A New Quantitative Model for Comprehensive Geodiversity Evaluation: the Škocjan Caves Regional Park, Slovenia

Abstract

The article presents a simple quantitative model for geodiversity evaluation, which merges spatial relationship of geodiversity elements with terrain data. The model is partially automated in geographic information system tools to eliminate the majority of subjectivity in evaluation. As a result, it can be used for different environment types and is applicable for comparative studies. The method was applied to the Škocjan Caves Regional Park, which is one of the most diverse karst areas in the world. The geodiversity element types were identified through remote sensing data and basic field mapping. Their diversity was subsequently defined through block statistic tools in a geographic information system programme. The geodiversity index was calculated from a number of different geodiversity element types within defined spatial units and from the terrain ruggedness index. Areas of high geodiversity index or geodiversity hotspots are in strong correlation with the most diverse areas of the regional park, which are also currently promoted for geotouristic and educational purposes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. ArcGIS for Desktop (2016) How Block Statistics works. http://desktop.arcgis.com/en/arcmap/10.3/tools/spatial-analyst-toolbox/how-block-statistics-works.htm#GUID-9DA38168-4F4A-42AA-9F0F-E29D77BDC88D. Accessed 1 Mar 2016

  2. Benito-Calvo A, Perez-Gonzalez A, Magri O, Meza P (2009) Assessing regional geodiversity: the Iberian Peninsula. Earth Surf Process Landforms 34:1433–1445. doi:10.1002/esp.1840

    Article  Google Scholar 

  3. Buser S (1968) Osnovna geološka karta SFRJ. L 33–76, Gorica. 1 zvd.

  4. de Paula SJ, Rodrigues C, Pereira DI (2014) Mapping and analysis of geodiversity indices in the Xingu river basin, Amazonia, Brazil. Geoheritage 7:337–350. doi:10.1007/s12371-014-0134-8

    Google Scholar 

  5. Gams I (1983) Škocjanski kras kot vzorec kontaktnega krasa = The karst of Škocjan—an exceptional case of the contact. Mednar. Simp. "Zaščita Krasa ob 160-letnici Tur. Razvoj. Škocjanskih jam", Lipica, 7.-9. oktobra 1982 Str. 22–26

  6. Gray M (2013) Geodiversity: valuing and conserving abiotic nature. 2nd Edition. Wiley-Blackwell, Chichester

    Google Scholar 

  7. Hjort J, Luoto M (2010) Geodiversity of high-latitude landscapes in northern Finland. Geomorphology 115:109–116. doi:10.1016/j.geomorph.2009.09.039

    Article  Google Scholar 

  8. Institute of the Republic of Slovenia for Nature Conservation (2013) Nature conservation atlas. http://www.naravovarstveni-atlas.si/nvajavni/profile.aspx?id=NV@ZRSVNJ&culture=en-US. Accessed 1 Mar 2016

  9. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190

    Google Scholar 

  10. Kozłowski S (2004) Geodiversity: the concept and scope of geodiversity. Przegląd Geol 52:833–837

    Google Scholar 

  11. Melelli L (2014) Geodiversity: a new quantitative index for natural protected areas enhancement. Geoj Tour Geosites 13:27–37

    Google Scholar 

  12. Mihevc A (1998) Speleogeneza matičnega krasa: doktorska disertacija. Univerza v Ljubljani, Filozofska fakulteta, Ljubljana

  13. Mihevc A (1991a) Morfološke značilnosti ponornega kontaktnega krasa; izbrani primeri iz Slovenskega krasa. Magistrsko delo. Univerza v Ljubljani, Filozofska fakulteta, Ljubljana

  14. Mihevc A (1991b) Morfološke značilnosti ponornega kontaktnega krasa v Sloveniji. Geogr Vestn 63:41–50

    Google Scholar 

  15. Mihevc A (2001) Speleogeneza Divaškega krasa. Zalozba ZRC, ZRC SAZU, Ljubljana

    Google Scholar 

  16. Mihevc A (1984) Nova spoznanja o Kačni jami. Naše jame 26:str. 11–20.

  17. Mihevc A, Stepišnik U (2012) Electrical resistivity imaging of cave Divaška jama, Slovenia. J caves karst Stud 74:235–242

    Article  Google Scholar 

  18. Necheş I-M (2016) Geodiversity beyond material evidence: a geosite type based interpretation of geological heritage. Proc Geol Assoc 127:78–89. doi:10.1016/j.pgeola.2015.12.009

    Article  Google Scholar 

  19. Pavlopoulos K, Evelpidou N, Vassilopoulos A (2009) Mapping geomorphological environments. Springer, Berlin

    Book  Google Scholar 

  20. Pellitero R, Gonzalez-Amuchastegui MJ, Ruiz-Flano P, Serrano E (2011) Geodiversity and geomorphosite assessment applied to a natural protected area: the Ebro and Rudron Gorges Natural Park (Spain). Geoheritage 3:163–174. doi:10.1007/s12371-010-0022-9

    Article  Google Scholar 

  21. Pereira DI, Pereira P, Brilha J, Santos L (2013) Geodiversity assessment of Paraná State (Brazil): an innovative approach. Environ Manag 52:541–552. doi:10.1007/s00267-013-0100-2

    Article  Google Scholar 

  22. Pereira P, Pereira D, Caetano Alves MI (2007) Geomorphosite assessment in Montesinho Natural Park (Portugal). Geogr Helv 62:159–168

    Article  Google Scholar 

  23. Pettersson M, Keskitalo ECH (2013) Adaptive capacity of legal and policy frameworks for biodiversity protection considering climate change. Land Use Policy 34:213–222. doi:10.1016/j.landusepol.2013.03.007

    Article  Google Scholar 

  24. Radinja D (1967) Vremska dolina in Divaški Kras : problematika kraške morfogeneze. Geogr Zb str. 157–269, [4] pril.

  25. Reynard E (2009a) Geomorphosites: definitions and characteristics. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Verlag Dr. Fredrich Pfeil, München, pp 9–20

    Google Scholar 

  26. Reynard E (2009b) The assessment of geomorphosites. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Verlag Dr. Friedrich Pfeil, München, pp 63–71

    Google Scholar 

  27. Reynard E, Coratza P (2007) Geomorphosites and geodiversity: a new domain of research. Geogr Helv 62:138–139

    Article  Google Scholar 

  28. Reynard E, Fontana G, Kozlik L, Scapozza C (2007) A method for assessing “scientific” and “additional values” of geomorphosites. Geogr Helv 62:148–158

    Article  Google Scholar 

  29. Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5:23–27

    Google Scholar 

  30. Ruban DA (2010) Quantification of geodiversity and its loss. Proc Geol Assoc 121:326–333. doi:10.1016/j.pgeola.2010.07.002

    Article  Google Scholar 

  31. Serrano E, González-Trueba JJ (2005) Assessment of geomorphosites in natural protected areas: the Picos de Europa National Park (Spain). Géomorphologie Reli Process Environ 3:197–208. doi:10.4000/geomorphologie.364

    Article  Google Scholar 

  32. Serrano E, Ruiz-Flaño P (2007) Geodiversity: a theoretical and applied concept. Geogr Helv 62:140–147

    Article  Google Scholar 

  33. Serrano E, Ruiz-Flaño P (2009) Geomorphosites and geodiversity. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Velag Dr. Friedrich Pfeil, München, pp 49–61

    Google Scholar 

  34. Sharples C (1995) Geoconservation in forest management—principles and procedures. Tasforests 7:37–50

    Google Scholar 

  35. Slovenian Environment Agency (2015) No Title. In: LIDAR data. http://gis.arso.gov.si/evode/profile.aspx?id=atlas_voda_Lidar@Arso. Accessed 1 Mar 2016

  36. Stepišnik U (2008) The application of electrical resistivity imaging in collapse doline floors: Divača karst, Slovenia. Stud Geomorphol carpatho – Balc 42:41–51

    Google Scholar 

  37. Šikić D, Pleničar M, Šparica M (1972) Osnovna geološka karta SFRJ. L 33–89, Ilirska Bistrica. 1 zvd.s

  38. The Surveying and Mapping Authority of the Republic of Slovenia (2014) DOF 050

  39. Zouros NC (2007) Geomorphosite assessment and management in protected areas of Greece: case study of the Lesvos island—coastal geomorphosites. Geogr Helv 62:169–180

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uroš Stepišnik.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stepišnik, U., Trenchovska, A. A New Quantitative Model for Comprehensive Geodiversity Evaluation: the Škocjan Caves Regional Park, Slovenia. Geoheritage 10, 39–48 (2018). https://doi.org/10.1007/s12371-017-0216-5

Download citation

Keywords

  • Geodiversity
  • Mapping
  • Block statistics
  • Geodiversity hotspot
  • Karst