Skip to main content

The Alejico Carboniferous Forest: a 3D-Terrestrial and UAV-Assisted Photogrammetric Model for Geologic Heritage Preservation

Abstract

The Alejico coalbeds represent a well-preserved Carboniferous fossils site characterised by the presence of tree trunks in life position and parallel to bedding. The area, located near the Picos de Europa National Park (Spain), between the León and Asturias provinces, lacks of any kind of preservation directives, thus being influenced by weathering, erosion and anthropogenic destruction. We present a photogrammetric study carried out through terrestrial and UAV-assisted technology in order to collect digital 3D information for fossil analysis and future preservation. A general overview of the steep wall of the outcrop and a detailed section of the fossil forest have been implemented into a reliable and accurate point cloud. Qualitative and quantitative information was obtained from a georeferenced high-resolution digital 3D model used for the characterisation of the different outcrop features, which aimed specially at the fossil conservation. The results provide useful information on the nature and paleoenvironment of carboniferous forests with important implication for scientific and educational interests. These technologies provide new possibilities for better preservation and diffusion of geologic heritage locations prone to be damaged, and enables public awareness for the protection of fossil sites with high scientific and cultural value.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. AEMET (2011) Atlas climático ibérico/Iberian climate atlas. Agencia Estatal de Meteorología. Ministerio de Medio Ambiente y Rural y Marino, Madrid. Instituto de Meteorologia de Portugal 80

  2. Alonso JL, Vallaure AM, Rodríguez ÁS (2009) Paleogeographic inversion resulting from large out of sequence breaching thrusts: The León Fault (Cantabrian Zone, NW Iberia). A new picture of the external Variscan Thrust Belt in the Ibero-Armorican Arc. Geol Acta 7:451–473

    Article  Google Scholar 

  3. Ayllon F, Bakker R, Warr L (2003) Re‐equilibration of fluid inclusions in diagenetic‐anchizonal rocks of the Ciñera‐Matallana coal basin (NW Spain). Geofluids 3:49–68

    Article  Google Scholar 

  4. Bach TL (1861) Importancia del carbón de piedra en el desarrollo de la vida industrial y moral de los pueblos. Establ. Tip. de J. Casas y Díaz, Madrid, p 15

    Google Scholar 

  5. Bahamonde J, Nuño C (1991) Características geológicas del sinclinal de Santa María de Redondo (Zona Cantábrica, Palencia). Bol Geol Min 102:219–239

    Google Scholar 

  6. Bates KT, Breithaupt B H, Falkingham PL, Matthews-Neffra A, Hodgetts D, Manning PL (2009) Integrated LiDAR & photogrammetric documentation of the Red Gulch Dinosaur Tracksite (Wyoming, USA). Proceedings of the Eighth Conference on Fossil Resources, Utah:101-103

  7. Bates T, Manning PL, Vila B, Hodgetts D (2008) Three-dimensional modelling and analysis of dinosaur trackways. Palaeontology 51(4):999–1010

    Article  Google Scholar 

  8. Bemis SP, Micklethwaite S, Turner D, James MR, Akciz S, Thiele ST, Bangash HA (2014) Ground-based and UAV-based photogrammetry: a multi-scale, high-resolution mapping tool for structural geology and paleoseismology. J Struct Geol 69:163–178

    Article  Google Scholar 

  9. Bewley RH, Crutchley S, Shell C (2005) New light on an ancient landscape: lidar survey in the Stonehenge World Heritage Site. Antiquity 79:636–647

    Article  Google Scholar 

  10. Boschma D, Van Staalduinen C (1969) Mappable units of the Carboniferous in the southern Cantabrian Mountains (NW-Spain). Leidse Geol Meded 43:221–231

  11. Botor D (2012) Hydrothermal fluids influence on the thermal evolution of the Stephanian sequence, the Sabero Coalfield (NW Spain). Geol Geophys Environ 38

  12. Botor D, Anczkiewicz AA (2015) Thermal history of the Sabero Coalfield (Southern Cantabrian Zone, NW Spain) as revealed by apatite fission track analyses from tonstein horizons: implications for timing of coalification. Int J Earth Sci 104(7):1779–1793

    Article  Google Scholar 

  13. Colmenero JR, Prado JG (1993) Coal basins in the Cantabrian Mountains, northwestern Spain. Int J Coal Geol 23(1-4):215–229

    Article  Google Scholar 

  14. Colmenero J, Fernández L, Moreno C, Bahamonde J, Barba P, Heredia N, González F (2002) Carboniferous. The Geology of Spain, pp. 93-116

  15. Colmenero JR, Suárez-Ruiz I, Fernández-Suárez J, Barba P, Llorens T (2008) Genesis and rank distribution of Upper Carboniferous coal basins in the Cantabrian Mountains, Northern Spain. Int J Coal Geol 76:187–204

    Article  Google Scholar 

  16. Colomia I, Molina P (2014) Unmanned aerial systems for photogrammetry and remote sensing: a review. ISPRS J Photogramm Remote Sens 92:79–97

    Article  Google Scholar 

  17. Corrochano D, Barba P, Colmenero JR (2012) Glacioeustatic cyclicity of a Pennsylvanian carbonate platform in a foreland basin setting: an example from the Bachende Formation of the Cantabrian Zone (NW Spain). Sediment Geol 245:76–93

    Article  Google Scholar 

  18. Crespo-Blanc A, Urquí LC, Gómez JLS (2011) Geolodía: origen, presente y futuro, Enseñanza de las ciencias de la tierra. Revista de la Asociación Española para la Enseñanza de las Ciencias de la Tierra 19:95–103

  19. Crutchley S, Crow P (2010) The light fantastic: using airborne lidar in archaeological survey. English Heritage Swindon, UK 46

  20. Dawson J (1854) On the coal-measures of the South Joggins, Nova Scotia. Q J Geol Soc 10:1–42

    Article  Google Scholar 

  21. DiMichele WA, Falcon-Lang HJ (2010) Pennsylvanian ‘fossil forests’ in growth position (T0 assemblages): origin, taphonomic bias and palaeoecological insights. J Geol Soc 168(2):585–605

    Article  Google Scholar 

  22. Egels Y, Kasser M (2003) Digital photogrammetry. Press, CRC 368

  23. Eltner A, Schneider D (2015) Analysis of different methods for 3D reconstruction of natural surfaces from parallel‐axes UAV images. Photogramm Rec 30:279–299

    Article  Google Scholar 

  24. Evers H (1967) Geology of the Leónides between the Bemesga and Porma rivers, Cantabrian Mountains, NW Spain. Leidse Geol Meded 4:83–151

    Google Scholar 

  25. Falcon-Lang HJ (2015) A calamitalean forest preserved in growth position in the Pennsylvanian coal measures of South Wales: implications for palaeoecology, ontogeny and taphonomy. Rev Palaeobot Palynol 214:51–67

    Article  Google Scholar 

  26. Falkingham PL (2012) Acquisition of high resolution three-dimensional models using free, open-source, photogrammetric software. Palaeontol Electron 15:15

    Google Scholar 

  27. Fernández-Lozano J, Gutiérrez-Alonso G, Salman-Monte K, Sánchez-Fabian JÁ, García F (2015a) Tecnología VANT de bajo coste para reproducción 3D y preservación del registro arqueológico del proyecto de Geoparque las Loras (Palencia-Burgos). Revista Internacional Mapping 24(172):4–11

    Google Scholar 

  28. Fernández-Lozano J, Gutiérrez-Alonso G, Fernández-Morán MÁ (2015b) Using airborne LiDAR sensing technology and aerial orthoimages to unravel roman water supply systems and gold works in NW Spain (Eria valley, León). J Archaeol Sci 53:356–373

    Article  Google Scholar 

  29. Fernández-Martínez E, Fuertes-Gutiérrez I (2010) Patrimonio paleontológico en las provincias de León y Palencia: estado de la Cuestión. III Congreso ibérico de paleontología. 29-32

  30. Fuertes-Gutiérrez I, Fernández-Martínez E (2010) Geosites inventory in the Leon Province (Northwestern Spain): a tool to introduce geoheritage into regional environmental management. Geoheritage 2:57–75

    Article  Google Scholar 

  31. Fuertes-Gutiérrez I, García-Ortiz E, Fernández-Martínez E (2015) Anthropic Threats to Geological Heritage: Characterization and Management: A Case Study in the Dinosaur Tracksites of La Rioja (Spain). Geoheritage:1-19

  32. García-Talegón J, Calabrés S, Fernández-Lozano J, Iñigo A, Herrero-Fernández H, Arias-Pérez B, González-Aguilera D (2015) Assesing pathologies on Villamayor Stone (Salamanca, Spain) by terrestrial laser scanner intensity data. ISPRS-International Archives of the Photogrammetry. Remote Sens Spat Inf Sci 1:445–451

    Google Scholar 

  33. Gastaldo RA (1992) Regenerative growth in fossil horsetails following burial by alluvium. Hist Biol 6(3):203–219

    Article  Google Scholar 

  34. GeoPark (2015) European Geoparks Network Available from http://europeangeoparks.org. Last Accesed 20.10.2015

  35. Gibbons W, Moreno T (2002) The geology of Spain. Geological Society of London. London. 649

  36. Gonzalez-Aguilera D, Muñoz-Nieto A, Rodriguez-Gonzalvez P, Menéndez M (2011) New tools for rock art modelling: automated sensor integration in Pindal Cave. J Archaeol Sci 38:120–128

    Article  Google Scholar 

  37. Gutiérrez-Alonso G, Fernández-Suárez J, Weil AB (2004) Orocline triggered lithospheric delamination. Geol Soc Am Spec Pap 383:121–130

    Google Scholar 

  38. Gutierrez-Alonso G, Murphy J, Fernandez-Suarez J, Weil A, Franco M, Gonzalo J (2011) Lithospheric delamination in the core of Pangea: Sm-Nd insights from the Iberian mantle. Geology 39:155–158

    Article  Google Scholar 

  39. Gutiérrez-Alonso G, Johnston S, Weil AB, Pastor-Galán D, Fernández-Suárez J (2012) Buckling an orogen: the Cantabrian Orocline. GSA Today 22:4–9

    Article  Google Scholar 

  40. Gutiérrez-Alonso G, Collins AS, Fernández-Suárez J, Pastor-Galán D, González-Clavijo E, Jourdan F, Weil AB, Johnston ST (2015) Dating of lithospheric buckling: 40 Ar/39 Ar ages of syn-orocline strike-slip shear zones in northwestern Iberia. Tectonophysics 643:44–54

    Article  Google Scholar 

  41. Gutiérrez-Marco JC, Rábano I, Barrón E (2011) Geodiversidad y Biodiversidad en el Parque Nacional de Cabañeros (Ciudad Real-Toledo): la Ruta del Boquerón del Estena. Real Sociedad Española de Historia Natural, Madrid, pp 1–26

    Google Scholar 

  42. Hakala T, Suomalainen J, Peltoniemi JI (2010) Acquisition of bidirectional reflectance factor dataset using a micro unmanned aerial vehicle and a consumer camera. Remote Sens 2:819–832

    Article  Google Scholar 

  43. Heward AP (1978) Alluvial fan and lacustrine sediments from the Stephanian A and B (La Magdalena, Cinera—Matallana and Sabero) coalfields, Northern Spain. Sedimentology 25:451–488

    Article  Google Scholar 

  44. Irschara A, Zach C, Frahm J M, Bischof H (2009) From structure-from-motion point clouds to fast location recognition. In Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference on (pp. 2599-2606). IEEE

  45. Iwaniw E (1984) Lower Cantabrian basin margin deposits in NE Leon, Spain—a model for valley‐fill sedimentation in a tectonically active, humid climatic setting. Sedimentology 31:91–110

    Article  Google Scholar 

  46. James MR, Robson S (2014) Mitigating systematic error in topographic models derived from UAV and ground-based image networks. Earth Surf Process Landf 39:1413–1420

    Article  Google Scholar 

  47. Jiménez-Sánchez M, Ballesteros D, Rodríguez-Rodríguez L, Domínguez-Cuesta MJ (2014) The Picos de Europa national and regional parks. Landscapes and Landforms of Spain, Springer, pp 155–163

    Google Scholar 

  48. Julivert M (1971) Décollement tectonics in the Hercynian Cordillera of northwest Spain. Am J Sci 270:1–29

    Article  Google Scholar 

  49. Knight J (1971) The sequence and stratigraphy of the eastern end of the Sabero coalfield. Trab Geol 3:139–231

    Google Scholar 

  50. Knight J (1983) The Stratigraphy of the Stephanian Rocks of the Sabero Coalfield, Léon (NW. Spain) and an investigation of the fossil flora. Part I: The stratigraphy and general geology of the Sabero Coalfield. Palaeontographica Abteilung B:1-88

  51. Knight JA, Burger K, Bieg G (2000) The pyroclastic tonsteins of the Sabero Coalfield, north-western Spain, and their relationship to the stratigraphy and structural geology. Int J Coal Geol 44:187–226

    Article  Google Scholar 

  52. Küng O, Strecha C, Beyeler A, Zufferey J C, Floreano D, Fua P, Gervaix F (2011) The accuracy of automatic photogrammetric techniques on ultra-light UAV imagery, UAV-g 2011-Unmanned Aerial Vehicle in Geomatics

  53. Linder W (2003) Digital photogrammetry: theory and applications, Springer Berlin, 1-189

  54. Marcos A, Pulgar JA (1982) An approach to the tectonostratigraphic evolution of the Cantabrian foreland thrust and fold belt, Hercynian Cordillera of NW Spain, Neues Jahrbuch für Geologie und Paläontologie. Abhandlungen 163:256–260

    Google Scholar 

  55. Martin C (1982) Minería del carbón en España a finales del Antiguo Régimen (1770-1835). La Economía Española al final del Antiguo Régimen 2:229–335

    Google Scholar 

  56. Martínez-Catalán JR, Arenas R, García FD, Abati J (1997) Variscan accretionary complex of northwest Iberia: Terrane correlation and succession of tectonothermal events. Geology 25:1103–1106

    Article  Google Scholar 

  57. Mikhail E M, Bethel J S, McGlone J C (2001) Introduction to modern photogrammetry, John Wiley & Sons Inc: 1-479

  58. Murphy JB, Gutiérrez-Alonso G, Fernández-Suárez J, Braid JA (2008) Probing crustal and mantle lithosphere origin through Ordovician volcanic rocks along the Iberian passive margin of Gondwana. Tectonophysics 461:166–180

    Article  Google Scholar 

  59. Nex F, Remondino F (2014) UAV for 3D mapping applications: a review. Appl Geomatics 6:1–15

    Article  Google Scholar 

  60. Nijman W, Savage JF (1989) Persistent basement wrenching as controlling mechanism of Variscan thin-skinned thrusting and sedimentation, Cantabrian Mountains Spain. Tectonophysics 169(4):281–302

    Article  Google Scholar 

  61. Ouédraogo MM, Degré A, Debouche C, Lisein J (2014) The evaluation of unmanned aerial system-based photogrammetry and terrestrial laser scanning to generate DEMs of agricultural watersheds. Geomorphology 214:339–355

    Article  Google Scholar 

  62. Pérez‐Estaún A, Bastida F, Alonso JL, Marquínez J, Aller J, Alvarez‐Marrón J, Marcos A, Pulgar J (1988) A thin‐skinned tectonics model for an arcuate fold and thrust belt: the Cantabrian Zone (Variscan Ibero‐Armorican Arc). Tectonics 7:517–537

    Article  Google Scholar 

  63. Pastor-Galán D, Gutiérrez-Alonso G, Weil AB (2011) Orocline timing through joint analysis: Insights from the Ibero-Armorican Arc. Tectonophysics 507:31–46

    Article  Google Scholar 

  64. Pastor-Galán D, Gutiérrez-Alonso G, Fernández-Suárez J, Murphy JB, Nieto F (2013) Tectonic evolution of NW Iberia during the Paleozoic inferred from the geochemical record of detrital rocks in the Cantabrian Zone. Lithos 182:211–228

    Article  Google Scholar 

  65. Petti FM, Avanzini M, Belvedere M, De Gasperi M, Ferretti P, Girardi S, Remondino F, Tomasoni R (2008) Digital 3D modelling of dinosaur footprints by photogrammetry and laser scanning techniques: integrated approach at the Coste dell’Anglone tracksite (Lower Jurassic, Southern Alps, Northern Italy), Studi Trentini di Scienze Naturali. Acta Geol 83:303–315

    Google Scholar 

  66. Ponz A, Ibarra J (1773) Viage de España 310

  67. Prosser CD (2011) Principles and practice of geoconservation: lessons and case law arising from a legal challenge to site-based conservation on an eroding coast in eastern England, UK. Geoheritage 3:277–287

    Article  Google Scholar 

  68. Ravanel L, Bodin X, Deline P (2014) Using terrestrial laser scanning for the recognition and promotion of high-alpine geomorphosites. Geoheritage 6:129–140

    Article  Google Scholar 

  69. Remondino F, El‐Hakim S (2006) Image‐based 3D modelling: a review. Photogramm Rec 21:269–291

    Article  Google Scholar 

  70. Remondino F, Rizzi A, Girardi S, Petti FM, Avanzini M (2010) 3D Ichnology—recovering digital 3D models of dinosaur footprints. Photogramm Rec 25:266–282

    Article  Google Scholar 

  71. Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D (2011) UAV photogrammetry for mapping and 3d modeling–current status and future perspectives, International Archives of the Photogrammetry. Remote Sens Spat Inf Sci 38:C22

    Google Scholar 

  72. Rosnell T, Honkavaara E (2012) Point cloud generation from aerial image data acquired by a quadrocopter type micro unmanned aerial vehicle and a digital still camera. Sensors 12:453–480

    Article  Google Scholar 

  73. Rüther H, Chazan M, Schroeder R, Neeser R, Held C, Walker SJ, Matmon A, Horwitz LK (2009) Laser scanning for conservation and research of African cultural heritage sites: the case study of Wonderwerk Cave, South Africa. J Archaeol Sci 36:1847–1856

    Article  Google Scholar 

  74. Schenk T F (1999) Digital Photogrammetry: Backgrounds, Fundamentals, Automatic Orientation Procedures. TerraScience 428

  75. Strecha C, von Hansen W, Gool L V, Fua P, Thoennessen U (2008) On benchmarking camera calibration and multi-view stereo for high resolution imagery, Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, IEEE:1-8

  76. Strecha C (2011) Automated Photogrammetric Techniques on Ultra-light UAV Imagery. :289-294

  77. Taylor CJ, Kriegman DJ (1995) Structure and motion from line segments in multiple images. IEEE Trans Pattern Anal Mach Intell 17(11):1021–1032

    Article  Google Scholar 

  78. Thomas BA (2014) In situ stems: preservation states and growth habits of the Pennsylvanian (Carboniferous) calamitaleans based upon new studies of Calamites Sternberg, 1820 in the Duckmantian at Brymbo, North Wales, UK. Palaeontology 57(1):21–36

    Article  Google Scholar 

  79. Thomas BA, Seyfullah LJ (2015) Stigmaria Brongniart: a new specimen from Duckmantian (Lower Pennsylvanian) Brymbo (Wrexham, North Wales) together with a review of known casts and how they were preserved. Geol Mag 152(05):858–870

    Article  Google Scholar 

  80. Wagner RH (1966) Palaeobotanical dating of Upper Carboniferous folding phases in NW Spain, Mem. Inst. Geol. Min, España pp. 1–169

  81. Wagner R H, Prins C F W (1970) The stratigraphic succession, flora and fauna of Cantabrian and Stephanian A rocks at Barruelo (prov. Palencia), NW Spain pp. 487–551

  82. Wagner RH (1971) The stratigraphy and structure of the Ciñera-Matallana Coalfield (prov. León, NW Spain). Trab Geol 4:385–431

    Google Scholar 

  83. Wagner RH, Diez JB (2007) Verdeña (Spain): life and death of a Carboniferous forest community. Comptes Rendus Palevol 6:495–504

    Article  Google Scholar 

  84. Weil A, Gutiérrez-Alonso G, Conan J (2010) New time constraints on lithospheric-scale oroclinal bending of the Ibero-Armorican Arc: a palaeomagnetic study of earliest Permian rocks from Iberia. J Geol Soc 167:127–143

    Article  Google Scholar 

  85. Weil AB, Van der Voo R, Van der Pluijm B, Parés J (2000) The formation of an orocline by multiphase deformation: a paleomagnetic investigation of the Cantabria–Asturias Arc (northern Spain). J Struct Geol 22:735–756

    Article  Google Scholar 

Download references

Acknowledgments

This work has been funded by the Ministry of Economy and Competitiveness under the project ODRE III-Oroclines & Delamination: Relations & Effects (CGL2013-46061-P) and the Founding Program for Research Groups by University of Salamanca. Funding for Javier Fernández-Lozano comes from a contract under the Spanish Law of Science, established by the Junta de Castilla y León and the University of Salamanca. The authors thank Dra. Piedad Franco from University of Salamanca and Marius van Heiningen for the suggestions and comments that aimed to improve this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Fernández-Lozano.

Supplementary material

Supplementary Data 1

Fossil forest of Alejico Movie. (MP4 79357 kb)

Supplementary Data 2

Photorealistic 3D Model of Alejico Carboniferous Forest (PDF 12511 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fernández-Lozano, J., Gutiérrez-Alonso, G. The Alejico Carboniferous Forest: a 3D-Terrestrial and UAV-Assisted Photogrammetric Model for Geologic Heritage Preservation. Geoheritage 9, 163–173 (2017). https://doi.org/10.1007/s12371-016-0193-0

Download citation

Keywords

  • Carboniferous forest
  • UAV
  • Photogrammetry
  • Geologic heritage
  • 3D model