Perception and Evaluation in Human–Robot Interaction: The Human–Robot Interaction Evaluation Scale (HRIES)—A Multicomponent Approach of Anthropomorphism

Abstract

The evaluation of how (human) individuals perceive robots is a central issue to better understand human–robot interaction (HRI). On this topic, promising proposals have emerged. However, present tools are not able to assess a sufficient part of the composite psychological dimensions involved in the evaluation of HRI. Indeed, the percentage of variance explained is often under the recommended threshold for a construct to be valid. In this article, we consolidate the lessons learned from three different studies and propose a further developed questionnaire based on a multicomponent approach of anthropomorphism by adding traits from psychosocial theory about the perception of others and the attribution and deprivation of human characteristics: the de-humanization theory. Among these characteristics, the attribution of agency is of main interest in the field of social robotics as it has been argued that robots could be considered as intentional agents. Factor analyses reveal a four sub-dimensions scale including Sociability, Agency, Animacy, and the Disturbance. We discuss the implication(s) of these dimensions on future perception of and attitudes towards robots.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Notes

  1. 1.

    Amazon Mechanical Turk is a crowdsourcing web platform that aims to have humans perform more or less complex tasks for a fee.

  2. 2.

    Using orthogonal rotation (e.g. VARIMAX), we preserve the independence of the factors. With oblique rotation (e.g. OBLIMIN, PROMAX), we break it and factors are allowed to correlate.

  3. 3.

    This value is appropriate for most analysis [57].

  4. 4.

    Amazon Mechanical Turk is a crowdsourcing web platform that aims to have humans perform more or less complex tasks for a fee.

  5. 5.

    The original footage can be accessed from https://www.youtube.com/watch?v=rSKRgasUEko.

  6. 6.

    To translate the questionnaire from English to French we processed as follow. First, in a forward translation, two bilingual translators have translated the questionnaire into French. As recommended one translator was aware of the purpose of the questionnaire while the second one was naïve [110, 116]. The initial translation was independently back-translated in a backward process and we conducted a pre-test on the questionnaire to ensure psychometric reliability.

References

  1. 1.

    Anderson ML (2005) Why is AI so scary? Artif Intell 169(2):201–208. https://doi.org/10.1016/j.artint.2005.10.008

    Article  Google Scholar 

  2. 2.

    Bacher J, Wenzig K, Vogler M (2004) SPSS twostep cluster—a first evaluation. Univ Erlangen-Nürnberg 1(1):1–20

    Google Scholar 

  3. 3.

    Banaji MR, Hardin C, Rothman AJ (1993) Implicit stereotyping in person judgment. J Pers Soc Psychol 65(2):272–281. https://doi.org/10.1037/0022-3514.65.2.272

    Article  Google Scholar 

  4. 4.

    Bartneck C, Kulić D, Croft E, Zoghbi S (2009) Measurement instruments for the anthropomorphism, animacy, likeability, perceived intelligence, and perceived safety of robots. Int J Soc Robot 1:71–81. https://doi.org/10.1007/s12369-008-0001-3

    Article  Google Scholar 

  5. 5.

    Bollen KA (1989) Structural equations with latent variables. https://doi.org/10.1002/9781118619179

  6. 6.

    Bowling A, Windsor J (2008) The effects of question order and response-choice on self-rated health status in the English Longitudinal Study of Ageing (ELSA). J Epidemiol Community Health 62(1):81–85. https://doi.org/10.1136/jech.2006.058214

    Article  Google Scholar 

  7. 7.

    Burleigh TJ, Schoenherr JR, Lacroix GL (2013) Does the uncanny valley exist? An empirical test of the relationship between eeriness and the human likeness of digitally created faces. Comput Hum Behav 29(3):759–771. https://doi.org/10.1016/j.chb.2012.11.021

    Article  Google Scholar 

  8. 8.

    Carpinella CM, Wyman AB, Perez MA, Stroessner SJ (2017) The Robotic Social Attributes Scale (RoSAS): development and validation. ACM/IEEE Int Conf Hum Robot Interact Part F1271:254–262. https://doi.org/10.1145/2909824.3020208

    Article  Google Scholar 

  9. 9.

    Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivar Behav Res 12(1):43–47. https://doi.org/10.1207/s15327906mbr1201_3

    Article  Google Scholar 

  10. 10.

    Chaminade T, Cheng G (2009) Social cognitive neuroscience and humanoid robotics. J Physiol Paris 103(3–5):286–295. https://doi.org/10.1016/j.jphysparis.2009.08.011

    Article  Google Scholar 

  11. 11.

    Chaminade T, Franklin DW, Oztop E, Cheng G (2005) Motor interference between humans and humanoid robots: effect of biological and artificial motion. In: Proceedings of 2005 4th IEEE international conference on development and learning, 2005, pp 96–101. https://doi.org/10.1109/DEVLRN.2005.1490951

  12. 12.

    Chaminade T, Hodgins J, Kawato M (2007) Anthropomorphism influences perception of computer–animated characters’ actions. Soc Cogn Affect Neurosci 2(3):206–216. https://doi.org/10.1093/scan/nsm017

    Article  Google Scholar 

  13. 13.

    Chaminade T, Rosset D, Da Fonseca D, Nazarian B, Lutcher E, Cheng G, Deruelle C (2012) How do we think machines think? An fMRI study of alleged competition with an artificial intelligence. Front Hum Neurosci. https://doi.org/10.3389/fnhum.2012.00103

    Article  Google Scholar 

  14. 14.

    Cheng G (2014) Humanoid robotics and neuroscience: science, engineering, and society. https://doi.org/10.1201/b17949

  15. 15.

    Choi BCK, Pak AWP (2005) Peer reviewed: a catalog of biases in questionnaires. Prevent Chronic Dis 2:A13

    Google Scholar 

  16. 16.

    Cicchetti DV, Shoinralter D, Tyrer PJ (1985) The effect of number of rating scale categories on levels of interrater reliability: a Monte Carlo investigation. Appl Psychol Meas. https://doi.org/10.1177/014662168500900103

    Article  Google Scholar 

  17. 17.

    Cohen RJ, Swerdlik ME (2013) Psychological testing and assessment: an introduction to tests and measurement, 9th edn. McGrawHill, New York

    Google Scholar 

  18. 18.

    Colman AM, Norris CE, Preston CC (1997) Comparing rating scales of different lengths: equivalence of scores from 5-point and 7-point scales. Psychol Rep. https://doi.org/10.2466/pr0.1997.80.2.355

    Article  Google Scholar 

  19. 19.

    Cronbach LJ (1951) Coefficient alpha and the internal structure of tests. Psychometrika 16(3):297–334. https://doi.org/10.1007/BF02310555

    Article  MATH  Google Scholar 

  20. 20.

    Darling K (2012) Extending legal rights to social robots. SSRN Electron J. https://doi.org/10.2139/ssrn.2044797

    Article  Google Scholar 

  21. 21.

    Darling K (2017) “Who’s johnny?” Anthropomorphic framing in human–robot: interaction, integration, and policy. In: Robot ethics 2.0: from autonomous cars to artificial intelligence. https://doi.org/10.1093/oso/9780190652951.003.0012

  22. 22.

    De Graaf MMA, Ben Allouch S (2013) Exploring influencing variables for the acceptance of social robots. Robot Auton Syst 61(12):1476–1486. https://doi.org/10.1016/j.robot.2013.07.007

    Article  Google Scholar 

  23. 23.

    De Houwer J, Teige-Mocigemba S, Spruyt A, Moors A (2009) Implicit measures: a normative analysis and review. Psychol Bull 135(3):347–368. https://doi.org/10.1037/a0014211

    Article  Google Scholar 

  24. 24.

    de Leon SP, Lara-Muñoz C, Feinstein AR, Wells CK (2004) A comparison of three rating scales for measuring subjective phenomena in clinical research. Arch Med Res. https://doi.org/10.1016/j.arcmed.2003.07.009

    Article  Google Scholar 

  25. 25.

    De Winter JCF, Dodou D (2016) Common factor analysis versus principal component analysis: a comparison of loadings by means of simulations. Commun Stat Simul Comput 45(1):299–321. https://doi.org/10.1080/03610918.2013.862274

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Dennett D (2009) Intentional systems theory. Oxf Handb Philos Mind 68(4):87–106. https://doi.org/10.1093/oxfordhb/9780199262618.003.0020

    Article  Google Scholar 

  27. 27.

    Dennett DC (1988) Précis of the intentional stance. Behav Brain Sci 11(3):495–505. https://doi.org/10.1017/S0140525X00058611

    Article  Google Scholar 

  28. 28.

    Diab LN (1965) Some limitations of existing scales in the measurement of social attitudes. Psychol Rep 17(2):427–430. https://doi.org/10.2466/pr0.1965.17.2.427

    Article  Google Scholar 

  29. 29.

    Dupree CH, Fiske ST (2017) Universal dimensions of social signals: warmth and competence. In: Social signal processing, pp 23–33. https://doi.org/10.1017/9781316676202.003

  30. 30.

    Dziuban CD, Shirkey EC (1974) When is a correlation matrix appropriate for factor analysis? Some decision rules. Psychol Bull 81(6):358–361. https://doi.org/10.1037/h0036316

    Article  Google Scholar 

  31. 31.

    Echterhoff G, Bohner G, Siebler F (2006) Social robotics and human–machine interaction: current research and relevance for social psychology. Zeitschrift Fuer Sozialpsychologie. https://doi.org/10.1024/0044-3514.37.4.219

    Article  Google Scholar 

  32. 32.

    Ehrlich SK, Cheng G (2018) Human-agent co-adaptation using error-related potentials. J Neural Eng. https://doi.org/10.1088/1741-2552/aae069

    Article  Google Scholar 

  33. 33.

    Epley N, Waytz A, Cacioppo JT (2007) On seeing human: a three-factor theory of anthropomorphism. Psychol Rev 114(4):864–886. https://doi.org/10.1037/0033-295X.114.4.864

    Article  Google Scholar 

  34. 34.

    Evans JSBT (2008) Dual-processing accounts of reasoning, judgment, and social cognition. Annu Rev Psychol 59(1):255–278. https://doi.org/10.1146/annurev.psych.59.103006.093629

    Article  Google Scholar 

  35. 35.

    Eyssel F, Kuchenbrandt D (2012) Social categorization of social robots: anthropomorphism as a function of robot group membership. Br J Soc Psychol 51(4):724–731. https://doi.org/10.1111/j.2044-8309.2011.02082.x

    Article  Google Scholar 

  36. 36.

    Eyssel F, Kuchenbrandt D, Hegel F, De Ruiter L (2012) Activating elicited agent knowledge: how robot and user features shape the perception of social robots. In: Proceedings—IEEE international workshop on robot and human interactive communication. https://doi.org/10.1109/ROMAN.2012.6343858

  37. 37.

    Fayers P (2004) Item response theory for psychologists. Qual Life Res. https://doi.org/10.1023/b:qure.0000021503.45367.f2

    Article  Google Scholar 

  38. 38.

    Fink J (2012) Anthropomorphism and human likeness in the design of robots and human–robot interaction. Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). https://doi.org/10.1007/978-3-642-34103-8_20

  39. 39.

    Finn RH (1972) Effects of some variations in rating scale characteristics on the means and reliabilities of ratings. Educ Psychol Meas. https://doi.org/10.1177/001316447203200203

    Article  Google Scholar 

  40. 40.

    Fiske ST, Cuddy AJC, Glick P (2007) Universal dimensions of social cognition: warmth and competence. Trends Cogn Sci 11(2):77–83. https://doi.org/10.1016/j.tics.2006.11.005

    Article  Google Scholar 

  41. 41.

    Fiske ST, Neuberg SL (1990) A continuum of impression formation, from category-based to individuating processes: influences of information and motivation on attention and interpretation. Adv Exp Soc Psychol 23(4):1–74. https://doi.org/10.1016/S0065-2601(08)60317-2

    Article  Google Scholar 

  42. 42.

    Foster ME, Gaschler A, Giuliani M, Isard A, Pateraki M, Petrick RPA (2012) Two people walk into a bar : dynamic multi-party social interaction with a robot agent. ICMI. https://doi.org/10.1145/2388676.2388680

    Article  Google Scholar 

  43. 43.

    Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat. https://doi.org/10.1214/aos/1176347963

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Funke F, Reips UD (2012) Why semantic differentials in web-based research should be made from visual analogue scales and not from 5-point scales. Field Methods. https://doi.org/10.1177/1525822X12444061

    Article  Google Scholar 

  45. 45.

    Galesic M, Bosnjak M (2009) Effects of questionnaire length on participation and indicators of response quality in a web survey. Public Opin Q. https://doi.org/10.1093/poq/nfp031

    Article  Google Scholar 

  46. 46.

    Gorsuch RL (1990) Common factor analysis versus component analysis: some well and little known facts. Multivar Behav Res 25(1):33–39. https://doi.org/10.1207/s15327906mbr2501_3

    Article  Google Scholar 

  47. 47.

    Greenwald AG, Banaji MR (1995) Implicit social cognition: attitudes, self-esteem, and stereotypes. Psychol Rev 102(1):4–27. https://doi.org/10.1037/0033-295X.102.1.4

    Article  Google Scholar 

  48. 48.

    Hair JF, Black WC, Babin BJ, Anderson RE (2010) Multivariate data analysis. In: Exploratory data analysis in business and economics, 7th edn. Prentice Hall. https://doi.org/10.1007/978-3-319-01517-0_3

  49. 49.

    Hanington B, Martin B (2012) Universal methods of design: 100 ways to research complex problems, develop innovative ideas, and design effective solutions. In: Choice reviews online, vol 49. https://doi.org/10.5860/CHOICE.49-5403

  50. 50.

    Haslam N (2006) Dehumanization: an integrative review. Personal Soc Psychol Rev 10(3):252–264. https://doi.org/10.1207/s15327957pspr1003_4

    Article  Google Scholar 

  51. 51.

    Haslam N, Loughnan S (2012) Prejudice and dehumanization. Beyond Prejudice. https://doi.org/10.1017/cbo9781139022736.006

    Article  Google Scholar 

  52. 52.

    Haslam N, Loughnan S (2014) Dehumanization and infrahumanization. Annu Rev Psychol 65(1):399–423. https://doi.org/10.1146/annurev-psych-010213-115045

    Article  Google Scholar 

  53. 53.

    Heider F, Simmel M (1950) An experimental study of apparent behavior. Jpn J Psychol 20(2):67–74. https://doi.org/10.4992/jjpsy.20.2_67

    Article  Google Scholar 

  54. 54.

    Heil J, Heil J (2019) The intentional stance. Philos Mind. https://doi.org/10.4324/9780429506994-9

    Article  Google Scholar 

  55. 55.

    Heise DR (1969) Some methodological issues in semantic differential research. Psychol Bull. https://doi.org/10.1037/h0028448

    Article  Google Scholar 

  56. 56.

    Heise D (1970) The semantic differential and attitude research. In: Summers GF (ed) Attitude measurement. Rand McNally & Co, Chicago, pp 235–253

    Google Scholar 

  57. 57.

    Hendrickson AE, White PO (1964) Promax: a quick method for rotation to oblique simple structure. Br J Stat Psychol. https://doi.org/10.1111/j.2044-8317.1964.tb00244.x

    Article  Google Scholar 

  58. 58.

    Ho CC, MacDorman KF (2010) Revisiting the uncanny valley theory: developing and validating an alternative to the Godspeed indices. Comput Hum Behav 26(6):1508–1518. https://doi.org/10.1016/j.chb.2010.05.015

    Article  Google Scholar 

  59. 59.

    Hofmann W, Gawronski B, Gschwendner T, Le H, Schmitt M (2005) A meta-analysis on the correlation between the implicit association test and explicit self-report measures. Pers Soc Psychol Bull 31:1369–1385. https://doi.org/10.1177/0146167205275613

    Article  Google Scholar 

  60. 60.

    IBM (2011) IBM Kaiser–Meyer–Olkin measure for identity correlation matrix. J R Stat Soc. http://www-01.ibm.com/support/docview.wss?uid=swg21479963

  61. 61.

    Jackson DL, Gillaspy JA, Purc-Stephenson R (2009) Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychol Methods. https://doi.org/10.1037/a0014694

    Article  Google Scholar 

  62. 62.

    Brown JD (2002) The Cronbach alpha reliability estimate. Shiken JALT Test Eval SIG Newsl 6(1):17–18

    Google Scholar 

  63. 63.

    Joyce CRB, Zutshi DW, Hrubes V, Mason RM (1975) Comparison of fixed interval and visual analogue scales for rating chronic pain. Eur J Clin Pharmacol. https://doi.org/10.1007/BF00562315

    Article  Google Scholar 

  64. 64.

    Kätsyri J, Förger K, Mäkäräinen M, Takala T (2015) A review of empirical evidence on different uncanny valley hypotheses: support for perceptual mismatch as one road to the valley of eeriness. Front Psychol. https://doi.org/10.3389/fpsyg.2015.00390

    Article  Google Scholar 

  65. 65.

    Kelley HH (1967) Attribution in social psychology. In: Jones EE, Kanouse DE, Kelley HH et al (eds) Nebraska Symposium on Motivation. Lawrence Erlbaum Associates Inc, Hillsdale, NJ, US, pp 192–238

    Google Scholar 

  66. 66.

    Kiesler S, Powers A, Fussell SR, Torrey C (2008) Anthropomorphic interactions with a robot and robot–like agent. Soc Cogn 26(2):169–181. https://doi.org/10.1521/soco.2008.26.2.169

    Article  Google Scholar 

  67. 67.

    Krosnick JA, Boninger DS, Chuang YC, Berent MK, Carnot CG (1993) Attitude strength: one construct or many related constructs? J Pers Soc Psychol. https://doi.org/10.1037/0022-3514.65.6.1132

    Article  Google Scholar 

  68. 68.

    Kteily N, Bruneau E, Waytz A, Cotterill S (2015) The ascent of man: theoretical and empirical evidence for blatant dehumanization. J Pers Soc Psychol 109(5):901–931. https://doi.org/10.1037/pspp0000048

    Article  Google Scholar 

  69. 69.

    Kteily N, Hodson G, Bruneau E (2016) They see us as less than human: metadehumanization predicts intergroup conflict via reciprocal dehumanization. J Pers Soc Psychol. https://doi.org/10.1037/pspa0000044

    Article  Google Scholar 

  70. 70.

    Kuchenbrandt D, Eyssel F, Bobinger S, Neufeld M (2013) When a robot’s group membership matters: anthropomorphization of robots as a function of social categorization. Int J Soc Robot 5(3):409–417. https://doi.org/10.1007/s12369-013-0197-8

    Article  Google Scholar 

  71. 71.

    Kühnlenz B, Maximilian E, Marcel K, Zhi-Qiao W, Julian W, Kolja K (2018) Impact of trajectory profiles on user stress in close human–robot interaction. At Automatisierungstechnik 66:483. https://doi.org/10.1515/auto-2018-0004

    Article  Google Scholar 

  72. 72.

    Kühnlenz B, Sosnowski S, Buß M, Wollherr D, Kühnlenz K, Buss M (2013) Increasing helpfulness towards a robot by emotional adaption to the user. Int J Soc Robot. https://doi.org/10.1007/s12369-013-0182-2

    Article  Google Scholar 

  73. 73.

    Lee S, Schwarz N (2014) Question context and priming meaning of health: effect on differences in self-rated health between Hispanics and non-Hispanic Whites. Am J Public Health. https://doi.org/10.2105/AJPH.2012.301055

    Article  Google Scholar 

  74. 74.

    Lewis JR (1993) Multipoint scales: mean and median differences and observed significance levels. Int J Hum Comput Interact. https://doi.org/10.1080/10447319309526075

    Article  Google Scholar 

  75. 75.

    Lindwall M, Barkoukis V, Grano C, Lucidi F, Raudsepp L, Liukkonen J, Thgersen-Ntoumani C (2012) Method effects: the problem with negatively versus positively keyed items. J Pers Assess. https://doi.org/10.1080/00223891.2011.645936

    Article  Google Scholar 

  76. 76.

    Lopes PN, Salovey P, Côté S, Beers M (2005) Emotion regulation abilities and the quality of social interaction. Emotion 5:113–118. https://doi.org/10.1037/1528-3542.5.1.113

    Article  Google Scholar 

  77. 77.

    Lozano LM, García-Cueto E, Muñiz J (2008) Effect of the number of response categories on the reliability and validity of rating scales. Methodology. https://doi.org/10.1027/1614-2241.4.2.73

    Article  Google Scholar 

  78. 78.

    MacDorman K (2006) Subjective ratings of robot video clips for human likeness, familiarity, and eeriness: an exploration of the uncanny valley. In: ICCS/CogSci-2006 long symposium: toward …. https://doi.org/10.1093/scan/nsr025

  79. 79.

    MacDorman KF, Chattopadhyay D (2016) Reducing consistency in human realism increases the uncanny valley effect; increasing category uncertainty does not. Cognition. https://doi.org/10.1016/j.cognition.2015.09.019

    Article  Google Scholar 

  80. 80.

    MacDorman KF, Vasudevan SK, Ho CC (2009) Does Japan really have robot mania? Comparing attitudes by implicit and explicit measures. AI & Soc 23(4):485–510. https://doi.org/10.1007/s00146-008-0181-2

    Article  Google Scholar 

  81. 81.

    Marchesi S, Ghiglino D, Ciardo F, Perez-Osorio J, Baykara E, Wykowska A (2019) Do we adopt the intentional stance toward humanoid robots? Front Psychol. https://doi.org/10.3389/fpsyg.2019.00450

    Article  Google Scholar 

  82. 82.

    Mathur MB, Reichling DB (2016) Navigating a social world with robot partners: a quantitative cartography of the Uncanny Valley. Cognition 146:22–32. https://doi.org/10.1016/j.cognition.2015.09.008

    Article  Google Scholar 

  83. 83.

    Mavletova A (2013) Data quality in PC and mobile web surveys. Soc Sci Comput Rev. https://doi.org/10.1177/0894439313485201

    Article  Google Scholar 

  84. 84.

    Maxwell AE, Harman HH (2006) Modern factor analysis. J R Stat Soc Ser A (Gen). https://doi.org/10.2307/2343736

    Article  Google Scholar 

  85. 85.

    McConnell AR, Leibold JM (2001) Relations among the implicit association test, discriminatory behavior, and explicit measures of racial attitudes. J Exp Soc Psychol 37(5):435–442. https://doi.org/10.1006/jesp.2000.1470

    Article  Google Scholar 

  86. 86.

    Meade AW, Craig SB (2012) Identifying careless responses in survey data. Psychol Methods. https://doi.org/10.1037/a0028085

    Article  Google Scholar 

  87. 87.

    Mishra M (2016) Confirmatory factor analysis (CFA) as an analytical technique to assess measurement error in survey research. Paradigm. https://doi.org/10.1177/0971890716672933

    Article  Google Scholar 

  88. 88.

    Mori M, MacDorman KF, Kageki N (2012) The uncanny valley. IEEE Robot Autom Mag 19(2):98–100. https://doi.org/10.1109/MRA.2012.2192811

    Article  Google Scholar 

  89. 89.

    Nomura T, Kanda T, Suzuki T (2006) Experimental investigation into influence of negative attitudes toward robots on human–robot interaction. AI Soc. https://doi.org/10.1007/s00146-005-0012-7

    Article  Google Scholar 

  90. 90.

    Nomura T, Suzuki T, Kanda T, Kato K (2006) Measurement of anxiety toward robots. In: Proceedings—IEEE international workshop on robot and human interactive communication, pp 372–377. https://doi.org/10.1109/ROMAN.2006.314462

  91. 91.

    Nomura T, Suzuki T, Kanda T, Kato K (2006) Measurement of negative attitudes toward robots. Interact Stud. https://doi.org/10.1075/is.7.3.14nom

    Article  Google Scholar 

  92. 92.

    Nowak KL, Rauh C (2005) The influence of the avatar on online perceptions of anthropomorphism, androgyny, credibility, homophily, and attraction. J Comput Mediat Commun. https://doi.org/10.1111/j.1083-6101.2006.tb00308.x

    Article  Google Scholar 

  93. 93.

    Oxford English Dictionary (2017) Oxford English dictionary online. Oxford University Press, Oxford, UK

    Google Scholar 

  94. 94.

    Oztop E, Chaminade T, Franklin DW (2004) Human-humanoid interaction: is a humanoid robot perceived as a human? IEEE/RAS Int Conf Humanoid Robots 2(4):830–841. https://doi.org/10.1109/ICHR.2004.1442688

    Article  Google Scholar 

  95. 95.

    Pérez-Osorio J, Wykowska A (2019) Adopting the intentional stance toward natural and artificial agents. Philos Psychol. https://doi.org/10.31234/osf.io/t7dwg

    Article  Google Scholar 

  96. 96.

    Phillips E, Zhao X, Ullman D, Malle BF (2018) What is human-like? Decomposing robots’ human-like appearance using the anthropomorphic roBOT (ABOT) database. ACM/IEEE Int Conf Hum Robot Interact. https://doi.org/10.1145/3171221.3171268

    Article  Google Scholar 

  97. 97.

    Preston CC, Colman AM (2000) Optimal number of response categories in rating scales: reliability, validity, discriminating power, and respondent preferences. Acta Physiol (Oxf). https://doi.org/10.1016/S0001-6918(99)00050-5

    Article  Google Scholar 

  98. 98.

    Ramsay JO (1973) The effect of number of categories in rating scales on precision of estimation of scale values. Psychometrika. https://doi.org/10.1007/BF02291492

    Article  MATH  Google Scholar 

  99. 99.

    Rauchbauer B, Nazarian B, Bourhis M, Ochs M, Prévot L, Chaminade T (2019) Brain activity during reciprocal social interaction investigated using conversational robots as control condition. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2018.0033

    Article  Google Scholar 

  100. 100.

    Roszkowski MJ, Soven M (2010) Shifting gears: consequences of including two negatively worded items in the middle of a positively worded questionnaire. Assess Eval High Educ. https://doi.org/10.1080/02602930802618344

    Article  Google Scholar 

  101. 101.

    Salem M, Eyssel F, Rohlfing K, Kopp S, Joublin F (2013) To err is human(-like): effects of robot gesture on perceived anthropomorphism and likability. Int J Soc Robot 5(3):313–323. https://doi.org/10.1007/s12369-013-0196-9

    Article  Google Scholar 

  102. 102.

    Saygin AP, Chaminade T, Ishiguro H, Driver J, Frith C (2012) The thing that should not be: predictive coding and the uncanny valley in perceiving human and humanoid robot actions. Soc Cogn Affect Neurosci 7(4):413–422. https://doi.org/10.1093/scan/nsr025

    Article  Google Scholar 

  103. 103.

    Schermelleh-Engel K, Moosbrugger H, Müller H (2003) Evaluating the fit of structural equation models: tests of significance and descriptive goodness-of-fit measures. Methods Psychol Res Online 8:23–74

    Google Scholar 

  104. 104.

    Schriesheim CA, Hill KD (1981) Controlling acquiescence response bias by item reversals: the effect on questionnaire validity. Educ Psychol Meas. https://doi.org/10.1177/001316448104100420

    Article  Google Scholar 

  105. 105.

    Schwarz N (1999) Self-reports: How the questions shape the answers. Am Psychol 54:93–105. https://doi.org/10.1037/0003-066x.54.2.93

    Article  Google Scholar 

  106. 106.

    Shepherdson P, Miller J (2014) Redundancy gain in semantic categorisation. Acta Physiol (Oxf). https://doi.org/10.1016/j.actpsy.2014.01.011

    Article  Google Scholar 

  107. 107.

    Shi J, Kashima Y, Loughnan S, Suitner C, Haslam N (2008) Subhuman, inhuman, and superhuman: contrasting humans with nonhumans in three cultures. Soc Cogn 26(2):248–258. https://doi.org/10.1521/soco.2008.26.2.248

    Article  Google Scholar 

  108. 108.

    Shoemaker S, Dennett D (1990) The intentional stance. J Philos 87(4):212. https://doi.org/10.2307/2026682

    Article  Google Scholar 

  109. 109.

    Snook SC, Gorsuch RL (1989) Component analysis versus common factor analysis: a Monte Carlo study. Psychol Bull 106(1):148–154. https://doi.org/10.1037/0033-2909.106.1.148

    Article  Google Scholar 

  110. 110.

    Sousa VD, Rojjanasrirat W (2011) Translation, adaptation and validation of instruments or scales for use in cross-cultural health care research: a clear and user-friendly guideline. J Eval Clin Pract. https://doi.org/10.1111/j.1365-2753.2010.01434.x

    Article  Google Scholar 

  111. 111.

    Spatola N (2019) L’homme et le robot, de l’anthropomorphisme à l’humanisation. Top Cogn Psychol 119:515–563

    Google Scholar 

  112. 112.

    Spatola N, Belletier C, Chausse P, Augustinova M, Normand A, Barra V et al (2019) Improved cognitive control in presence of anthropomorphized robots. Int J Soc Robot 11(3):463–476. https://doi.org/10.1007/s12369-018-00511-w

    Article  Google Scholar 

  113. 113.

    Spatola N, Belletier C, Normand A, Chausse P, Monceau S, Augustinova M et al (2018) Not as bad as it seems: when the presence of a threatening humanoid robot improves human performance. Sci Robot 3(21):eaat5843. https://doi.org/10.1126/scirobotics.aat5843

    Article  Google Scholar 

  114. 114.

    Spatola N, Monceau S, Ferrand L (2019) Cognitive impact of social robots: how anthropomorphism boosts performance. IEEE Robot Autom Mag. https://doi.org/10.1109/MRA.2019.2928823

    Article  Google Scholar 

  115. 115.

    Spatola N, Santiago J, Beffara B, Mermillod M, Ferrand L, Ouellet M (2018) When the sad past is left: the mental metaphors between time, valence, and space. Front Psychol. https://doi.org/10.3389/fpsyg.2018.01019

    Article  Google Scholar 

  116. 116.

    Sperber AD (2004) Translation and validation of study instruments for cross-cultural research. Gastroenterology. https://doi.org/10.1053/j.gastro.2003.10.016

    Article  Google Scholar 

  117. 117.

    Stansbury JP, Ried LD, Velozo CA (2006) Unidimensionality and bandwidth in the center for epidemiologic studies depression (CES-D) scale. J Pers Assess. https://doi.org/10.1207/s15327752jpa8601_03

    Article  Google Scholar 

  118. 118.

    Sumioka H, Złotowski J, Nishio S, Eyssel F, Ishiguro H, Bartneck C (2018) Model of dual anthropomorphism: the relationship between the media equation effect and implicit anthropomorphism. Int J Soc Robot 10(5):701–714. https://doi.org/10.1007/s12369-018-0476-5

    Article  Google Scholar 

  119. 119.

    Sundar SS, Waddell TF, Jung EH (2016) The Hollywood robot syndrome: media effects on older adults’ attitudes toward robots and adoption intentions. ACM/IEEE Int Conf Hum Robot Interact. https://doi.org/10.1109/HRI.2016.7451771

    Article  Google Scholar 

  120. 120.

    Symonds PM (1924) On the loss of reliability in ratings due to coarseness of the scale. J Exp Psychol. https://doi.org/10.1037/h0074469

    Article  Google Scholar 

  121. 121.

    Syrdal DS, Dautenhahn K, Koay KL, Walters ML (2009) The negative attitudes towards robots scale and reactions to robot behaviour in a live human–robot interaction study. In: Adaptive and emergent behaviour and complex systems—proceedings of the 23rd convention of the society for the study of artificial intelligence and simulation of behaviour, AISB 2009

  122. 122.

    Tetlock PE, Oswald FL, Mitchell G, Blanton H, Jaccard J (2013) Predicting ethnic and racial discrimination: a meta-analysis of IAT criterion studies. J Pers Soc Psychol 105(2):171–192. https://doi.org/10.1037/a0032734

    Article  Google Scholar 

  123. 123.

    Unwin A (2013) Discovering statistics using R by Andy Field, Jeremy Miles, Zoë Field. In: International statistical review, vol 81. https://doi.org/10.1111/insr.12011_21

  124. 124.

    Urquiza-Haas EG, Kotrschal K (2015) The mind behind anthropomorphic thinking: attribution of mental states to other species. Anim Behav 109:167–176. https://doi.org/10.1016/j.anbehav.2015.08.011

    Article  Google Scholar 

  125. 125.

    Vandenberg RJ (2006) Introduction: statistical and methodological myths and urban legends. Organ Res Methods. https://doi.org/10.1177/1094428105285506

    Article  Google Scholar 

  126. 126.

    Velicer WF, Jackson DN (1990) Component analysis versus common factor analysis: some issues in selecting an appropriate procedure. Multivar Behav Res 25(1):1–28. https://doi.org/10.1207/s15327906mbr2501_1

    Article  Google Scholar 

  127. 127.

    Waytz A, Morewedge CK, Epley N, Monteleone G, Gao JH, Cacioppo JT (2010) Making sense by making sentient: effectance motivation increases anthropomorphism. J Pers Soc Psychol 99(3):410–435. https://doi.org/10.1037/a0020240

    Article  Google Scholar 

  128. 128.

    Widaman KF (1993) Common factor analysis versus principal component analysis: differential bias in representing model parameters? Multivar Behav Res 28(3):263–311. https://doi.org/10.1207/s15327906mbr2803_1

    Article  Google Scholar 

  129. 129.

    Williams B, Onsman A, Brown T (2018) Exploratory factor analysis: a five-step guide for novices. Australas J Paramed 4:5. https://doi.org/10.33151/ajp.8.3.93

    Article  Google Scholar 

  130. 130.

    Wood P (2008) Confirmatory factor analysis for applied research. In: The American statistician, vol 62. https://doi.org/10.1198/tas.2008.s98

  131. 131.

    Worthington RL, Whittaker TA (2006) Scale development research: a content analysis and recommendations for best practices. Couns Psychol. https://doi.org/10.1177/0011000006288127

    Article  Google Scholar 

  132. 132.

    Wykowska A, Chaminade T, Cheng G (2016) Embodied artificial agents for understanding human social cognition. Philos Trans R Soc B Biol Sci. https://doi.org/10.1098/rstb.2015.0375

    Article  Google Scholar 

  133. 133.

    Xie Y, DeVellis RF (2006) Scale development: theory and applications. Contemp Sociol. https://doi.org/10.2307/2075704

    Article  Google Scholar 

  134. 134.

    Yamagishi T (2001) Trust as a form of social intelligence. In: Cook KS (ed) Trust in society. Russell Sage foundation series on trust, vol 2. Russell Sage Foundation, New York, NY, pp 121–147

    Google Scholar 

  135. 135.

    Yang GZ, Bellingham J, Dupont PE, Fischer P, Floridi L, Full R et al (2018) The grand challenges of science robotics. Sci Robot 3(14):eaar7650. https://doi.org/10.1126/scirobotics.aar7650

    Article  Google Scholar 

  136. 136.

    Yarkin KL, Harvey JH, Bloxom BM (1981) Cognitive sets, attribution, and social interaction. J Pers Soc Psychol. https://doi.org/10.1037/0022-3514.41.2.243

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nicolas Spatola.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

This study was carried out in accordance with the provisions of the World Medical Association Declaration of Helsinki. Data were handle in accordance with the provisions of the General Data Protection Regulation (EU) 2016/679.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spatola, N., Kühnlenz, B. & Cheng, G. Perception and Evaluation in Human–Robot Interaction: The Human–Robot Interaction Evaluation Scale (HRIES)—A Multicomponent Approach of Anthropomorphism. Int J of Soc Robotics (2021). https://doi.org/10.1007/s12369-020-00667-4

Download citation

Keywords

  • Robot perception
  • Robot evaluation
  • Anthropomorphism
  • Scale
  • Questionnaire
  • Human–robot interaction