Skip to main content

The 330–320 Million-Year-Old Tranchée des Malécots (Chaudefonds-sur-Layon, South of the Armorican Massif, France): a Rare Geoheritage Site Containing In Situ Palaeobotanical Remains

Abstract

A disused quarry in the southern part of the Amorican Massif (northwestern France) known locally as the ‘Tranchée des Malécots’ lies within the ‘Corniche Angevine’ located on the western edge of the ‘Val de Loire’ UNESCO World Heritage Site. This quarry exposes Serpukhovian-age (330–320 Ma) volcanic ashes containing in situ remains of arborescent lycopsids and is one of the few places in the world where very early coal swamp plants can be seen in their original place of growth. Because the geology and palaeobotany here relate to coal mining, which historically underpinned the economic development of the area, the site is of considerable local cultural interest. The site was first described in the early 1930s, and its reinvestigation has shown occurrences of lycopsid remains identified as stems and branches of Lepidodendron veltheimii and Lepidodendron cf. nathorstii, slender axes with lateral branches of uncertain affinities, Cyperites bicarinatus leaves and Stigmaria ficoides rhizophores. A pictorial reconstruction of the trees is presented. Since the first description of the site, a combination of natural erosion and human damage has meant that fewer of the trees are now visible. In 2016, we used photogrammetry to develop a digital representation of the site and its fossil remains to help in the development of a long-term geoconservation strategy. Modern vegetation had recently been removed from the outcrop showing more stems, but other remains have disappeared. This highlights the value of photogrammetry to allow continued knowledge and preservation of this internationally important example of geoheritage.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of Data and Material

All digital data (3D models and video animations) are available for download from Zenodo: https://doi.org/10.5281/zenodo.5109741.

Code Availability

Not applicable.

References

  • Aertgeerts G, Béchennec F, Conil P (2011) Identification et diagnostic du patrimoine géologique en Pays de la Loire. Inventaire des sites géologiques remarquables. Rapport final. Annexe 2 – tome 2: fiches argumentaires du Maine-et-Loire. BRGM/RP-60129-FR.

  • Appleton P, Malpas J, Thomas BA, Cleal CJ (2011) The Brymbo fossil forest. Geol Today 27:107–113. https://doi.org/10.1111/j.1365‐2451.2011.00796.x

  • Arnaud A, Brossé R (1980) Étude d’un niveau volcano-sédimentaire dans le bassin namurien de la Basse Loire. Région de Chalonnes (Maine-et-Loire). Mémoire de la Société d’Études Scientifiques de l’Anjou 4:49‒54.

  • Brongniart A (1822) Sur la classification et la distribution des végétaux fossiles en général, et sur ceux des terrains de sediment supérieur en particulier. Mémoires du Museum d'Histoire Naturelle, Paris 8, 203‒240

  • Bureau É (1913‒1914) Bassin houiller de la Basse Loire. Fascicule II. Description des flores fossiles. Atlas (1913); Text (1914). Études des Gîtes Minéraux de la France. Imprimerie Nationale, Paris, France

  • Calder JH, Gibling MR, Scott AC, Davies SL, Hebert BL (2006) A fossil lycopsid forest succession in the classic Joggins section of Nova Scotia: paleoecology of a disturbance-prone Pennsylvanian wetland. In: Greb S, DiMichele WA (eds), Wetlands through Time. Geol. Soc. Amer., Spec. Pap. 399:169‒196.

  • Carpentier A (1932) Description d’un sol fossile de vegetation de Lépidodendrées découvert dans la «pierre carrée» du basin de Basse-Loire. Bull. Soc. sci. nat. Ouest France (5e Sér.) 2:59–64.

  • Cleal CJ, Thomas BA (1995) Palaeozoic palaeobotany of Great Britain. Chapman and Hall, London (Geological Conservation Review Series, No. 9).

  • Cleal CJ, Thomas BA (2005) Palaeozoic tropical rainforests and their effect on global climates: is the past the key to the present? Geobiology 3:13–31. https://doi.org/10.1111/j.1472-4669.2005.00043.x

    Article  Google Scholar 

  • Cleal CJ, Thomas BA (2021) Naming of parts: the use of fossil-taxa in palaeobotany. Fossil Imprint 77:166–186. https://doi.org/10.37520/fi.2021.013

  • Cunningham JA (2021) The use of photogrammetric fossil models in palaeontology education. Evolution: Education and Outreach 14(1):1‒7. https://doi.org/10.1186/s12052-020-00140-w

  • DiMichele WA, Falcon-Lang HJ (2011) Pennsylvanian ‘fossil forests’ in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. Jl Geol Soc Lond 168:585–605. https://doi.org/10.1144/0016-76492010-103

    Article  Google Scholar 

  • DiMichele WA, Nelson WJ, Elrick S, Ames PR (2009) Catastrophically buried middle Pennsylvanian Sigillaria and calamitean sphenopsids from Indiana, USA: What kind of vegetation was this? Palaios 24:159–166. https://doi.org/10.2110/palo.2008.p08-051r

    Article  Google Scholar 

  • Ducassou C, Poujol M, Hallot E, Bruguier O, Ballevre M (2011) Petrology and geochronology of the High-K Calc-Alkaline Mésanger Magmatism (Armorican Massif, France): A ca. 320 Ma old volcano-plutonic association. Bull Soc Géol Fr 182:467–477. https://doi.org/10.2113/gssgfbull.182.6.467

    Article  Google Scholar 

  • Dusséaux C, Gébelin A, Ruffet G, Mulch A (2021) Late Carboniferous paleoelevation of the Variscan Belt of Western Europe. Earth Planet Sci Lett 569:117064. https://doi.org/10.1016/j.epsl.2021.117064

    Article  Google Scholar 

  • Evans BG, Cleal CJ, Thomas BA (2018) Geotourism in an industrial setting: the South Wales Coalfield Geoheritage Network. Geoheritage 10:93–107

    Article  Google Scholar 

  • Falkingham PL, Bates KT, Farlow JO (2014) Historical Photogrammetry: Bird’s Paluxy River Dinosaur Chase Sequence Digitally Reconstructed as It Was prior to Excavation 70 Years Ago. PLoS ONE 9(4):e93247

    Article  Google Scholar 

  • Feulner G (2017) Formation of most of our coal brought Earth close to global glaciation. Proc Nat Acad Sci 114:11333–11337. https://doi.org/10.1073/pnas.1712062114

    Article  Google Scholar 

  • Fielding CR, Frank TD (2015) Onset of the glacioeustatic signal recording late Palaeozoic Gondwanan ice growth: new data from palaeotropical East Fife, Scotland. Palaeogeog., Palaeoclimat. Palaeoecol 426:121–138. https://doi.org/10.1016/j.palaeo.2015.03.002

    Article  Google Scholar 

  • Gastaldo RA (1986a) Implications on the paleoecology of autochthonous Carboniferous lycopods in clastic sedimentary environments. Palaeogeog., Palaeoclimat., Palaeoecol. 53:191‒212. https://doi.org/10.1016/0031-0182(86)90044-1

  • Gastaldo RA (1986b) An explanation for lycopod configuration. ‘Fossil Grove’ Victoria Park, Glasgow. Scott. Jl Geol. 22:77–83.

  • Harang JP, Boisnard J, Martin F (2004) Gueules noires au pays du vin blanc. Alan Sutton ed., Saint-Cyr-sur-Loire, France.

  • Lindley J, Hutton W (1832) The fossil flora of Great Britain. Volume 1(2). W.J. Ridgeway and Sons, London.

  • MacGregor M, Walton J (1972) The story of the fossil grove of Glasgow Public Parks and Botanical Gardens, Glasgow (Revised edition). Glasgow D.C. Parks Department, Glasgow.

  • Montañez IP, McElwain JC, Poulsen CJ et al (2016) Climate, pCO2 and terrestrial carbon cycle linkages during late Palaeozoic glacial–interglacial cycles. Nature Geosci 9:824–828. https://doi.org/10.1038/ngeo2822

    Article  Google Scholar 

  • Mosseichik YV (2010) Rannekamennougol’nie "tochorii Severnoi Evrazii: stryktura, sistema, evolutsia. Lethaea Rossica 2:1–32

    Google Scholar 

  • Muja E, Marchetti L, Schoch RR, Fortuny J (2020) Upper Paleozoic to Lower Mesozoic tetrapod ichnology revisited: Photogrammetry and relative depth pattern inferences on functional prevalence of autopodia. Front Earth Sci 8(248):1–23. https://doi.org/10.3389/feart.2020.00248

    Article  Google Scholar 

  • Nathorst AG (1914) Zur fossilien Flora der Polarlander I(4): Nachträge zur paläozoischen Flora Spitzbergens. Norstedt & Söner, Stockholm.

  • Opluštil S, Pšenička J, Libertín M, Šimůnek Z (2007) Vegetation patterns of Westphalian and lower Stephanian mire assemblages preserved in tuff beds of the continental basins of Czech Republic. Rev Palaeobot Palynol 143:107–154. https://doi.org/10.1016/j.revpalbo.2006.06.004

    Article  Google Scholar 

  • Otero A, Moreno AP, Falkingham PL, Cassini G, Ruella A, Militello M, Toledo N (2020) Three-Dimensional Image Surface Acquisition in Vertebrate Paleontology: A Review of Principal Techniques. Public Electr Asoc Paleont Argentina 20:1–14. https://doi.org/10.5710/PEAPA.04.04.2020.310

    Article  Google Scholar 

  • Rex GM (1983) The compression state of preservation of Carboniferous lepidodendrid leaves. Rev Palaeobot Palynol 39:65–85. https://doi.org/10.1016/0034-6667(83)90011-8

    Article  Google Scholar 

  • Rössler R (2006) Two remarkable Permian petrified forests: correlation, comparison and significance. In: Lucas SG, Cassinis G, Schneider JW (eds). Non-marine Permian biostratigraphy and biochronology. Geol. Soc. Lond., Spec. Publ. 265: 39‒63. https://doi.org/10.1144/GSL.SP.2006.265.01.03.

  • Santos I, Henriques R, Mariano G, Perieira DI (2018) Methodologies to represent and promote the geoheritage using Unmanned Aerial Vehicles, multimedia technologies, and augmented reality. Geoheritage 10:143–155

    Article  Google Scholar 

  • Sternberg KM (1820) Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt. Band 1(1). F. Fleischer, Leipzig

  • Sternberg KM (1825) Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, Band 1(4), Tentamen. E. Brenck’s Wittwe, Regensburg.

  • Strullu-Derrien C, Cleal CJ, Ducassou C, Spencer ART, Stolle E, Leshyk VO (2021) A rare late Mississippian flora from Northwestern Europe (Maine-et-Loire Coalfield, Pays de la Loire, France). Rev. Palaeobot. Palynol. 285:p.104359. https://doi.org/10.1016/j.revpalbo.2020.104359.

  • Thomas BA (1966) The cuticles of the lepidodendrid stem. New Phytol 65:296–303. https://doi.org/10.1111/j.1469-8137.1966.tb06365.x

    Article  Google Scholar 

  • Thomas BA (1970) Epidermal studies in the interpretation of Lepidodendron species. Palaeontology 13:145–173

    Google Scholar 

  • Thomas BA (2016) A Carboniferous fossil forest in North Wales: Problems and potentials associated with developing and conserving a ‘soft-rock’ site. Geoheritage 8:401–406. https://doi.org/10.1007/s12371-015-0172-x

    Article  Google Scholar 

  • Thomas BA, Cleal CJ (2018) Arborescent lycophyte growth in the late Carboniferous coal swamps. New Phytol 218:885–890. https://doi.org/10.1111/nph.14903

    Article  Google Scholar 

  • Thomas BA, Seyfullah L (2015) Stigmaria Brongniart: A new specimen from Duckmantian (Lower Pennsylvanian) Brymbo (Wrexham, North Wales) together with a review of known casts and how they were preserved. Geol Mag 152:858–870. https://doi.org/10.1017/S0016756815000035

    Article  Google Scholar 

  • Thomas BA, Watson J (1976) A rediscovered 114-foot Lepidodendron from Bolton. Lancashire Geol Jl 11:15–20. https://doi.org/10.1002/gj.3350110102

    Article  Google Scholar 

  • Turland NJ, Wiersema JH, Barrie FR, Greuter W, Hawksworth DL, Herendeen PS, Knapp S, Kusber W-H, Li D-Z, Marhold K, May TW, McNeill J, Monro AM, Prado J, Price MJ and Smith GF (2018) International Code of Nomenclature for algae, fungi, and plants (Shenzhen Code) Regnum Vegetabile 159. Koeltz Botanical Books, Glashütten

  • Ullman S, Brenner S (1979) The interpretation of structure from motion. Proc r Soc Lond Ser b Biol Sci 203:405–426. https://doi.org/10.1098/rspb.1979.0006

    Article  Google Scholar 

  • Wagner RH (1984) Megafloral zones of the Carboniferous. Compte rendu 9e Congrès International de Stratigraphie et de Géologie du Carbonifère (Washington, 1979) 2, 109–134

  • Wang J, Pfefferkorn HW, Zhang Y, Feng Z (2012) Permian vegetational Pompeii from Inner Mongolia and its implications for landscape paleoecology and paleobiogeography of Cathaysia. Proc. U.S. Nat. Acad. Sci. 109:4927‒4932. https://doi.org/10.1073/pnas.1115076109.

  • Wrede V, Mügge-Bartolović (2012) GeoRoute Ruhr--a network of geotrails in the Ruhr Area National Geopark, Germany. Geoheritage 4:109-114.

Download references

Acknowledgements

This is a contribution to CS-D’s project ‘Reinvestigation of the Pays de la Loire Coalfield flora’. CS-D acknowledges funding from the Mécènes et Loire Fondation and Terra Botanica, Angers (France). The authors thank the Communauté de Communes Loire-Layon and the Chaudefonds-sur-Layon municipality who allowed them to work on the site and to organise the visit of the site during the ‘Journées de rencontre autour du patrimoine minier de la Corniche angevine’. They thank the Palaeontological Association who supported this meeting with a grant (PA-GA201803). Prof. Hubert Lardeux and Mr Patrick Baudouin are acknowledged for permission to use their photos. Thanks are also given to Mrs Hélène Poncet-Laverdure who provided information about geoconservation and public use of the site and to Dr Fabrice Redois and Mr Christophe Noblet for interesting discussions about the site.

Funding

CS-D was supported by the Mécènes et Loire Fondation and Terra Botanica, Angers (France).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualisation of the work was by CS-D; ARTS was responsible for the photogrammetry and digital reconstruction; CJC described the fossil flora; VOL produced the pictorial reconstruction; the rest of the paper includes contributions from all four authors.

Corresponding author

Correspondence to Christine Strullu-Derrien.

Ethics declarations

Ethics Approval

This paper only includes results of the authors’ work, and has not been published in or submitted to another journal.

Consent to Participate

The authors have full consent to participate in this work.

Consent for Publication

The authors have full consent to publish this work.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 64778 KB)

Supplementary file2 (MP4 34235 KB)

Supplementary file3 (MP4 61561 KB)

Supplementary file4 (MP4 44206 KB)

Supplementary file5 (MP4 64234 KB)

Supplementary file6 (MP4 14517 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Strullu-Derrien, C., Spencer, A.R.T., Cleal, C.J. et al. The 330–320 Million-Year-Old Tranchée des Malécots (Chaudefonds-sur-Layon, South of the Armorican Massif, France): a Rare Geoheritage Site Containing In Situ Palaeobotanical Remains. Geoheritage 14, 42 (2022). https://doi.org/10.1007/s12371-022-00673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12371-022-00673-0

Keywords

  • Lycopsid tree
  • Carboniferous
  • Coalfields
  • Photogrammetry