Skip to main content

Social Assistive Robots: Assessing the Impact of a Training Assistant Robot in Cardiac Rehabilitation


According to the world health organization, cardiovascular diseases are a major cause of death worldwide. Cardiac rehabilitation programmes are dedicated to approach this problem and reduce mortality rates due to the presence of a second event. However, the adherence and motivation of patients to assist to these programmes is not the expected. Therefore, this paper presents the incorporation of a SAR system into a cardiac rehabilitation scenario, where a social robot had the role of a training assistant during the therapy, aiming to increase motivation and encourage people to continue with the therapy. This study carried out a longitudinal experimental setup with a total of 209 sessions observed for a group of 6 patients in a period between 3 and 6 months. Results show that patients felt more encouraged to perform physical activity and continue with the rehabilitation when they perceived that monitored and supervised by the system, demonstrating that it can be implemented as a reliable tool that would potentially leverage tasks carried out by health professionals.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7



  2. The phrases presented here are translated from Spanish, which is the language used by the robot during the therapy.

  3. Duration of the phase II might differ between patients, according to their physiological condition


  1. World Heart Organization. Cardiovascular Disease. (2017). Accessed 3 Aug 2018

  2. Bethell HJ, Turner SC, Evans JA, Rose L (2001) Cardiac rehabilitation in the United Kingdom. How complete is the provision? J Cardiopulm Rehabil 21(2):111

    Article  Google Scholar 

  3. Sarrafzadegan N, Rabiei K, Shirani S, Kabir A, Mohammadifard N, Roohafza H (2007) Drop-out predictors in cardiac rehabilitation programmes and the impact of sex differences among coronary heart disease patients in an Iranian sample: a cohort study. Clin Rehabil 21(4):362

    Article  Google Scholar 

  4. Worcester MU, Murphy BM, Mee VK, Roberts SB, Goble AJ (2004) Cardiac rehabilitation programmes: predictors of non-attendance and drop-out. Eur J Cardiovasc Prev Rehabil 11(4):328

    Article  Google Scholar 

  5. Piepoli MF, Corrà U, Dendale P, Frederix I, Prescott E, Schmid JP, Cupples M, Deaton C, Doherty P, Giannuzzi P, Graham I, Hansen TB, Jennings C, Landmesser U, Marques-Vidal P, Vrints C, Walker D, Bueno H, Fitzsimons D, Pelliccia A (2017) Challenges in secondary prevention after acute myocardial infarction: a call for action. Eur J Cardiovasc Nurs 16(5):369

    Article  Google Scholar 

  6. Bjarnason-Wehrens B, McGee H, Zwisler AD, Piepoli MF, Benzer W, Schmid JP, Dendale P, Pogosova NGV, Zdrenghea D, Niebauer J, Mendes M (2010) Cardiac rehabilitation in Europe: results from the European cardiac rehabilitation inventory survey. Eur J Cardiovasc Prev Rehabil 17(4):410.

    Article  Google Scholar 

  7. European Heart Network (2008) European cardiovascular disease statistics. Accessed 22 Nov 2018

  8. Taylor RS, Unal B, Critchley JA, Capewell S (2006) Mortality reductions in patients receiving exercise-based cardiac rehabilitation: how much can be attributed to cardiovascular risk factor improvements? Eur J Cardiovasc Prev Rehabil 13(3):369.

    Article  Google Scholar 

  9. Michie S, O’Connor D, Bath J, Giles M, Earll L (2005) Cardiac rehabilitation: the psychological changes that predict health outcome and healthy behaviour. Psychol Health Med 10(1):88.

    Article  Google Scholar 

  10. Taylor C, ME Y, D C et al (2005) Effects of antidepressant medication on morbidity and mortality in depressed patients after myocardial infarction. Arch Gen Psychiatry 62(7):792

    Article  Google Scholar 

  11. Anderson L, Oldridge N, Thompson DR, Zwisler AD, Rees K, Martin N, Taylor RS (2016) Exercise-based cardiac rehabilitation forcoronary heart disease: Cochrane systematic review and meta-analysis. J Am Coll Cardiol 67(1):1.

    Article  Google Scholar 

  12. Graham IM, Fallon N, Ingram S, Leong T, Gormley J, O’Doherty V, Maher V, Benson SE (2011) Rehabilitation of the patient with coronary heart disease. Hurst’s Heart 13:1–33

    Google Scholar 

  13. Yu CM, Lau CP, Chau J, McGhee S, Kong SL, Cheung BMY, Li LSW (2004) A short course of cardiac rehabilitation program is highly cost effective in improving long-term quality of life in patients with recent myocardial infarction or percutaneous coronary intervention. Arch Phys Med Rehabil 85(12):1915.

    Article  Google Scholar 

  14. Jack K, McLean SM, Moffett JK, Gardiner E (2010) Barriers to treatment adherence in physiotherapy outpatient clinics: a systematic review. Manual Ther 15(3):220.

    Article  Google Scholar 

  15. Ferreira C, Guimarães V, Santos A, Sousa I (2014) In: proceedings of the 8th international conference on pervasive computing technologies for healthcare (ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), ICST, Brussels, Belgium, Belgium, 2014), PervasiveHealth ’14, pp 282–285.

  16. Su CH, Cheng CH (2016) Developing and evaluating creativity gamification rehabilitation system: the application of PCA-ANFIS based emotions model. Eurasia J Math Sci Technol Educ 12(5):1443.

    Article  Google Scholar 

  17. Riva G (2005) Virtual reality in psychotherapy: review. Cyber Psychol Behav 8(3):220

    Article  MathSciNet  Google Scholar 

  18. Ding D, Liu HY, Cooper R, Cooper RA, Smailagic A, Siewiorek D (2010) Virtual coach technology for supporting self-care. Phys Med Andrehabil Clin North Am 21(1):179–194.

    Article  Google Scholar 

  19. Fridin M (2014) Storytelling by a kindergarten social assistive robot: a tool for constructive learning in preschool education. Comput Educ 70:53.

    Article  Google Scholar 

  20. Han J, Jo M, Jones V, Jo JH (2008) Comparative study on the educational use of home robots for children. J Inf Process Syst 4(4):159.

    Article  Google Scholar 

  21. Tapus A, Mataric MJ, Scassellati B (2007) Socially assistive robotics [grand challenges of robotics]. IEEE Robot Autom Mag 14(1):35.

    Article  Google Scholar 

  22. Breazeal C (2011) In: 2011 annual international conference of the IEEE Engineering in Medicine and Biology Society, pp 5368–5371.

  23. Robinson H, MacDonald B, Broadbent E (2014) The role of healthcare robots for older people at home: a review. Int J Social Robot 6(4):575.

    Article  Google Scholar 

  24. French B, Tyamagundlu D, Siewiorek DP, Smailagic DP, Ding D (2008) In: 2008 12th IEEE international symposium on wearable computers , pp 77–80.

  25. Sebastian J, Richards D (2017) Changing stigmatizing attitudes to mental health via education and contact with embodied conversational agents. Comput Hum Behav 73:479

    Article  Google Scholar 

  26. Bickmore T, Utami D, Zhou S, Sidner C, Quintiliani L (2015) In: Brinkman WP, Broekens J, Heylen D (eds) Intelligent Virtual Agents. Springer, Cham, pp 260–269

  27. IJsselsteijn WA, Kort YAW, Westerink J, Jager M, Bonants R (2006) Virtual fitness: stimulating exercise behavior through media technology. Presence Teleoperators Virtual Environ 15(6):688.

    Article  Google Scholar 

  28. Bickmore TW, Silliman RA, Nelson K, Cheng DM, Winter M, Henault L, Paasche-Orlow MK (2013) A randomized controlled trial of an automated exercise coach for older adults. J Am Geriatr Soc 61(10):1676.

    Article  Google Scholar 

  29. Feil-Seifer D, Mataric MJ (2005) In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005, pp 465–468.

  30. Matarić MJ, Eriksson J, Feil-Seifer DJ, Winstein CJ (2007) Socially assistive robotics for post-stroke rehabilitation. J NeuroEng Rehabil 4(1):5

    Article  Google Scholar 

  31. Bemelmans R, Gelderblom GJ, Jonker P, de Witte L (2012) Socially assistive robots in elderly care: a systematic review into effects and effectiveness. J Am Med Dir Assoc 13:114–120

    Article  Google Scholar 

  32. Tsardoulias EG, Kintsakis AM, Panayiotou K, Thallas AG, Reppou SE, Karagiannis GG, Iturburu M, Arampatzis S, Zielinski C, Prunet V, Psomopoulos FE, Symeonidis AL, Mitkas PA (2017) Towards an integrated robotics architecture for social inclusion—the RAPP paradigm. Cognitive Syst Res 43:157.

    Article  Google Scholar 

  33. Louie WY, McColl D, Nejat G (2014) Acceptance and attitudes toward a human-like socially assistive robot by older adults. Assist Technol 26(3):140

    Article  Google Scholar 

  34. Conti D, DiNuovo S, Buono S, DiNuovo A (2017) Robots in education and care of children with developmental disabilities: a study on acceptance by experienced and future professionals. Int J Soc Robot 9(1):51

    Article  Google Scholar 

  35. Feil-Seifer D, Matarić MJ (2009) In: Khatib O, Kumar V, Pappas GJ (eds) Robotics experimental. Springer, Berlin, pp 201–210

  36. Rabbitt SM, Kazdin AE, Scassellati B (2015) Integrating socially assistive robotics into mental healthcare interventions: applications and recommendations for expanded use. Clin Psychol Rev 35:35.

    Article  Google Scholar 

  37. Martín F, Agüero CE, Cañas JM, Valenti M, Martínez-Martín P (2013) Robotherapy with dementia patients. Int J Adv Rob Syst 10:10

    Article  Google Scholar 

  38. Shen Z, Wu Y (2016) Investigation of practical use of humanoid robots in elderly care centres. In: Proceedings of the fourth international conference on human agent interaction—HAI ’16, pp 63–66

  39. Süssenbach L, Riether N, Schneider S, Berger I, Kummert F, Lütkebohle I, Pitsch K (2014) In: The 23rd IEEE international symposium on robot and human interactive communication, pp 286–293

  40. Kang KI, Freedman S, Matarći MJ, Cunningham MJ, Lopez B (2005) A hands-off physical therapy assistance robot for cardiac patients. In: 9th international conference on rehabilitation robotics, 2005. ICORR 2005, pp 337–340.

  41. Pfeifer R, Scheier C (1999) Understanding intelligence. MIT Press, Cambridge

    Google Scholar 

  42. Dautenhahn K, Ogden B, Quick T (2002) From embodied to socially embedded agents-implications for interaction-aware robots. Cognitive Syst Res 3(3):397.

    Article  Google Scholar 

  43. Kennedy J, Baxter P, Belpaeme T (2015) Comparing robot embodiments in a guided discovery learning interaction with children. Int J Soc Robot 7(2):293

    Article  Google Scholar 

  44. Belpaeme T, Baxter P, Read R, Wood R, Cuayáhuitl H, Kiefer B, Racioppa S, Kruijff-Korbayová I, Athanasopoulos G, Enescu V, Looije R, Neerincx M, Demiris Y, Ros-Espinoza R, Beck A, Cañamero L, Hiolle A, Lewis M, Baroni I, Nalin M, Cosi P, Paci G, Tesser F, Sommavilla G, Humbert R (2013) Multimodal child–robot interaction: building social bonds. J Hum Robot Interact 1(2):33.

    Article  Google Scholar 

  45. Wainer J, Feil-seifer D, Shell DA, Mataric MJ (2006) In: ROMAN 2006—the 15th IEEE international symposium on robot and human interactive communication, pp 117–122.

  46. Powers A, Kiesler S, Fussell S, Torrey C (2007) In: Proceedings of the ACM/IEEE international conference on human–robot interaction, HRI ’07. ACM, New York, pp 145–152.

  47. Scherr J, Wolfarth B, Christle JW, Pressler A, Wagenpfeil S, Halle M (2013) Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur J Appl Physiol 113(1):147

    Article  Google Scholar 

  48. Lara J.S., Casas J, Aguirre A, Munera M, Rincon-Roncancio M, Irfan B, Senft E, Belpaeme T, Cifuentes CA (2017) In: 2017 international conference on rehabilitation robotics (ICORR) (2017), pp 1013–1018

  49. Casas J, Irfan B, Senft E, Gutiérrez L, Rincon-Roncancio M, Munera M, Belpaeme T, Cifuentes CA (2018) In: Companion of the 2018 ACM/IEEE international conference on human-robot interaction, HRI ’18. ACM, New York), pp 79–80

  50. Achten J, Jeukendrup AE (2003) Heart rate monitoring. Sports Med 33(7):517

    Article  Google Scholar 

Download references


This work was supported in part by the Royal Academy of Engineering IAPP project Human–Robot Interaction Strategies for Rehabilitation based on Socially Assistive Robotics (Grant IAPP/1516/137), the EU H2020 MSC ITN project APRIL (Grant 674868), the EU FP7 project DREAM (Grant 611391) and Colciencias (Grant 813-2017).

Author information

Authors and Affiliations


Corresponding author

Correspondence to Carlos A. Cifuentes.

Ethics declarations

Conflict of interest

The authors report no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Casas, J., Senft, E., Gutiérrez, L.F. et al. Social Assistive Robots: Assessing the Impact of a Training Assistant Robot in Cardiac Rehabilitation. Int J of Soc Robotics 13, 1189–1203 (2021).

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Socially assistive robotics
  • Human–robot interaction
  • Cardiac rehab
  • Robot-based therapy