Skip to main content
Log in

The Geomorphodiversity of Cerro Colorado (Córdoba, Argentina): A Key Factor in Geo-Cultural Heritage Assessment

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

The Cerro Colorado Natural and Cultural Reserve, Córdoba, Argentina, is well known for its impressive rock paintings on sandstone formations. While previous research in the area has focused mainly on archaeological sites, this study aims to provide geomorphological data through an updated landform inventory and geomorphometric diversity index map, as the basis for managing the geo-cultural heritage area and potential sites for geo-tourism and geo-education. ALOS PALSAR DEMs at 12.5 m spatial resolution were used as a primary data source for mapping the study area. Features were digitally drawn into a geographical information system (GIS) and checked during a field survey. The results indicate that the landforms and points of geological interest give this region high geodiversity, which underlines the importance of including a geoperspective in the protection of nature and a sustainable use of the territory. The cavernous landforms contain native rock paintings, which make them unique in the region. The conservation of archaeological sites requires geomorphological knowledge in order to prevent degradation and loss of cultural and natural heritage. In addition to scientific interest, the history of the landscape through its geodiversity is relevant for educational, communicational, and geo-tourism purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alahuhta J, Ala-Hulkko T, Tukiainen H, Purola L, Akujärvi A, Lampinen R, Hjort J (2018) The role of geodiversity in providing ecosystem services at broad scales. Ecol Ind 91:47–56

    Article  Google Scholar 

  • Araneda Beltrán CA (2022) Diversidad funcional de especies de plantas no-nativas a lo largo de un gradient altitudinal en Los Andes de Chile central. http://repositorio.udec.cl/handle/11594/9916

  • Argyriou AV, Sarris A, Teeuw RM (2016) Using geoinformatics and geomorphometrics to quantify the geodiversity of Crete, Greece. Int J Appl Earth Obs Geoin 51:47–59

  • Astini R, Del Papa C (2014) Cubierta sedimentaria paleozoica superior. In Geología y recursos naturales de la provincia de Córdoba I. Relatorio del Congreso Geológico Argentino 19:393–420. Asociación Geológica Argentina Córdoba

  • Astini RA, Martina F, Ezpeleta M, Davila FM, Cawood PA (2009) Chronology from rifting to foreland basin in the Paganzo basin (Argentina), and a reappraisal on the “Eo-and neohercinian” tectonics along the western Gondwana XII Congreso Geologico Chileno. Ext Abstr S9–010:1–4

    Google Scholar 

  • Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F (2012) Impacts of Climate Change on the Future of Biodiversity. Ecol Lett 15:365–377

    Article  Google Scholar 

  • Bertolino SR, Poire DG, Carignano C (2000) Primer registro de sedimentitas marinas terciarias aflorantes en las Sierras Pampeanas de Córdoba, Argentina. Rev Asoc Geol Argent 55:121–124

    Google Scholar 

  • Bétard F (2013) Patch-scale relationships between geodiversity and biodiversity in hard rock quarries: case study from a disused quartzite quarry in NW France. Geoheritage 5(2):59–71

    Article  Google Scholar 

  • Bolle E (1987) Parque arqueológico y natural de Cerro Colorado, Dpto. Tulumba, Provincia de Córdoba, República Argentina. Relevamiento de sitios con arte rupestre y análisis de los motivos pictóricos. Zona del Cerro Condorhuasi. Primera Parte: Nivel A Sitios Casa del Sol 1 al 16. Publicaciones del Instituto de Antropología, XLIV 9–102

  • Boretto GM, Cioccale M, Carignano C, Gordillo S, Recalde A, Tissera L (2021) Sandstone geomorphology: Cerro Colorado, Sierras Pampeanas, Córdoba, Argentina. In advances in geomorphology and quaternary studies in Argentina: Proceedings of the seventh argentine geomorphology and quaternary studies congress (pp. 30-52). Springer International Publishing

  • Boretto G, Gordillo S, Cioccale M, Benitez Y, Morán G (2022) Geosite Assessment in Northern Patagonia (Argentina): a Case Study of the Coastal Geomorphology of the Caleta de Los Loros Natural Protected Area. Geoheritage 14(2):73

    Article  Google Scholar 

  • Botta-Dukát Z (2005) Rao’s quadratic entropy as a measure of functional diversity based on multiple traits. J Veg Sci 16:533–540. https://doi.org/10.1111/j.1654-1103,2005.tb02393.x

    Article  Google Scholar 

  • Bridge J, Demicco R (2008) Earth surface processes, landforms and sediment deposits. Cambridge University Press

    Book  Google Scholar 

  • Brilha J (2016) Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage 8:119–134

    Article  Google Scholar 

  • Brilha J, Gray M, Pereira DI, Pereira P (2018) Geodiversity: an integrative review as a contribution to the sustainable management of the whole of nature. Environ Sci Pol 86:19–28

    Article  Google Scholar 

  • Büdel B, Weber B, Kühl M, Pfanz H, Sültemeyer D, Wessels D (2004) Reshaping of sandstone surfaces by cryptoendolithic cyanobacteria: bioalkalization causes chemical weathering in arid landscapes. Geobiology 2:261–268. https://doi.org/10.1111/j.1472-4677.2004.00040.x

    Article  Google Scholar 

  • Candiani JC, Stuart-Smith P, Gaido F, Carignano C, Miró H (2001) Mapa geológico 3163-I Jesús María. Carta Geológica Rep. Argentina 1:250.000. SEGEMAR, Buenos Aires

  • Candiani J (2010) Application of geophysics in the aerial mapping of magmatic complexes of the Sierra de Famatina in La Rioja, Argentina

  • CAPITANELLI R (1979) Clima. In: Vázquez J, Miatello R, Roqué M (eds) Geografía física de la Provincia de Córdoba. Boldt, Buenos Aires, pp 45–138 

  • Carignano CA (1999) Late Pleistocene to recent climate change in Córdoba Province, Argentina: Geomorphological evidence. Quatern Int 57(58):117–134

    Article  Google Scholar 

  • Carignano C, Kröhling D, Degiovanni S, Cioccale M (2014) Geología de Superficie, Geomorfología Relatorio del XIX Congreso Geológico Argentino. Córdoba 747–821 

  • Colqui EP (2016) Primeras aproximaciones al análisis del arte rupestre de Quebrada Norte en el contexto de Cerro Colorado (Sierras del Norte, Córdoba). La Zaranda de Ideas 14(2):73–92

  • Coratza P, Reynard E, Zwoliński Z (2018) Geodiversity and geoheritage: Crossing disciplines and approaches. Geoheritage 10:525–526

    Article  Google Scholar 

  • Coronato A, Schwarz S (2022a) Approaching geodiversity and geoconservation in Argentina. Int J Geoheritage Parks 10(4):597–615

    Article  Google Scholar 

  • Coronato A, Schwarz S, Barrera FF (2022b) Glacial landforms as geodiversity resources for geotourism in Tierra del Fuego, Argentina. Quaest Geogr 41(1):5–24

    Google Scholar 

  • Da Silva JM, Cordeiro Santos LJ, Oka-Fiori C (2019) Spatial correlation analysis between topographic parameters for defining the geomorphometric diversity index: application in the environmental protection area of the Serra da Esperança (state of Parana, ´ Brazil). Environ Earth Sci 78:356. https://doi.org/10.1007/s12665-019-8357-2

    Article  Google Scholar 

  • Díaz I, Recalde A (2019) Las dimensiones de la muerte en las Sierras del Norte de Córdoba: una investigación bioarqueológica de los patrones de entierro y modos de vida prehispánicos en cerro colorado. Resultados preliminares. In Libro de resúmenes del XX Congreso Nacional de Arqueología Argentina, Córdoba, pp 1271–1272

  • dos Santos DS, Mansur KL, de Arruda Jr ER, Dantas ME, Shinzato E (2019) Geodiversity mapping and relationship with vegetation: A regional-scale application in SE Brazil. Geoheritage 11:399–415

    Article  Google Scholar 

  • Duszyński F, Migoń P (2020) Sandstone landforms of the high weald. Landscapes and Landforms of England and Wales 103–118

  • Enkelmann E, Ridgway KD, Carignano C, Linnemann U (2014) A thermochronometric view into an ancient landscape: Tectonic setting, development, and inversion of the Paleozoic eastern Paganzo basin, Argentina. Lithosphere 6:93–107

    Article  Google Scholar 

  • Evans IS (2013) Land surface derivatives: history, calculation and further development. In: Proceedings of geomorphometry 16–20

  • Fookes PG, Lee EM (2007) Climate variation: a simple geological perspective. Geol Today 23:66–73

    Article  Google Scholar 

  • Gardner GA (1931) Rock paintings of NorthWest Córdoba. Oxford University Press, pp 230

  • González AR (1963) Las pinturas indígenas del Cerro Colorado. Revista Gacetika 63:14–19

    Google Scholar 

  • Gordon JE, Barron HF, Hansom JD, Thomas MF (2012) Engaging with geodiversity—why it matters. Proc Geol Assoc 123(1):1–6

    Article  Google Scholar 

  • Goudie AS (2013) Arid and semi-arid geomorphology. Cambridge University Press

    Book  Google Scholar 

  • Goudie A (2002) Great warm deserts of the world: landscapes and evolution, Vol. 1. Oxford University Press

  • Grab SW, Goudie AS, Viles HA, Webb N (2011) Sandstone geomorphology of the golden gate highlands national park, South Africa, in a global context. Koedoe 53:01–14

    Article  Google Scholar 

  • Grab S (2015) Sandstone landforms of the Karoo Basin: Naturally sculpted rock. Landscapes and Landforms of South Africa. Springer, Cham, pp 11–21

    Chapter  Google Scholar 

  • Gray M (2004) Geodiversity: Valuing and Conserving Abiotic Nature. Wiley, London

    Google Scholar 

  • Gray M (2013) Geodiversity: Valuing and conserving abiotic nature, second ed. Wiley Blackwell, Chichester, UK

  • Gray M (2018) Geodiversity: the backbone of geoheritage and geoconservation. In Geoheritage. Elsevier, pp 13–25

  • Groenewald GH (1986) Geology of the Golden Gate Highlands National Park. Koedoe 29:165–181

    Article  Google Scholar 

  • Gutiérrez PR, Ottone EG, Japas SM (2006) Léxico Estratigráfico de la Argentina. Volumen VII. Pérmico

  • Hall K, Meiklejohn I, Arocena J (2007) The thermal responses of rock art pigments: Implications for rock art weathering in southern Africa. Geomorphology 91:132–145

    Article  Google Scholar 

  • Hernanz A, Gavira-Vallejo JM, Ruiz-López JF (2006) Introduction to Raman microscopy of prehistoric rock paintings from the Sierra de las Cuerdas, Cuenca, Spain. J Raman Spectroscopy: an International Journal for Original Work in All Aspects of Raman Spectroscopy, including Higher Order Processes, and Also Brillouin and Rayleigh Scattering 37:1054–1062

    Article  CAS  Google Scholar 

  • Herrero S (1999) Tafonización en las areniscas del Cerro Colorado (Sierra Norte, provincia de Córdoba), con especial referencia a los aleros con pinturas rupestres. Rev Asoc Geol Argent 54:123–131

    Google Scholar 

  • Herrero SA (2000) Procesos sedimentarios holocenos en la cuenca del Río Los Tártagos (Sierra Norte, Provincia de Córdoba): implicancias paleoclimáticas y geomorfológicas. Tesis doctoral, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, 2, p 229. Unpublished

  • Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115(1–2):109–116

    Article  Google Scholar 

  • Hjort J, Heikkinen RK, Luoto M (2012) Inclusion of explicit measures of geodiversity improve biodiversity models in a boreal landscape. Biodivers Conserv 21(13):3487–3506

    Article  Google Scholar 

  • Hoyos LE, Cingolani AM, Zak MR, Vaieretti MV, Gorla DE, Cabido MR (2013) Deforestation and precipitation patterns in the arid Chaco forests of central Argentina. Appl Veg Sci 16(2):260–271

    Article  Google Scholar 

  • Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194. https://doi.org/10.1007/s10346-013-0436-y

    Article  Google Scholar 

  • Iriondo M (2010) Geología del Cuaternario en la Argentina. Museo provincial de ciencias naturales Florentino Ameghino, Santa Fe, pp 347

  • Jačková K, Romportl D (2008) The relationship between geodiversity and habitat richness in Sumava National Park and Krivoklatsko Pla (Czech Republic): a quantitative analysis approach. J Land Ecol 1(1):23–38. https://doi.org/10.2478/v10285-012-0003-6

    Article  Google Scholar 

  • Jankowski P, Najwer A, Zwoliński Z, Niesterowicz J (2020) Geodiversity assessment with crowdsourced data and spatial multicriteria analysis. ISPRS Int J Geo Inf 9(12):716

    Article  Google Scholar 

  • Jahan R, Schickhoff U, Böhner J, Conrad O (2018) Quantification of geodiversity of Sikkim (India) and its implications for conservation and disaster risk reduction research. Climate change, extreme events and disaster risk reduction: towards sustainable development goals 279–294

  • Jonasson C, Gordon JE, Kociánová M, Josefsson M, Dvorák IJ, Thompson DBA (2005) Links between geodiversity and biodiversity in European mountains: case studies from Sweden, Scotland and the Czech Republic. The mountains of Europe: conservation, management and initiatives. The stationery office, edinburgh, pp 55–70

  • Kasprzak M, Migoń P (2015) DEM-based analysis of geomorphology of a stepped sandstone plateau, stołowe mountains (SW Poland). Zeitschrift für Geomorphologie 59(1):245–268

  • Kitching JW, Raath MA (1984) Fossils from the Elliot and Clarens Formations (Karoo Sequence) of the northeastern Cape, Orange Free State and Lesotho, and a suggested biozonation based on tetrapods. Palaeoentologia Africana 25:111–125

    Google Scholar 

  • Kori E, Onyango Odhiambo BD, Chikoore H (2019) A geomorphodiversity map of the Soutpansberg Range, South Africa. Landform Analysis 38

  • Kot R (2018) A comparison of results from geomorphological diversity evaluation methods in the Polish Lowland (Toruń Basin and Chełmno Lakeland). Geografisk Tidsskrift-Danish J Geogr 118(1):17–35

    Article  Google Scholar 

  • Kozłowski S, Migaszewski MZ, Gałuszka A (2004) Geodiversity conservation-conserving our geological heritage. Pol Geol Inst Spec Pap 13:13–20

    Google Scholar 

  • Kröhling D, Carignano CA (2014) La estratigrafía de los depósitos sedimentarios cuaternarios. In relatorio del congreso geológico Argentino 19:673–724

  • Lamb MP, Howard AD, Johnson J, Whipple KX, Dietrich WE, Perron JT (2006) Can springs cut canyons into rock? J Geophys Res 111:EO7002. https://doi.org/10.1029/2005JE002663

    Article  Google Scholar 

  • Lausch A, Schaepman ME, Skidmore AK, Catana E, Bannehr L, Bastian O, Baatz R (2022) Remote sensing of geomorphodiversity linked to biodiversity—part III: traits, processes and remote sensing characteristics. Remote Sens 14(9):2279

    Article  Google Scholar 

  • Le Roux JS (1978) Die ontstaan van grotte en holtes in die kranse van die Clarenssandsteenformasie in die Golden Gate-gebied [Formation of caves and hollows in the cliffs of the Clarens Sandstone Formation in the Golden Gate area]. South African Geogr 61:23–29

    Google Scholar 

  • Lucero Michaut HN (1979) Sierras Pampeanas del norte de Córdoba, sur de Santiago del Estero, borde oriental de Catamarca y ángulo sudeste de Tucumán. In Segundo Simposio de Geología Regional Argentina, vol 1. Acad. Nac. de Cienc. de Córdoba, Córdoba, Argentina, pp 293–348

  • Martín-Martín M, Sanz de Galdeano C, Moliner-Aznar S (2021) The geological heritage of Salobreña (SE Spain): example of a touristic area

  • Melelli L, Taramelli A (2010) Criteria for the elaboration of susceptibility maps for DGSD phenomena in central Italy. Geogr Fis Din Quaternaria 33:179–185

    Google Scholar 

  • Melelli L, Vergari F, Liucci L, Del Monte M (2017) Geomorphodiversity index: quantifying the diversity of landforms and physical landscape. Sci Total Environ 584:701–714

  • Medina WM, Charó M (2019) Patrimonio Geológico-Paleontológico sobre depósitos costeros cuaternarios asociados a fósiles marinos (Golfo San Matías, Argentina). Ser Correl Geol 35:30–40

    Google Scholar 

  • Medina WM (2023) Geo-environmental Evolutionary Interpretation of Geosites Analysed in La Quebrada de Humahuaca, Northwestern Argentina. Geoheritage 15(2):51

    Article  Google Scholar 

  • Methol EJ (1958) Descripción Geológica de la Hoja 18I. Deán Funes, Tulumba (Córdoba). Dirección Nacional De Geología y Minería, Boletín 88:32–34

    Google Scholar 

  • Migon P (ed) (2010) Geomorphological landscapes of the world. Springer Science & Business Media

  • Migoń P (2020) Geomorphology of conglomerate terrains–global overview. Earth Sci Rev 208:103302

    Article  Google Scholar 

  • Migoń P (2021) Granite landscapes, geodiversity and geoheritage—Global context. Heritage 4(1):198–219

    Article  Google Scholar 

  • Migoń P, Latocha A (2013) Human interactions with the sandstone landscape of central Sudetes. Appl Geogr 42:206–216

    Article  Google Scholar 

  • Migoń P, Kasprzak M, Woo KS (2019) Granite landform diversity and dynamics underpin geoheritage values of Seoraksan Mountains, Republic of Korea. Geoheritage 11:751–764

    Article  Google Scholar 

  • Miró CR (2000) Hoja geológica 1: 250.000, Villa Ojo de Agua, Santiago del Estero y Córdoba. IGRM, Servicio Geológico Minero Argentino

  • Mohammadi P, Krumbein WE (2008) Biodeterioration of ancient stone materials from the Persepolis monuments (Iran). Aerobiologia 24:27–33. https://doi.org/10.1007/s10453-007-9079-6

    Article  Google Scholar 

  • Mol L, Viles HA (2010) Geoelectric investigations into sandstone moisture regimes: implications for rock weathering and the deterioration of San Rock Art in the Golden Gate Reserve, South Africa. Geomorphology 118:280–287

    Article  Google Scholar 

  • Moon BP (1991) The significance of rectilinear bedrock slopes. S Afr J Sci 87:208–210

    Google Scholar 

  • Moon BP, Munro-Perry PM (1988) Slope development on the Clarens Sandstone Formation in the northeastern Orange Free State. S Afr Geogr J 70:57–68

    Article  Google Scholar 

  • Moradi A, Maghsoudi M, Moghimi E, Yamani M, Rezaei N (2021) A Comprehensive Assessment of Geomorphodiversity and Geomorphological Heritage for Damavand Volcano Management, Iran. Geoheritage 13:1–25

    Article  Google Scholar 

  • Moroni A, Gnezdilova VV, Ruban DA (2015) Geological heritage in archaeological sites: case examples from Italy and Russia. Proc Geol Assoc 126(2):244–251

    Article  Google Scholar 

  • Najwer A, Borysiak J, Gudowicz J, Mazurek M, Zwoliński Z (2016) Geodiversity and biodiversity of the postglacial landscape (Dębnica River catchment, Poland). Quaestiones Geographicae 35:5–28. https://doi.org/10.1515/quageo-2016-0001

    Article  Google Scholar 

  • Najwer A, Jankowski P, Niesterowicz J, Zwoliński Z (2022) Geodiversity assessment with global and local spatial multicriteria analysis. Int J Appl Earth Obs Geoinformation 107:102665. https://doi.org/10.1016/j.jag.2021.102665

    Article  Google Scholar 

  • Najwer A, Reynard E, Zwoliński Z (2023) Geodiversity assessment for geomorphosites management: derborence and illgraben, Swiss Alps. Geol Soc Lond Spec Publ 530(1): SP530-2022-2122

  • Panizza M, Piacente S (2009) Cultural geomorphology and geodiversity. Geomorphosites 35–48

  • Parks KE, Mulligan M (2010) On the relationship between a resource based measure of geodiversity and broad scale biodiversity patterns. Biodivers Conserv 19:2751–2766

    Article  Google Scholar 

  • Pastore F (1932) Hoja 20i del mapa geológico de la Argentina: región oriental media de la sierra de Córdoba. Relevamiento geológico y explicación. Talleres Gráficos del Ministerio de Agricultura de la Nación

  • Pereira DI, Pereira P, Brilha J, Santos L (2013) Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ Manage 52:541–552

    Article  Google Scholar 

  • Pike RJ (2000) Geomorphometry-diversity in quantitative surface analysis. Prog Phys Geogr 24:1–20

    Google Scholar 

  • Peña-Monné JL, Sampietro-Vattuone MM, Báez WA, García-Giménez R, Stábile FM, Martinez Stagnaro SY, Tissera LE (2022) Sandstone weathering processes in the painted rock shelters of Cerro Colorado (Córdoba, Argentina). Geoarchaeology 37(2):332–349

    Article  Google Scholar 

  • Polanski J (1970) Carbónico y Pérmico de la Argentina. EUDEBA Manuales 149–150

  • Rabassa J, Carignano C, Cioccale M (2010) Gondwana paleosurfaces in Argentina: an introduction. Geociências 29:439–466

    Google Scholar 

  • Ramos VA (1988) Late Proterozoic - Early Paleozoic of South America - a collisional history. Episodes 11(3):168–174

    Article  Google Scholar 

  • Rao CR (1982) Diversity and dissimilarity coefficients: a unified approach. Theor Popul Biol 21:24–43

    Article  Google Scholar 

  • Recalde MA (2015) Representaciones en contexto. Características del Paisaje rupestre de Cerro Colorado (Sierras del Norte, Córdoba, Argentina). Relaciones XL 2:523–548

    Google Scholar 

  • Recalde MA (2018) Memory in the stone: rock art landscape at Cerro Colorado as a negotiation space for social memory. In Archaeologies of rock art. Routledge, pp 106–129 

  • Recalde A, López L (2017) Las sociedades prehispánicas tardías en la región septentrional del centro de Argentina (Sierras del Norte, Córdoba). Avances a su conocimiento desde los recursos vegetales. Chungará (Arica) 49(4):573–588

  • Ricotta C (2005) A note on functional diversity measures. Basic Appl Ecol 6:479–486

    Article  Google Scholar 

  • Rito C, Boretto G, Bazzano G, Cioccale M (2022) Assessment of geomorphodiversity and the impacts of urban growth in Puerto Madryn, Patagonia, Argentina. J South Am Earth Sci 119:104018

  • Rocchini D, Marcantonio M, Ricotta C (2017) Measuring Rao’s Q diversity index from remote sensing: an open source solution. Ecol Indicat 72:234–238

    Article  Google Scholar 

  • Robinson DA, Williams RBG (1989) Polygonal cracking of sandstone at Fontainebleau, France. Z Geomorphol 33:59–72

    Article  Google Scholar 

  • Robinson DA, Williams RBG (1992) Sandstone weathering in the High Atlas, Morocco. Z Geomorphol 36:413–429

    Article  Google Scholar 

  • Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121(3):326–333

    Article  Google Scholar 

  • Rypl J, Kirchner K, Kubalíková L, Divíšek J (2020) Geological and geomorphological conditions supporting the diversity of rock landforms in the Pohořská Mountains (South Bohemia, Czech Republic). Geoheritage 12(1):2

    Article  Google Scholar 

  • Santos DS, Mansur KL, Gonçalves JB, Junior E, Manosso FC (2017) Quantitative assessment of geodiversity and urban growth impacts in Armaçao ˜ dos Búzios, Rio de Janeiro, Brazil. Appl Geogr 85:184–195

    Article  Google Scholar 

  • Schaafsma P (1986) Indian rock art of the Southwest. UNM Press

  • Serrano E, Ruiz-Flaño P (2007) Geodiversity: a theoretical and applied concept. Geographica Helvetica 62(3):140–147

    Article  Google Scholar 

  • Shannon C (1948) A mathematical theory of communication. Bell Systems Technol J 27:379–423

    Article  Google Scholar 

  • Taramelli A, Melelli L (2009) Detecting alluvial fans using quantitative roughness characterization and fuzzy logic analysis using the shuttle radar topography mission data. Int J Comput Sci Softw Technol 2(1):55–67

    Google Scholar 

  • Thomas MF (2012a) Geodiversity and landscape sensitivity: a geomorpholocial perspective. Scot Geogr J 128:195–210

    Article  Google Scholar 

  • Thomas MF (2012b) A geomorphological approach to geodiversity - its applications to geoconservation and geotourism. Quaest Geogr 31:81–89

    Google Scholar 

  • Tukiainen H, Alahuhta J, Field R, Ala-Hulkko T, Lampinen R, Hjort J (2017) Spatial relationship between biodiversity and geodiversity across a gradient of land-use intensity in high-latitude landscapes. Landscape Ecol 32:1049–1063

    Article  Google Scholar 

  • Turkington AV, Phillips JD (2004) Cavernous weathering, dynamical instability and self-organization. Earth Surf Proc Land 29:665–675. https://doi.org/10.1002/esp.1060

    Article  Google Scholar 

  • Urban J, Górnik M (2017) Some aspects of lithological and exogenic control of sandstone morphology, the Świętokrzyskie (Holy Cross) Mts. case study, Poland. Geomorphology 295:773–789

    Article  Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides, analysis and control, special report 176: Transportation research board. National Academy of Sciences, Washington, DC., pp 11–33

    Google Scholar 

  • Vidal Romaní JR, Twidale CR (1998) Formas y paisajes graníticos. Universidad de Coruña, Coruña

    Google Scholar 

  • Viles HA (2002) Implications of future climate change for stone deterioration. Geological Society, London, Special Publications 205(1):407–418

  • Walker JD, Geissman JW, Bowring SA, Babcock LE compilers (2018) Geologic Time Scale v. 5.0: Geological Society of America. The Geological Society of America. https://doi.org/10.1130/2018.CTS005R3C.©2018

  • Young RW, Young AR (1992) Sandstone Landforms. Springer, Berlin, p 163

    Book  Google Scholar 

  • Young RW, Wray RAL, Young ARM (2009) Sandstone landforms. Cambridge University Press, Cambridge

    Google Scholar 

  • Zwoliński Z (2009) The routine of landform geodiversity map design for the Polish Carpathian Mts. Landform Analys 11:77–85

    Google Scholar 

  • Zwoliński Z, Stachowiak J (2012) Geodiversity map of the Tatra National Park for geotourism. Quaestiones Geographicae 31(1):99–107

    Article  Google Scholar 

  • Zwoliński Z, Najwer A, Giardino M (2018) Methods for assessing geodiversity. In Geoheritage. Elsevier, pp 27–52

Download references

Acknowledgements

We thank to Luis Tissera and Héctor Biurrum for their help during field work. The authors thank the anonymous reviewers for their constructive comments and useful suggestions.

Funding

This manuscript is a contribution to the project funded by the Ministry of Science and Technology of the Córdoba Province, GRFT 2017–09.

Author information

Authors and Affiliations

Authors

Contributions

Gabriella Boretto: Writing. Investigation. Formal analysis. Methodology. Field trip. Marcela Cioccale: Validation. Methodology. Supervision. Software. Resources. Sandra Gordillo: Visualization. Investigation. Supervision. Claudio Carignano: Field trip. Visualization. Supervision. Andrea Recalde: Field trip. Visualization. Investigation.

Corresponding author

Correspondence to Gabriella M. Boretto.

Ethics declarations

Competing Interest

The authors declare that they have no known competing interests or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boretto, G.M., Cioccale, M., Gordillo, S. et al. The Geomorphodiversity of Cerro Colorado (Córdoba, Argentina): A Key Factor in Geo-Cultural Heritage Assessment. Geoheritage 16, 55 (2024). https://doi.org/10.1007/s12371-024-00963-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12371-024-00963-9

Keywords

Navigation