCrossRefGoogle Scholar
  6. Benlloch R, Berbel A, Serrano-Mislata A, Madueno F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot (Lond) 100:659–676CrossRefGoogle Scholar
  7. Bharathan G, Janssen BJ, Kellogg EA, Sinha N (1999) Phylogenetic relationships and evolution of the KNOTTED class of plant homeodomain proteins. Mol Biol Evol 16:553–563PubMedGoogle Scholar
  8. Blazquez MA, Soowal LN, Lee I, Weigel D (1997) LEAFY expression and flower initiation in Arabidopsis. Development 124:3835–3844PubMedGoogle Scholar
  9. Blazquez MA, Ferrandiz C, Madueno F, Parcy F (2006) How floral meristems are built. Plant Mol Biol 60:855–870PubMedCrossRefGoogle Scholar
  10. Blein T, Pulido A, Vialette-Guiraud A, Nikovics K, Morin H, Hay A, Johansen IE, Tsiantis M, Laufs P (2008) A conserved molecular framework for compound leaf development. Science 322:1835–1839PubMedCrossRefGoogle Scholar
  11. Bomblies K, Doebley JF (2005) Molecular evolution of FLORICAULA/LEAFY orthologs in the Andropogoneae (Poaceae). Mol Biol Evol 22:1082–1094PubMedCrossRefGoogle Scholar
  12. Bomblies K, Doebley JF (2006) Pleiotropic effects of the duplicate maize FLORICAULA/LEAFY genes zfl1 and zfl2 on traits under selection during maize domestication. Genetics 172:519–531PubMedCrossRefGoogle Scholar
  13. Bomblies K, Wang RL, Ambrose BA, Schmidt RJ, Meeley RB, Doebley J (2003) Duplicate FLORICAULA/LEAFY homologs zfl1 and zfl2 control inflorescence architecture and flower patterning in maize. Development 130:2385–2395PubMedCrossRefGoogle Scholar
  14. Breitling R, Gerber JK (2000) Origin of the paired domain. Dev Genes Evol 210:644–650PubMedCrossRefGoogle Scholar
  15. Breuninger H, Rikirsch E, Hermann M, Ueda M, Laux T (2008) Differential expression of WOX genes mediates apical-basal axis formation in the Arabidopsis embryo. Dev Cell 14:867–876PubMedCrossRefGoogle Scholar
  16. Busch A, Gleissberg S (2003) EcFLO, a FLORICAULA-like gene from Eschscholzia californica is expressed during organogenesis at the vegetative shoot apex. Planta 217:841–848PubMedCrossRefGoogle Scholar
  17. Busch MA, Bomblies K, Weigel D (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285:585–587PubMedCrossRefGoogle Scholar
  18. Carpenter R, Coen ES (1990) Floral homeotic mutations produced by transposon-mutagenesis in Antirrhinum majus. Genes Dev 4:1483–1493PubMedCrossRefGoogle Scholar
  19. Carpenter R, Coen ES (1995) Transposon induced chimeras show that floricaula, a meristem identity gene, acts non-autonomously between cell layers. Development 121:19–26PubMedGoogle Scholar
  20. Chae E, Tan QK, Hill TA, Irish VF (2008) An Arabidopsis F-box protein acts as a transcriptional co-factor to regulate floral development. Development 135:1235–1245PubMedCrossRefGoogle Scholar
  21. Chen L, Cheng JC, Castle L, Sung ZR (1997) EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9:2011–2024PubMedCrossRefGoogle Scholar
  22. Chou ML, Haung MD, Yang CH (2001) EMF genes interact with late-flowering genes in regulating floral initiation genes during shoot development in Arabidopsis thaliana. Plant Cell Physiol 42:499–507PubMedCrossRefGoogle Scholar
  23. Chujo A, Zhang Z, Kishino H, Shimamoto K, Kyozuka J (2003) Partial conservation of LFY function between rice and Arabidopsis. Plant Cell Physiol 44:1311–1319PubMedCrossRefGoogle Scholar
  24. Coen ES, Romero JM, Doyle S, Elliott R, Murphy G, Carpenter R (1990) floricaula: a homeotic gene required for flower development in Antirrhinum majus. Cell 63:1311–1322PubMedCrossRefGoogle Scholar
  25. Conaway RC, Brower CS, Conaway JW (2002) Emerging roles of ubiquitin in transcription regulation. Science 296:1254–1258PubMedCrossRefGoogle Scholar
  26. Cronk QC (2001) Plant evolution and development in a post-genomic context. Nat Rev Genet 2:607–619PubMedCrossRefGoogle Scholar
  27. Dong ZC, Zhao Z, Liu CW, Luo JH, Yang J, Huang WH, Hu XH, Wang TL, Luo D (2005) Floral patterning in Lotus japonicus. Plant Physiol 137:1272–1282PubMedCrossRefGoogle Scholar
  28. Feschotte C (2008) Transposable elements and the evolution of regulatory networks. Nat Rev Genet 9:397–405PubMedCrossRefGoogle Scholar
  29. Frohlich MW, Chase MW (2007) After a dozen years of progress the origin of angiosperms is still a great mystery. Nature 450:1184–1189PubMedCrossRefGoogle Scholar
  30. Hames C, Ptchelkine D, Grimm C, Thevenon E, Moyroud E, Gerard F, Martiel JL, Benlloch R, Parcy F, Muller CW (2008) Structural basis for LEAFY floral switch function and similarity with helix-turn-helix proteins. EMBO J 27:2628–2637PubMedCrossRefGoogle Scholar
  31. Hantke SS, Carpenter R, Coen ES (1995) Expression of floricaula in single cell layers of periclinal chimeras activates downstream homeotic genes in all layers of floral meristems. Development 121:27–35PubMedGoogle Scholar
  32. Hofer J, Turner L, Hellens R, Ambrose M, Matthews P, Michael A, Ellis N (1997) UNIFOLIATA regulates leaf and flower morphogenesis in pea. Curr Biol 7:581–587PubMedCrossRefGoogle Scholar
  33. Huala E, Sussex IM (1992) LEAFY interacts with floral homeotic genes to regulate Arabidopsis floral development. Plant Cell 4:901–903PubMedCrossRefGoogle Scholar
  34. Jansen RK, Cai Z, Raubeson LA, Daniell H, Depamphilis CW, Leebens-Mack J, Muller KF, Guisinger-Bellian M, Haberle RC, Hansen AK, Chumley TW, Lee SB, Peery R, McNeal JR, Kuehl JV, Boore JL (2007) Analysis of 81 genes from 64 plastid genomes resolves relationships in angiosperms and identifies genome-scale evolutionary patterns. Proc Natl Acad Sci U S A 104:19369–19374PubMedCrossRefGoogle Scholar
  35. Kato K, Ohta K, Komata Y, Araki T, Kanahama K, Kanahama Y (2005) Morphological and molecular analyses of the tomato floral mutant leafy inflorescence, a new allele of falsiflora. Plant Sci 169:131–138CrossRefGoogle Scholar
  36. Kelly AJ, Bonnlander MB, Meeks-Wagner DR (1995) NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7:225–234PubMedCrossRefGoogle Scholar
  37. Kempin SA, Mandel MA, Yanofsky MF (1993) Conversion of perianth into reproductive organs by ectopic expression of the tobacco floral homeotic gene NAG1. Plant Physiol 103:1041–1046PubMedCrossRefGoogle Scholar
  38. Kim PM, Lu LJ, Xia Y, Gerstein MB (2006) Relating three-dimensional structures to protein networks provides evolutionary insights. Science 314:1938–1941PubMedCrossRefGoogle Scholar
  39. Kodadek T, Sikder D, Nalley K (2006) Keeping transcriptional activators under control. Cell 127:261–264PubMedCrossRefGoogle Scholar
  40. Lamb RS, Hill TA, Tan QK, Irish VF (2002) Regulation of APETALA3 floral homeotic gene expression by meristem identity genes. Development 129:2079–2086PubMedGoogle Scholar
  41. Landau M, Mayrose I, Rosenberg Y, Glaser F, Martz E, Pupko T, Ben-Tal N (2005) ConSurf 2005: the projection of evolutionary conservation scores of residues on protein structures. Nucleic Acids Res 33:W299–302PubMedCrossRefGoogle Scholar
  42. Laux T, Mayer KFX, Berger J, Jürgens G (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122:87–96PubMedGoogle Scholar
  43. Liljegren SJ, Gustafson-Brown C, Pinyopich A, Ditta GS, Yanofsky MF (1999) Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11:1007–1018PubMedCrossRefGoogle Scholar
  44. Lipford JR, Deshaies RJ (2003) Diverse roles for ubiquitin-dependent proteolysis in transcriptional activation. Nat Cell Biol 5:845–850PubMedCrossRefGoogle Scholar
  45. Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142PubMedCrossRefGoogle Scholar
  46. Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803PubMedCrossRefGoogle Scholar
  47. Longabaugh WJ, Davidson EH, Bolouri H (2009) Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim Biophys Acta 1789:363–374PubMedGoogle Scholar
  48. Maizel A, Busch MA, Tanahashi T, Perkovic J, Kato M, Hasebe M, Weigel D (2005) The floral regulator LEAFY evolves by substitutions in the DNA binding domain. Science 308:260–263PubMedCrossRefGoogle Scholar
  49. Martinez-Castilla LP, Alvarez-Buylla ER (2003) Adaptive evolution in the Arabidopsis MADS-box gene family inferred from its complete resolved phylogeny. Proc Natl Acad Sci U S A 100:13407–13412PubMedCrossRefGoogle Scholar
  50. Molinero-Rosales N, Jamilena M, Zurita S, Gomez P, Capel J, Lozano R (1999) FALSIFLORA, the tomato orthologue of FLORICAULA and LEAFY, controls flowering time and floral meristem identity. Plant J 20:685–693PubMedCrossRefGoogle Scholar
  51. Moore MJ, Bell CD, Soltis PS, Soltis DE (2007) Using plastid genome-scale data to resolve enigmatic relationships among basal angiosperms. Proc Natl Acad Sci U S A 104:19363–19368PubMedCrossRefGoogle Scholar
  52. Ordidge M, Chiurugwi T, Tooke F, Battey NH (2005) LEAFY, TERMINAL FLOWER1 and AGAMOUS are functionally conserved but do not regulate terminal flowering and floral determinacy in Impatiens balsamina. Plant J 44:985–1000PubMedCrossRefGoogle Scholar
  53. Parcy F (2005) Flowering: a time for integration. Int J Dev Biol 49:585–593PubMedCrossRefGoogle Scholar
  54. Parcy F, Nilsson O, Busch MA, Lee I, Weigel D (1998) A genetic framework for floral patterning. Nature 395:561–566PubMedCrossRefGoogle Scholar
  55. Parcy F, Bomblies K, Weigel D (2002) Interaction of LEAFY, AGAMOUS and TERMINAL FLOWER1 in maintaining floral meristem identity in Arabidopsis. Development 129:2519–2527PubMedGoogle Scholar
  56. Pouteau S, Nicholls D, Tooke F, Coen E, Battey N (1997) The induction and maintenance of flowering in impatiens. Development 124:3343–3351PubMedGoogle Scholar
  57. Rao NN, Prasad K, Kumar PR, Vijayraghavan U (2008) Distinct regulatory role for RFL, the rice LFY homolog, in determining flowering time and plant architecture. Proc Natl Acad Sci U S A 105:3646–3651PubMedCrossRefGoogle Scholar
  58. Ratcliffe OJ, Amaya I, Vincent CA, Rothstein S, Carpenter R, Coen ES, Bradley DJ (1998) A common mechanism controls the life cycle and architecture of plants. Development 125:1609–1615PubMedGoogle Scholar
  59. Robles P, Pelaz S (2005) Flower and fruit development in Arabidopsis thaliana. Int J Dev Biol 49:633–643PubMedCrossRefGoogle Scholar
  60. Rottmann WH, Meilan R, Sheppard LA, Brunner AM, Skinner JS, Ma C, Cheng S, Jouanin L, Pilate G, Strauss SH (2000) Diverse effects of overexpression of LEAFY and PTLF, a poplar (Populus) homolog of LEAFY/FLORICAULA, in transgenic poplar and Arabidopsis. Plant J 22:235–245PubMedCrossRefGoogle Scholar
  61. Rudall PJ, Remizowa MV, Prenner G, Prychid CJ, Tuckett RE, Sokoloff DD (2009) Nonflowers near the base of extant angiosperms? Spatiotemporal arrangement of organs in reproductive units of Hydatellaceae and its bearing on the origin of the flower. Am J Bot 96:67–82CrossRefGoogle Scholar
  62. Ruiz-Garcia L, Madueno F, Wilkinson M, Haughn G, Salinas J, Martinez-Zapater JM (1997) Different roles of flowering-time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9:1921–1934PubMedCrossRefGoogle Scholar
  63. Saddic LA, Huvermann B, Bezhani S, Su Y, Winter CM, Kwon CS, Collum RP, Wagner D (2006) The LEAFY target LMI1 is a meristem identity regulator and acts together with LEAFY to regulate expression of CAULIFLOWER. Development 133:1673–1682PubMedCrossRefGoogle Scholar
  64. Schmid M, Uhlenhaut NH, Godard F, Demar M, Bressan R, Weigel D, Lohmann JU (2003) Dissection of floral induction pathways using global expression analysis. Development 130:6001–6012PubMedCrossRefGoogle Scholar
  65. Schultz EA, Haughn GW (1991) LEAFY, a homeotic gene that regulates inflorescence development in Arabidopsis. Plant Cell 3:771–781PubMedCrossRefGoogle Scholar
  66. Sessions A, Yanofsky MF, Weigel D (2000) Cell–cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782PubMedCrossRefGoogle Scholar
  67. Shu G, Amaral W, Hileman LC, Baum DA (2000) LEAFY and the evolution of rosette flowering in violet cress (Jonopsidium acaule, Brassicaceae). Am J Bot 87:634–641PubMedCrossRefGoogle Scholar
  68. Souer E, van der Krol A, Kloos D, Spelt C, Bliek M, Mol J, Koes R (1998) Genetic control of branching pattern and floral identity during petunia inflorescence development. Development 125:733–742PubMedGoogle Scholar
  69. Souer E, Rebocho AB, Bliek M, Kusters E, de Bruin RA, Koes R (2008) Patterning of inflorescences and flowers by the F-Box protein DOUBLE TOP and the LEAFY homolog ABERRANT LEAF AND FLOWER of petunia. Plant Cell 20:2033–2048PubMedCrossRefGoogle Scholar
  70. Southerton SG, Strauss SH, Olive MR, Harcourt RL, Decroocq V, Zhu X, Llewellyn DJ, Peacock WJ, Dennis ES (1998) Eucalyptus has a functional equivalent of the Arabidopsis floral meristem identity gene LEAFY. Plant Mol Biol 37:897–910PubMedCrossRefGoogle Scholar
  71. Theissen G, Melzer R (2007) Molecular mechanisms underlying origin and diversification of the angiosperm flower. Ann Bot (Lond) 100:603–619CrossRefGoogle Scholar
  72. Wada M, Cao QF, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577PubMedCrossRefGoogle Scholar
  73. Wagner D, Sablowski RW, Meyerowitz EM (1999) Transcriptional activation of APETALA1 by LEAFY. Science 285:582–584PubMedCrossRefGoogle Scholar
  74. Wagner D, Wellmer F, Dilks K, William D, Smith MR, Kumar PP, Riechmann JL, Greenland AJ, Meyerowitz EM (2004) Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J 39:273–282PubMedCrossRefGoogle Scholar
  75. Wang H, Chen J, Wen J, Tadege M, Li G, Liu Y, Mysore KS, Ratet P, Chen R (2008) Control of compound leaf development by FLORICAULA/LEAFY ortholog SINGLE LEAFLET1 in Medicago truncatula. Plant Physiol 146:1759–1772PubMedCrossRefGoogle Scholar
  76. Weigel D, Meyerowitz EM (1993) LEAFY controls meristem identity in Arabidopsis. In: Amasino R (ed) Cellular communications in plants. Plenum, New York, pp 115–122Google Scholar
  77. Weigel D, Nilsson O (1995) A developmental switch sufficient for flower initiation in diverse plants. Nature 377:495–500PubMedCrossRefGoogle Scholar
  78. Weigel D, Alvarez J, Smyth DR, Yanofsky MF, Meyerowitz EM (1992) LEAFY controls floral meristem identity in Arabidopsis. Cell 69:843–859PubMedCrossRefGoogle Scholar
  79. William DA, Su Y, Smith MR, Lu M, Baldwin DA, Wagner D (2004) Genomic identification of direct target genes of LEAFY. Proc Natl Acad Sci U S A 101:1775–1780PubMedCrossRefGoogle Scholar
  80. Yoon HS, Baum DA (2004) Transgenic study of parallelism in plant morphological evolution. Proc Natl Acad Sci U S A 101:6524–6529PubMedCrossRefGoogle Scholar
  81. Yu H, Xu Y, Tan EL, Kumar PP (2002) AGAMOUS-LIKE 24, a dosage-dependent mediator of the flowering signals. Proc Natl Acad Sci U S A 99:16336–16341PubMedCrossRefGoogle Scholar
  82. Yu H, Ito T, Wellmer F, Meyerowitz EM (2004) Repression of AGAMOUS-LIKE 24 is a crucial step in promoting flower development. Nat Genet 36:157–161PubMedCrossRefGoogle Scholar

Copyright information

© The Botanical Society of Korea 2009

Authors and Affiliations

  • Edwige Moyroud
    • 1
  • Gabrielle Tichtinsky
    • 1
  • François Parcy
    • 1
    Email author
  1. 1.Laboratoire Physiologie Cellulaire Végétale, UMR5168, Centre National de la Recherche Scientifique, Commissariat à l’énergie atomique, Institut National de la Recherche AgronomiqueUniversity Joseph FourierGrenoble Cedex 9France

Personalised recommendations