Skip to main content
Log in

Runoff Impact on Active Geomorphosites in Unconsolidated Substrate. A Comparison Between Landforms in Glacial and Marine Clay Sediments: Two Case Studies from the Swiss Alps and the Italian Apennines

  • Original Article
  • Published:
Geoheritage Aims and scope Submit manuscript

Abstract

The cultural value of geomorphological heritage (i.e., geomorphosites) is universally recognised and at the same time the interest on its mutability, as a consequence of both natural-climate and human pressure, is growing. In some cases a sudden increase in the velocity of processes can cause irreversible modifications threatening the survival of sites as well as their scientific value in terms of integrity. The focus of this paper is put on two types of geomorphosites (active geomorphosites and evolving passive geomorphosites), in which it is possible to observe and quantify the geomorphological processes varying mainly as a response to climate change. The study cases are runoff-derived landforms on unconsolidated deposits in two morphoclimatic contexts: ‘calanchi’ on marine originated clays in the Italian Apennines in Mediterranean climatic context (Crete d’Arbia and Radicofani, Tuscany) and earth pyramids formed in glacial deposits in continental Alpine environment (Pyramides d’Euseigne, Canton Valais, Switzerland). In both sites, human activities have strongly contributed to landscape evolution. To investigate erosion rates, dendrogeomorphological analysis (i.e. stress indicators and root exposure analysis) were combined with traditional quantitative geomorphological techniques. Analysis of the roots exposure, well correlated with the climatic data (denudation rates are higher during wet period), show that denudation rates are lower at Pyramides d’Euseigne due to the different texture of the deposits. Unfortunately, at the moment, a comparison between the two sites based on geomorphological monitoring data is not possible due to the different time interval of analysis, and only conclusions on denudation rates coming from roots exposure are allowed. Both geomorphosites have a high scientific value (representativeness and educational exemplarity) and are characterised by dynamicity. Providing data for modelling the sites evolution and possible decrease of their scientific value, caused by proceeding of the process itself, may be particularly significant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alestalo J (1971) Dendrochronological interpretation of geomorphic processes. Fennia 105:1–140

    Google Scholar 

  • Avanzini M, Carton A, Seppi R, Tomasoni R (2005) Geomorphosites in Trentino: a first census. Il Quaternario 18(1):63–78

    Google Scholar 

  • Baba A, Kaya A, Turk N (2005) Fairy chimneys Cappadocia and their engineering properties. J Appl Sci 5:800–805

    Article  Google Scholar 

  • Ballesteros-Cánovas JA, Bodoque JM, Lucía A, Martín-Duque JF, Díez-Herrero A, Ruiz-Villanueva V, Genova M (2013) Dendrogeomorphology in badlands: methods, case studies and prospects. Catena 106:113–122

    Article  Google Scholar 

  • Barberi F, Buonasorte G, Cioni R, Fiordalisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Mem Descr Carta Geol Ital 49:77–134

    Google Scholar 

  • Bell FJ (1998) Environmental geology. Principles and practice. Blackwell, Oxford

    Google Scholar 

  • Bollati I, Pelfini M, Pellegrini L, Bazzi A, Duci G (2011) Active geomorphosites and educational application: an itinerary along Trebbia River (Northern Apennines, Italy). In: Reynard E, Laigre L, Kramar N (eds), Les géosciences au service de la société. Actes du colloque en l’honneur du Professeur Michel Marthaler, 24-26 juin 2010, Lausanne. Institut de géographie, Université de Lausanne. Géovision 37:219–234

  • Bollati I, Pelfini M, Pellegrini L (2012a) A geomorphosites selection method for educational purposes: a case study in Trebbia Valley (Emilia Romagna, Italy). Geogr Fis Din Quat 35:23–35. doi:10.4461/GFDQ.2012.35.3

    Google Scholar 

  • Bollati I, Della Seta M, Pelfini M, Del Monte M, Fredi P, Lupia Palmieri E (2012b) Dendrochronological and geomorphological investigations to assess water erosion and mass wasting processes in the Apennines of Southern Tuscany (Italy). Catena 90:1–17

    Article  Google Scholar 

  • Bruno DE, Perrotta P (2012) A geotouristic proposal for Amendolara territory (northern ionic sector of Calabria, Italy). Geoheritage 4(3):139–151

    Article  Google Scholar 

  • Calzolari C, Torri D, Del Sette M, Maccherini S, Bryan R (1997) Evoluzione dei suoli e processi di erosione su biancane: il caso delle biancane de la foce (Val d’Orcia, Siena). Boll Soc Ital Sci Suolo 8:185–203

    Google Scholar 

  • Carmignani L, Decandia FA, Fantozzi PL, Lazzarotto A, Liotta D, Meccheri M (1994) Tertiary extensional tectonics in Tuscany (Northern Apennines, Italy). Tectonophysics 238:295–315

    Article  Google Scholar 

  • Castaldini D, Valdati J, Ilies DC, Chiriac C, Bertogna I (2005) Geo-tourist map of the natural reserve of Salse di Nirano (Modena Apennines, northern Italy). Il Quaternario 18(1):245–255

    Google Scholar 

  • Cendrero A, Panizza M (1999) Geomorphology and environmental impact assessment: an introduction. Suppl Geogr Fis Din Quat III/3:167–172

    Google Scholar 

  • Ciccacci S, Galiano M, Roma MA, Salvatore MC (2008) Morphological analysis and erosion rate evaluation in badlands of Radicofani area (Southern Tuscany—Italy). Catena 74:87–97

    Article  Google Scholar 

  • Cook ER (1985) A time series approach to tree-ring standardization. Ph.D. thesis, The University of Arizona, Tucson

  • Coutterand S (2012) The Lateglacial of Hérens valley (Valais, Switzerland): palaeogeographical and chronological reconstructions of deglaciation stages. Special Issue for the XVIII INQUA Congress in Bern, Switzerland 101XVIII INQUA Congress, 21st-27th July 2011, Bern, Switzerland. Quater Int 60(3):279–280

  • De Martonne E (1926) Aréisme et indice d’aridité. C R 182(23):1395–1398

    Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2007) Direct and indirect evaluation of denudation rates in Central Italy. Catena 71:21–30

    Article  Google Scholar 

  • Della Seta M, Del Monte M, Fredi P, Lupia PE (2009) Space-time variability of denudation rates at the catchment and hillslope scales on the Tyrrhenian side of Central Italy. Geomorphology 107:161–177

    Article  Google Scholar 

  • Dorthe -Monachon C (1993) Etude des stades tardiglaciaires des vallées de la rive droite du Rhône entre Loèche et Martigny. Inst Géog Univ Lausanne Trav Rech 10

  • Gabbrielli A (1960) I calanchi di Monte Oliveto Maggiore e l’inizio della loro sistemazione idraulica e forestale. Ital For Mont XV:183–189

    Google Scholar 

  • Gärtner H (2007) Tree roots—methodological review and new development in dating and quantifying erosive processes. Geomorphology 86:243–251

    Article  Google Scholar 

  • Gärtner H, Schweingruber FH, Dikau R (2001) Determination of erosion rates by analyzing structural changes in the growth pattern of exposed roots. Dendrochronologia 19:81–91

    Google Scholar 

  • Guida D, Pelfini M, Santilli M (2008) Geomorphological and dendrochronological analyses of a complex landslide in the Southern Apennines. Geogr Ann A 90(3):211–226

    Article  Google Scholar 

  • Heck P (1985) Lady with hats. Geogr Mag 481–484

  • Holmes RL, Adams RK, Fritts HC (1986) Tree-ring chronologies of North America: California, Eastern Oregon and Northern Great Basin with procedures used in the chronology development work including user manual for computer program COFECHA and ARSTAN. Chronology Series VI, University of Arizona, Laboratory of tree-ring research, Tucson, USA

  • Hooke JM (1994) Strategies for conserving and sustaining dynamic geomorphological sites. In: O’Halloran D, Green C, Harley M, Stanley M, Knill J (eds) Geological and landscape conservation. Geological Society, London, pp 191–195

    Google Scholar 

  • Hupp C, Carey WP (1990) Dendrogeomorphic approach to estimating slope retreat. Geology 18(7):658–661

    Article  Google Scholar 

  • Lambiel C, Maillard B, Kummert M, Reynard E (2015) Geomorphology of the Hérens valley (Swiss Alps). J Maps 1–13

  • Liotta D (1996) Analisi del settore centromeridionale del bacino pliocenico di Radicofani (Toscana meridionale). Boll Soc Geol Ital 115:115–143

    Google Scholar 

  • Panizza M (2001) Geomorphosites: concepts, methods and examples of geomorphological survey. Chin Sci Bull 46:4–6

    Article  Google Scholar 

  • Panizza M, Piacente S (2003) Geomorfologia culturale. Pitagora Ed, Bologna

    Google Scholar 

  • Pelfini M, Bollati I (2014) Geoheritage and geomorphosites ongoing changes: concepts and implications for tourism and cultural fruition. Quaest Geogr 33(1):131–143

    Google Scholar 

  • Pelfini M, Santilli M (2006) Dendrogeomorphological analyses on exposed roots along two mountain hiking trails in the Central Italian Alps. Geogr Ann A 88(3):223–236

    Article  Google Scholar 

  • Pelfini M, Brandolini P, Carton A, Piccazzo M (2009) Geo-tourist and geomorphological risk/impact. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Pfeil Verlag, München, pp 131–143

    Google Scholar 

  • Perna G (1963) Piramidi di terra e piramidi di erosione nel Trentino - Alto Adige. Special Volume. Memorie del Museo di Storia Naturale della Venezia Tridentina. XIV(II)

  • Poesen JW, Torri D, Bunte K (1994) Effects of rock fragments on soil erosion by water at different spatial scales: a review. Catena 23:141–166

    Article  Google Scholar 

  • Regent Instruments INC (2001) Windendro 2001 user manual. Quebec, Canada

  • Reynard E (2004) Géotopes, géo(morpho)sites et paysages géomorphologiques. In: Reynard E, Pralong JP (eds) Paysages géomorphologiques. Université de Lausanne, Institut de Géographie. Trav Rech 27:124–136

    Google Scholar 

  • Reynard E, Coratza P (2013) Scientific research on geomorphosites. A review of the activities of the IAG working group on geomorphosites over the last twelve years. Geogr Fis Din Quat 36:159–168

    Google Scholar 

  • Reynard E, Coratza P, Regolini-Bissig G (2009) Geomorphosites. Pfeil Verlag, München

    Google Scholar 

  • Reynard E, Berger JP, Constandache M, Felber M, Grangier L, Häuselmann P, Jeannin PY, Martin S (2012) Révision de l’inventaire des géotopes suisses: rapport final. Lausanne, Groupe de travail pour les géotopes en Suisse

    Google Scholar 

  • Reynard E, Perret A, Bussard J, Grangier L, Martin S (2015) Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage, pp 1–18. doi:10.1007/s12371-015-0153-0

  • Rinn F (1996) TSAP. Time Series Analysis and Presentation. Version 3.0 Reference Manual, Heidelberg

  • Sacco F (1934) Le Alpi. T.C.I ., Milan

  • Salvini R (2008) Analisi morfometriche delle Crete Senesi mediante remote sensing and GIS. Mem Descr Carta Geol Ital 78:245–252

    Google Scholar 

  • Schweingruber FH (1996) Tree rings and environment: dendroecology. Haupt, Berne

    Google Scholar 

  • Smith BJ, Orford JD, Nicholas BL (2009) Management challenges of a dynamic geomorphosite: climate change and the Giant’s Causeway World Heritage Site. In: Reynard E, Coratza P, Regolini-Bissig G (eds) Geomorphosites. Pfeil Verlag, München, pp 145–162

    Google Scholar 

  • Stoffel M, Corona C, Ballesteros-Cánovas JA, Bodoque JM (2013) Dating and quantification of erosion processes based on exposed roots. Earth Sci Rev 123:18–34

    Article  Google Scholar 

  • Timell TE (1986) Compression wood in gymnosperms. Springer Verlag, Berlin

    Book  Google Scholar 

  • Torri D, Bryan R (1997) Micropiping processes and biancana evolution in southeast Tuscany, Italy. Geomorphology 20(3):219–235

    Article  Google Scholar 

  • Torri D, Regüés D, Pellegrini S, Bazzoffi P (1999) Within-storm soil surface dynamics and erosive effects of rainstorms. Catena 38(2):131–150

    Article  Google Scholar 

  • Vergari F, Della Seta M, Del Monte M, Fredi P, Lupia Palmieri E (2013) Long- and short-term evolution of several Mediterranean denudation hot spots: the role of rainfall variations and human impact. Geomorphology 183:14–27

    Article  Google Scholar 

  • Yang G, Yanga Z, Zhanga X, Tiana M, Chenb A, Gea Z, Pinga Y, Nia Z (2011) Rs-based geomorphic analysis of Zhangjiajie sandstone peak forest Geopark, China. J Cult Herit 12(1):88–97

    Article  Google Scholar 

  • Zachar D (1982) Soil erosion. Elsevier, Amsterdam

    Google Scholar 

Download references

Acknowledgments

The research was carried out in the framework of the PRIN 2010–2011 project (grant number 2010AYKTAB_006) ‘Response of morphoclimatic system dynamics to global changes and related geomorphological hazards’ and the PRIN 2007 project ‘Development of an integrated model for a preventive assessment of soil degradation processes in Mediterranean environment’, funded by the Ministero Istruzione Università Ricerca (MIUR). The authors are grateful to Prof. Maurizio Del Monte, Prof. Paola Fredi, Dr. Marta Della Seta, Dr. Francesca Vergari for the collaboration during the scientific research conducted in Tuscany; they are grateful also to Dr. Jean-Michel Fallot (University of Lausanne) and Prof. Massimiliano Fazzini for the preparation and sharing of climatic data and to Dr. Davide Cagnin and Dr. Marco Pellegrini for the assistance during the field surveys at Pyramides d’Euseigne. They thank two anonymous reviewers for useful comments on the original version of the manuscript. They are grateful to the Canton of Valais administration (Landscape and Forest Service, director: M. Olivier Guex) for authorising us to investigate the protected area of Pyramides d’Euseigne.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irene Bollati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bollati, I., Reynard, E., Palmieri, E.L. et al. Runoff Impact on Active Geomorphosites in Unconsolidated Substrate. A Comparison Between Landforms in Glacial and Marine Clay Sediments: Two Case Studies from the Swiss Alps and the Italian Apennines. Geoheritage 8, 61–75 (2016). https://doi.org/10.1007/s12371-015-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12371-015-0161-0

Keywords

Navigation