Advertisement

It Does Not Matter Who You Are: Fairness in Pre-schoolers Interacting with Human and Robotic Partners

  • C. Di Dio
  • F. ManziEmail author
  • S. Itakura
  • T. Kanda
  • H. Ishiguro
  • D. Massaro
  • A. Marchetti
Article

Abstract

The relationship between humans and robots is increasingly becoming focus of interest for many fields of research. The studies investigating the dynamics underpinning the human–robot interaction have, up to date, mainly analysed adults’ behaviour when interacting with artificial agents. In this study, we present results associated with the human–robot interaction involving children aged 5 to 6 years playing the Ultimatum Game (UG) with either another child or a humanoid robot. Assessment of children’s attribution of mental and physical properties to the interactive agents showed that children recognized the robot as a distinct entity compared to the human. Nevertheless, consistently with previous studies on adults, the results on the UG revealed very similar behavioural responses and reasoning when the children played with the other child and with the robot. Finally, by analysing children’s justifications for their behaviour at the UG, we found that children tended to consider “fair” only the divisions that were exactly equal (5–5 divisions), and to justify them either in quantitative terms (outcome) or in terms of equity. These results are discussed in terms of theory of mind, as well as in light of developmental theories underpinning children’s behaviour at the Ultimatum Game.

Keywords

Human–robot interaction Children Robot Humanoid Ultimatum Game Theory of mind 

Notes

Funding

Università Cattolica del Sacro Cuore contributed to the publication of this research.

Compliance with Ethical Standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

12369_2019_528_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 12 kb)

Supplementary material 2 (M4V 30207 kb)

Supplementary material 3 (MP4 24173 kb)

Supplementary material 4 (MP4 32775 kb)

Supplementary material 5 (MP4 34190 kb)

References

  1. 1.
    Argote L, Goodman PS, Schkade D (1983) The human side of robotics: how worker’s react to a robot. In: Husband TH (ed) International trends in manufacturing technology. Springer, New York, pp 19–32Google Scholar
  2. 2.
    Asada M, MacDorman KF, Ishiguro H, Kuniyoshi Y (2001) Cognitive developmental robotics as a new paradigm for the design of humanoid robots. Rob Auton Syst 37(2):185–193.  https://doi.org/10.1016/S0921-8890(01)00157-9 zbMATHGoogle Scholar
  3. 3.
    Bandura A (1991) Social cognitive theory of moral thought and action. In: Kurtines WM, Gewirtz J, Lamb JL (eds) Handbook of moral behavior and development, vol 1. Psychology Press, London, pp 45–103Google Scholar
  4. 4.
    Baron-Cohen S (1991) Precursors to a theory of mind: understanding attention in others. In: Whiten A (ed) Natural theories of mind: evolution, development and simulation of everyday mindreading. Blackwell, Oxford, pp 233–251Google Scholar
  5. 5.
    Bartneck C, Forlizzi J (2004) A design-centred framework for social human–robot interaction. In: 13th IEEE international workshop on robot and human interactive communication. IEEE, pp 591–594.  https://doi.org/10.1109/roman.2004.1374827
  6. 6.
    Benenson JF, Pascoe J, Radmore N (2007) Children’s altruistic behavior in the dictator game. Evol Hum Behav 28(3):168–175.  https://doi.org/10.1016/j.evolhumbehav.2006.10.003 Google Scholar
  7. 7.
    Beran TN, Ramirez-Serrano A, Kuzyk R, Fior M, Nugent S (2011) Understanding how children understand robots: perceived animism in child–robot interaction. Int J Hum Comput Stud 69(7):539–550.  https://doi.org/10.1016/j.ijhcs.2011.04.003 Google Scholar
  8. 8.
    Boucenna S, Anzalone S, Tilmont E, Cohen D, Chetouani M (2014) Learning of social signatures through imitation game between a robot and a human partner. IEEE Trans Auton Ment Dev 6(3):213–225.  https://doi.org/10.1109/TAMD.2014.2319861 Google Scholar
  9. 9.
    Boucenna S, Cohen D, Meltzoff AN, Gaussier P, Chetouani M (2016) Robots learn to recognize individuals from imitative encounters with people and avatars. Sci Rep 6:19908.  https://doi.org/10.1038/srep19908 Google Scholar
  10. 10.
    Boyce W, Torsheim T, Currie C, Zambon A (2006) The family affluence scale as a measure of national wealth: validation of an adolescent self-report measure. Soc Indic Res 78(3):473–487.  https://doi.org/10.1007/s11205-005-1607-6 Google Scholar
  11. 11.
    Breazeal C (2003) Toward sociable robots. Rob Auton Syst 42(3):167–175.  https://doi.org/10.1016/S0921-8890(02)00373-1 zbMATHGoogle Scholar
  12. 12.
    Breazeal C, Harris PL, DeSteno D, Westlund K, Jacqueline M, Dickens L, Jeong S (2016) Young children treat robots as informants. Top Cogn Sci 8(2):481–491.  https://doi.org/10.1111/tops.12192 Google Scholar
  13. 13.
    Brooks R, Meltzoff AN (2002) The importance of eyes: how infants interpret adult looking behavior. Dev Psychol 38(6):958–966.  https://doi.org/10.1037//0012-1649.38.6.958 Google Scholar
  14. 14.
    Camaioni L, Perucchini P, Bellagamba F, Colonnesi C (2004) The role of declarative pointing in developing a theory of mind. Infancy 5(3):291–308.  https://doi.org/10.1207/s15327078in0503_3 Google Scholar
  15. 15.
    Camerer CF (2011) Behavioral game theory: experiments in strategic interaction. Princeton University Press, PrincetonzbMATHGoogle Scholar
  16. 16.
    Castelli I, Massaro D, Sanfey AG, Marchetti A (2010) Fairness and intentionality in children’s decision-making. Int Rev Econ 57(3):269–288.  https://doi.org/10.1007/s12232-010-0101-x Google Scholar
  17. 17.
    Castelli I, Massaro D, Sanfey AG, Marchetti A (2014) “What is fair for you?” Judgments and decisions about fairness and theory of mind. Eur J Dev Psychol 11(1):49–62.  https://doi.org/10.1080/17405629.2013.806264 Google Scholar
  18. 18.
    Castelli I, Massaro D, Bicchieri C, Chavez A, Marchetti A (2014) Fairness norms and theory of mind in an Ultimatum Game: judgments, offers, and decisions in school-aged children. PLoS ONE 9(8):e105024.  https://doi.org/10.1371/journal.pone.0105024 Google Scholar
  19. 19.
    Castelli I, Massaro D, Sanfey AG, Marchetti A (2017) The more I can choose, the more I am disappointed: the “illusion of control” in children’s decision-making. Open Psychol J 10(1):55–60.  https://doi.org/10.2174/1874350101710010055 Google Scholar
  20. 20.
    Cattaneo L, Fabbri-Destro M, Boria S, Pieraccini C, Monti A, Cossu G, Rizzolatti G (2007) Impairment of actions chains in autism and its possible role in intention understanding. Proc Natl Acad Sci USA 104(45):17825–17830.  https://doi.org/10.1073/pnas.0706273104 Google Scholar
  21. 21.
    Cavallini E, Lecce S, Bottiroli S, Palladino P, Pagnin A (2013) Beyond false belief: theory of mind in young, young-old, and old-old adults. Int J Aging Hum Dev 76:181–198.  https://doi.org/10.2190/AG.76.3.a Google Scholar
  22. 22.
    Chaminade T, Zecca M, Blakemore SJ, Takanishi A, Frith CD, Micera S, Dario P, Rizzolatti G, Gallese V, Umiltà MA (2010) Brain response to a humanoid robot in areas implicated in the perception of human emotional gestures. PLoS ONE 5(7):e11577.  https://doi.org/10.1371/journal.pone.0011577 Google Scholar
  23. 23.
    Charman T, Baron-Cohen S, Swettenham J, Baird G, Cox A, Drew A (2000) Testing joint attention, imitation, and play as infancy precursors to language and theory of mind. Cogn Dev 15(4):481–498.  https://doi.org/10.1016/S0885-2014(01)00037-5 Google Scholar
  24. 24.
    Di Dio C, Isernia S, Ceolaro C, Marchetti A, Massaro D (2018) Growing up thinking of God’s beliefs: theory of mind and ontological knowledge. Sage Open 1:1–14.  https://doi.org/10.1177/2158244018809874 Google Scholar
  25. 25.
    Di Salvo CF, Gemperle F, Forlizzi J, Kiesler S (2002) All robots are not created equal: the design and perception of humanoid robot heads. In: Proceedings of the 4th conference on designing interactive systems: processes, practices, methods, and techniques, ACM, pp 321–326.  https://doi.org/10.1145/778712.778756
  26. 26.
    European Union: European Parliament: European Parliament resolution of 16 February 2017 with recommendations to the Commission on Civil Law Rules on Robotics [2015/2103(INL)]Google Scholar
  27. 27.
    Fehr E, Schmidt KM (1999) A theory of fairness, competition, and cooperation. Q J Econ 114(3):817–868.  https://doi.org/10.1162/003355399556151 zbMATHGoogle Scholar
  28. 28.
    Fehr E, Bernhard H, Rockenbach B (2008) Egalitarianism in young children. Nature 454(7208):1079–1083.  https://doi.org/10.1038/nature07155 Google Scholar
  29. 29.
    Fiore SM, Wiltshire TJ, Lobato EJ, Jentsch FG, Huang WH, Axelrod B (2013) Toward understanding social cues and signals in human–robot interaction: effects of robot gaze and proxemic behavior. Front psychol 4:859.  https://doi.org/10.3389/fpsyg.2013.00859 Google Scholar
  30. 30.
    Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667.  https://doi.org/10.1126/science.1106138 Google Scholar
  31. 31.
    Güth W, Kocher MG (2014) More than thirty years of ultimatum bargaining experiments: motives, variations, and a survey of the recent literature. J Econ Behav Organ 108:396–409.  https://doi.org/10.1016/j.jebo.2014.06.006 Google Scholar
  32. 32.
    Güth W, Schmittberger R, Schwarze B (1982) An experimental analysis of ultimatum bargaining. J Econ Behav Organ 3(4):367–388.  https://doi.org/10.1016/0167-2681(82)90011-7 Google Scholar
  33. 33.
    Happé FG (1994) An advanced test of theory of mind: understanding of story characters’ thoughts and feelings by able autistic, mentally handicapped, and normal children and adults. J Autism Dev Disord 24(2):129–154.  https://doi.org/10.1007/BF02172093 Google Scholar
  34. 34.
    Harris PL (2000) The work of the imagination. Blackwell Publishing, OxfordGoogle Scholar
  35. 35.
    Harris PL, Leevers H (2000) Pretending, imagery and self-awareness in autism. In: Baron-Cohen S, Tager-Flusberg H, Cohen DJ (eds) Understanding other minds: perspectives from developmental cognitive neuroscience. Oxford University Press, New York, pp 182–202Google Scholar
  36. 36.
    Harris PL, Kavanaugh RD, Meredith MC (1994) Young children’s comprehension of pretend episodes: the integration of successive actions. Child Dev 65(1):16–30.  https://doi.org/10.1111/j.1467-8624.1994.tb00731.x Google Scholar
  37. 37.
    Hoffman E, McCabe K, Smith V (2000) The impact of exchange context on the activation of equity in Ultimatum Games. Exp Econ 3(1):5–9.  https://doi.org/10.1007/BF01669204 zbMATHGoogle Scholar
  38. 38.
    Hoffman G, Ju W (2014) Designing robots with movement in mind. J Hum Robot Interact 3(1):89–122.  https://doi.org/10.5898/JHRI.3.1.Hoffman Google Scholar
  39. 39.
    House BR, Silk JB, Henrich J, Barrett HC, Scelza BA, Boyette AH, Hewlett BS, McElreath R, Laurence S (2013) Ontogeny of prosocial behavior across diverse societies. Proc Natl Acad Sci USA 110(36):14586–14591.  https://doi.org/10.1073/pnas.1221217110 Google Scholar
  40. 40.
    Ishiguro H, Ono T, Imai M, Kanda T (2003) Development of an interactive humanoid robot “Robovie”—an interdisciplinary approach. In: Jarvis RA, Zelinsky A (eds) Robotics research. Springer tracts in advanced robotics, vol 6. Springer, Berlin, pp 179–191.  https://doi.org/10.1007/3-540-36460-9_12 Google Scholar
  41. 41.
    Ishiguro H, Ono T, Imai M, Maeda T, Kanda T, Nakatsu R (2001) Robovie: an interactive humanoid robot. Ind Robot Int J 28(6):498–504.  https://doi.org/10.1108/01439910110410051 Google Scholar
  42. 42.
    Itakura S (2008) Development of mentalizing and communication: from viewpoint of developmental cybernetics and developmental cognitive neuroscience. IEICE Trans Commun E91-B(7):2109–2117.  https://doi.org/10.1093/ietcom/e91-b.7.2109 Google Scholar
  43. 43.
    Itakura S (2012) Understanding infants’ mind through a robot: challenge of developmental cybernetics. In: 22nd Biennial meeting of international society for the study of behavioural development, Edmonton, CanadaGoogle Scholar
  44. 44.
    Itakura S (2013) Mind in non-human agents: challenge of developmental cybernetics. In: 18th Biennial conference of Australian human development, Gold Coast, AustraliaGoogle Scholar
  45. 45.
    Itakura S, Ishida H, Kanda T, Shimada Y, Ishiguro H, Lee K (2008) How to build an intentional android: infants’ imitation of a robot’s goal-directed actions. Infancy 13(5):519–532.  https://doi.org/10.1080/15250000802329503 Google Scholar
  46. 46.
    Itakura S, Okanda M, Moriguchi Y (2008) Discovering mind: development of mentalizing in human children. In: Itakura S, Fujita K (eds) Origins of the social mind: evolutionary and developmental views. Springer, Tokyo, pp 179–198.  https://doi.org/10.1007/978-4-431-75179-3_9 Google Scholar
  47. 47.
    Kahn PH Jr, Kanda T, Ishiguro H, Freier NG, Severson RL, Gill BT, Ruckert JH, Shen S (2012) “Robovie, you’ll have to go into the closet now”: children’s social and moral relationships with a humanoid robot. Dev Psychol 48(2):303–314.  https://doi.org/10.1037/a0027033 Google Scholar
  48. 48.
    Kanda T, Hirano T, Eaton D, Ishiguro H (2004) Interactive robots as social partners and peer tutors for children: a field trial. Int J Hum Comput Interact 19(1):61–84.  https://doi.org/10.1207/s15327051hci1901&2_4 Google Scholar
  49. 49.
    Kanda T, Shimada M, Koizumi S (2012) Children learning with a social robot. In: HRI ‘12 proceedings of the seventh annual ACM/IEEE international conference on human–robot interaction. IEEE, pp 351–358.  https://doi.org/10.1145/2157689.2157809
  50. 50.
    Kang JW, Hong HS, Kim BS, Chung MJ (2008) Assistive mobile robot systems helping the disabled workers in a factory environment. Int J Assist Robot Mechatron 9:42–52.  https://doi.org/10.5772/5155 Google Scholar
  51. 51.
    Kanngiesser P, Itakura S, Zhou Y, Kanda T, Ishiguro H, Hood B (2015) The role of social eye-gaze in children’s and adults’ ownership attributions to robotic agents in three cultures. Interact Stud 16(1):1–28.  https://doi.org/10.1075/is.16.1.01kan Google Scholar
  52. 52.
    Katayama N, Katayama JI, Kitazaki M, Itakura S (2010) Young children’s folk knowledge of robots. Asian Cult Hist 2(2):111.  https://doi.org/10.5539/ach.v2n2p111 Google Scholar
  53. 53.
    Kompatsiari K, Tikhanoff V, Ciardo F, Metta G, Wykowska A (2017) The importance of mutual gaze in human–robot interaction. In: International conference on social robotics 2017. Springer, Cham, pp 443–452.  https://doi.org/10.1007/978-3-319-70022-9_44
  54. 54.
    Korkman M, Kirk U, Kemp S (2007) NEPSY-II: a developmental neuropsychological assessment. The Psychological Corporation, San AntonioGoogle Scholar
  55. 55.
    Lecce S, Zocchi S, Pagnin A, Palladino P, Taumoepeau M (2010) Reading minds: the relation between children’s mental state knowledge and their metaknowledge about reading. Child Dev 81:1876–1893.  https://doi.org/10.1111/j.1467-8624.2010.01516.x Google Scholar
  56. 56.
    Lillard AS (1994) Making sense of pretence. In: Lewis C, Mitchell P (eds) Children’s early understanding of mind: origins and development. Lawrence Erlbaum, Hillsdale, pp 211–234Google Scholar
  57. 57.
    Lillard AS (2013) Fictional world, the neuroscience of the imagination, and childhood education. In: Taylor M (ed) The Oxford handbook of the development of imagination. Oxford University Press, New York, pp 137–160.  https://doi.org/10.1093/oxfordhb/9780195395761.013.0010 Google Scholar
  58. 58.
    Lin P, Abney K, Bekey GA (2011) Robot ethics: the ethical and social implications of robotics. MIT Press, CambridgeGoogle Scholar
  59. 59.
    Lombardi E, Greco S, Massaro D, Schär R, Manzi F, Iannaccone A, Perret-Clermont AN, Marchetti A (2018) Does a good argument make a good answer? Argumentative reconstruction of children’s justifications in a second order false belief task. Learn Cult Soc Interact 18:13–27.  https://doi.org/10.1016/j.lcsi.2018.02.001 Google Scholar
  60. 60.
    Lombardi E, Di Dio C, Castelli I, Massaro D, Marchetti A (2017) Prospective thinking and decision making in primary school age children. Heliyon 3(6):e00323.  https://doi.org/10.1016/j.heliyon.2017.e00323 Google Scholar
  61. 61.
    Manzi F, Massaro D, Kanda T, Tomita K, Itakura S, Marchetti A (2017) Teoria della Mente, bambini e robot: l’attribuzione di stati mentali. In: XXX Congresso AIP Sezione di Psicologia dello Sviluppo e dell’Educazione, Messina, ItalyGoogle Scholar
  62. 62.
    Marchetti A, Castelli I, Harlè K, Sanfey A (2011) Expectations and outcome: the role of proposer features in the Ultimatum Game. J Econ Psychol 32:446–449.  https://doi.org/10.1016/j.joep.2011.03.009 Google Scholar
  63. 63.
    Marchetti A, Castelli I, Sanfey A (2008) Teoria della Mente e decisione in ambito economico: un contributo empirico. In: Antonietti A, Balconi M (eds) Mente ed economia Come psicologia e neuroscienze spiegano il comportamento economico. Il Mulino, Bologna, pp 191–207Google Scholar
  64. 64.
    Marchetti A, Manzi F, Itakura S, Massaro D (2018) Theory of mind and humanoid robots from a lifespan perspective. Z Psychol 226:98–109.  https://doi.org/10.1027/2151-2604/a000326 Google Scholar
  65. 65.
    Martini MC, Gonzalez CA, Wiese E (2016) Seeing minds in others-can agents with robotic appearance have human-like preferences? PLoS ONE 11(1):e0146310.  https://doi.org/10.1371/journal.pone.0146310 Google Scholar
  66. 66.
    Massaro D, Castelli I, Manzi F, Lombardi E, Marchetti A (2017) Decision making as a complex psychological process. Bildung und Erziehung 70(1):17–32.  https://doi.org/10.7788/bue-2017-0104 Google Scholar
  67. 67.
    Meltzoff AN, Gopnik A (1993) The role of imitation in understanding persons and developing a theory of mind. In: Baron-Cohen S, Tager-Flusberg H, Cohen DJ (eds) Understanding other minds: perspectives from autism. Oxford University Press, New York, pp 335–366Google Scholar
  68. 68.
    Meltzoff AN, Brooks R (2001) “Like me” as a building block for understanding other minds: bodily acts, attention, and intention. In: Malle BF, Moses LJ, Baldwin DA (eds) Intentions and intentionality: foundations of social cognition. MIT Press, Cambridge, pp 171–192Google Scholar
  69. 69.
    Meltzoff AN, Brooks R, Shon AP, Rao RP (2010) “Social” robots are psychological agents for infants: a test of gaze following. Neural Netw 23(8):966–972.  https://doi.org/10.1016/j.neunet.2010.09.005 Google Scholar
  70. 70.
    Minato T, Shimada M, Itakura S, Lee K, Ishiguro H (2006) Evaluating the human likeness of an android by comparing gaze behaviors elicited by the android and a person. Adv Robot 20(10):1147–1163.  https://doi.org/10.1163/156855306778522505 Google Scholar
  71. 71.
    Moriguchi Y, Matsunaka R, Itakura S, Hiraki K (2012) Observed human actions, and not mechanical actions, induce searching errors in infants. Child Dev Res 2012:1–5.  https://doi.org/10.1155/2012/465458 Google Scholar
  72. 72.
    Morita TP, Slaughter V, Katayama N, Kitazaki M, Kakigi R, Itakura S (2012) Infant and adult perceptions of possible and impossible body movements: an eye-tracking study. J Exp Child Psychol 113:401–414.  https://doi.org/10.1016/j.jecp.2012.07.003 Google Scholar
  73. 73.
    Mutlu B, Forlizzi J, Hodgins J (2006) A storytelling robot: modeling and evaluation of human-like gaze behavior. In: 6th IEEE-RAS international conference on humanoid robots. IEEE, pp 518–523.  https://doi.org/10.1109/ichr.2006.321322
  74. 74.
    Nishio S, Ogawa K, Kanakogi Y, Itakura S, Ishiguro H (2012) Do robot appearance and speech affect people’s attitude? Evaluation through the Ultimatum Game. In: RO-MAN, 2012 IEEE. IEEE, pp 809–814.  https://doi.org/10.1109/roman.2012.6343851
  75. 75.
    Nitsch V, Glassen T (2015) Investigating the effects of robot behavior and attitude towards technology on social human-robot interactions. In: 24th IEEE international symposium on robot and human interactive communication. IEEE, pp 535–540.  https://doi.org/10.1109/roman.2015.7333560
  76. 76.
    Okanda M, Kanda T, Ishiguro H, Itakura S (2013) Three-and 4-year-old children’s response tendencies to various interviewers. J Exp Child Psychol 116(1):68–77.  https://doi.org/10.1016/j.jecp.2013.03.012 Google Scholar
  77. 77.
    Okumura Y, Kanakogi Y, Kanda T, Ishiguro H, Itakura S (2013) Infants understand the referential nature of human gaze but not robot gaze. J Exp Child Psychol 116(1):86–95.  https://doi.org/10.1016/j.jecp.2013.02.007 Google Scholar
  78. 78.
    Okumura Y, Kanakogi Y, Kobayashi T, Itakura S (2017) Individual differences in object-processing explain the relationship between early gaze-following and later language development. Cognition 166:418–424.  https://doi.org/10.1016/j.cognition.2017.06.005 Google Scholar
  79. 79.
    Park HW, Gelsomini M, Lee JJ, Breazeal C (2017) Telling stories to robots: the effect of backchanneling on a child’s storytelling. In: Proceedings of the 2017 ACM/IEEE international conference on human–robot interaction. ACM, pp 100–108.  https://doi.org/10.1145/2909824.3020245
  80. 80.
    Perner J, Wimmer H (1985) “John thinks that Mary thinks that…” attribution of second-order beliefs by 5- to 10-year-old children. J Exp Child Psychol 39(3):437–471.  https://doi.org/10.1016/0022-0965(85)90051-7 Google Scholar
  81. 81.
    Piaget J (1929) The child’s conception of the world. Routledge, LondonGoogle Scholar
  82. 82.
    Premack D, Woodruff G (1978) Does the chimpanzee have a theory of mind? Behav Brain Sci 1(4):515–526.  https://doi.org/10.1017/S0140525X00076512 Google Scholar
  83. 83.
    Rizzolatti G, Fogassi L, Gallese V (2001) Neurophysiological mechanisms underlying the understanding and imitation of action. Nat Rev Neurosci 2(9):661–670.  https://doi.org/10.1038/35090060 Google Scholar
  84. 84.
    Robins B, Dautenhahn K, Boekhorst RT, Billard A (2005) Robotic assistants in therapy and education of children with autism: can a small humanoid robot help encourage social interaction skills? Univ Access Inf Soc 4(2):105–120.  https://doi.org/10.1007/s10209-005-0116-3 Google Scholar
  85. 85.
    Rosenthal-von der Pütten AM, Krämer NC (2014) How design characteristics of robots determine evaluation and uncanny valley related responses. Comput Human Behav 36:422–439.  https://doi.org/10.1016/j.chb.2014.03.066 Google Scholar
  86. 86.
    Sandoval EB, Brandstetter J, Obaid M, Bartneck C (2016) Reciprocity in human-robot interaction: a quantitative approach through the prisoner’s dilemma and the Ultimatum Game. Int J Soc Robot 8(2):303–317.  https://doi.org/10.1007/s12369-015-0323-x Google Scholar
  87. 87.
    Scassellati B (2003) Investigating models of social development using a humanoid robot. In: Proceedings of the international joint conference on neural networks. IEEE, pp 2704–2709.  https://doi.org/10.1109/ijcnn.2003.1223995
  88. 88.
    Scassellati B (2005) Using social robots to study abnormal social development. In: Berthouze L, Kaplan F, Kozima H, Yano H, Konczak J, Metta G, Nadel J, Sandini G, Stojanov G, Balkenius C (eds) Proceedings of the fifth international workshop on epigenetic robotics: modeling cognitive development in robotic systems. LUCS, Lund, pp 11–14Google Scholar
  89. 89.
    Sloane S, Baillargeon R, Premack D (2012) Do infants have a sense of fairness? Psychol Sci 23(2):196–204.  https://doi.org/10.1177/0956797611422072 Google Scholar
  90. 90.
    Srinivasan SM, Lynch KA, Bubela DJ, Gifford TD, Bhat AN (2013) Effect of interactions between a child and a robot on the imitation and praxis performance of typically developing children and a child with autism: a preliminary study. Percepl Mot Skills 116(3):885–904.  https://doi.org/10.2466/15.10.PMS.116.3.885-904 Google Scholar
  91. 91.
    Takagishi H, Kameshima S, Schug J, Koizumi M, Yamagishi T (2010) Theory of mind enhances preference for fairness. J Exp Child Psychol 105(1):130–137.  https://doi.org/10.1016/j.jecp.2009.09.005 Google Scholar
  92. 92.
    Terada K, Takeuchi C (2017) Emotional expression in simple line drawings of a robot’s face leads to higher offers in the Ultimatum Game. Front Psychol 8:724.  https://doi.org/10.3389/fpsyg.2017.00724 Google Scholar
  93. 93.
    Torta E, van Dijk E, Ruijten PAM, Cuijpers RH (2013) The Ultimatum Game as measurement tool for anthropomorphism in human–robot interaction. In: Herrmann G, Pearson MJ, Lenz A, Bremner P, Spiers A, Leonards U (eds) Social robotics. ICSR 2013. Lecture notes in computer science, vol 8239. Springer, Cham.  https://doi.org/10.1007/978-3-319-02675-6_21 Google Scholar
  94. 94.
    Turkle S (2004) Whither psychoanalysis in computer culture. Psychoanal Psychol 21(1):16–30.  https://doi.org/10.1037/0736-9735.21.1.16 Google Scholar
  95. 95.
    Villani D, Massaro D, Castelli I, Marchetti A (2013) Where are you watching? Patterns of visual exploration in the Ultimatum Game. Open Psychol J 6(1):76–80.  https://doi.org/10.2174/1874350101306010076 Google Scholar
  96. 96.
    Von Neumann J, Morgenstern O (1945) Theory of games and economic behavior. Princeton University Press, PrincetonzbMATHGoogle Scholar
  97. 97.
    Wardle J, Robb K, Johnson F (2002) Assessing socioeconomic status in adolescents: the validity of a home affluence scale. J Epidemiol Community Health 56(8):595–599.  https://doi.org/10.1136/jech.56.8.595 Google Scholar
  98. 98.
    Wellman HM, Cross D, Watson J (2001) Meta-analysis of theory-of-mind development: the truth about false belief. Child Dev 72(3):655–684.  https://doi.org/10.1111/1467-8624.00304 Google Scholar
  99. 99.
    Westlund JMK, Dickens L, Jeong S, Harris PL, DeSteno D, Breazeal CL (2017) Children use non-verbal cues to learn new words from robots as well as people. Int J Child Comput Interact 13:1–9.  https://doi.org/10.1016/j.ijcci.2017.04.001 Google Scholar
  100. 100.
    White S, Hill E, Happé F, Frith U (2009) Revisiting the strange stories: revealing mentalizing impairments in autism. Child Dev 80(4):1097–1117.  https://doi.org/10.1111/j.1467-8624.2009.01319.x Google Scholar
  101. 101.
    Wiese E, Metta G, Wykowska A (2017) Robots as intentional agents: using neuroscientific methods to make robots appear more social. Front Psychol 8:1663.  https://doi.org/10.3389/fpsyg.2017.01663 Google Scholar
  102. 102.
    Wimmer H, Perner J (1983) Beliefs about beliefs: representation and constraining function of wrong beliefs in young children’s understanding of deception. Cognition 13(1):103–128.  https://doi.org/10.1016/0010-0277(83)90004-5 Google Scholar
  103. 103.
    Wykowska A, Chaminade T, Cheng G (2016) Embodied artificial agents for understanding human social cognition. Phil Trans R Soc B 371(1693):20150375.  https://doi.org/10.1098/rstb.2015.0375 Google Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • C. Di Dio
    • 1
    • 2
  • F. Manzi
    • 1
    • 2
    • 3
    Email author
  • S. Itakura
    • 4
  • T. Kanda
    • 5
    • 6
  • H. Ishiguro
    • 6
    • 7
  • D. Massaro
    • 1
    • 2
  • A. Marchetti
    • 1
    • 2
  1. 1.Research Unit on Theory of Mind, Department of PsychologyUniversità Cattolica del Sacro CuoreMilanItaly
  2. 2.Human-Robot LaboratoryUniversità Cattolica del Sacro CuoreMilanItaly
  3. 3.Institute of Psychology and EducationUniversity of NeuchâtelNeuchâtelSwitzerland
  4. 4.Department of Psychology, Graduate School of LettersKyoto UniversityKyotoJapan
  5. 5.Human-Robot Interaction Laboratory, Graduate School of InformaticsKyoto universityKyotoJapan
  6. 6.Advanced Telecommunications Research Institute International, IRC/HIL, Keihana Science CityKyotoJapan
  7. 7.Department of Adaptive Machine SystemOsaka UniversityToyonakaJapan

Personalised recommendations